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Introduction

Following Symes and Kern (1994) and Chavent and Jacewitz (1995),
Zhou et al. (2008) proposed an alternative migration velocity analysis
algorithm that utilizes the extrapolation operators of RTM and
removes the square data differences that are used in classic waveform
inversion
Classic waveform inversion consists of minimizing the least-squares
misfit between the measured data and the synthetics predicted with
the current description of the rock properties (Tarantola, 1987)
Although it is mathematically attractive, very few success
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Method

Classic waveform inversion, the least-squares waveform data misfit:

JLS(p) =
1
2
< p − p0, p − p0 >

Scalar acoustic wave equation:

(
1
v2

∂2

∂t2
− O2)p = s

The Lagrange multiplier or adjoint state variable:

L(p, λ; v) = JLS(p) +

〈
λ, (

1
v2

∂2

∂t2
− O2)p − s

〉
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Issue 1: No single acoustic wave equation is known to
represent real wave propagations.

Acoustic wave equation, elastic wave equation...
All of these wave equations share one very important property that
although these wave equations have different transport equations and
therefore different amplitudes, all of them have the same eikonal
equation and hence retain the same traveltime information.
To reduce the dependency of waveform inversion on wave equations,
waveform inversion should emphasize on the traveltime information
and downplay the role of amplitude information.
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Issue 2: RTM is not the first iteration of classic waveform
inversion.

RTM is the first iteration of another form of waveform inversion
(maximization problem):

JCC (p) =
1
2
< p, p0 >

The unconstrained optimization scheme can be described with
Lagrange multiplier method by:

L(p, λ; v) = JCC (p) +

〈
λ, (

1
v2

∂2

∂t2
− O2)p − s

〉
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Issue 3: Hessian matrix may be necessary for waveform
inversion.

The deconvolution has the effect to remove the source wavelet effect
and the inverse of second derivative to time plays the role of
smoothing the velocity model and hence helping produce the
low-wavenumber velocity model.
Application of Hessian to the inversion process will also help speed up
the convergence rate.
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Issue 4: Direct Born inversion and classic waveform
inversion are only valid for scatterers or transmission and
refraction waves but not for reflection waves.

Both techniques work well for inversion of velocity with
refraction/transmission waves.
For reflection data, just like standard migration algorithms, only
locations of the reflectors have been imaged instead of smooth
background velocities.
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Issue 5: Waveform inversion for reflection data in data
domain should depend on migration and demigration
processes.

The wavefields generated with a standard wave equation will contain
only direct/turning waves and refraction waves, and are essentially
devoid of reflection waves.
The low-wavenumber components and the high-wavenumber
components of the velocity are fairly well decoupled.
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Demigration

Demigration relies on the correlation of incident wavefields with
migration images to generate the needed reflection waves and does
not necessarily need sharp velocity boundaries in the velocity model as
required by traditional forward modelling process. One such
demigration process was defined by Symes and Kern (1994):

(
1
v2

∂2

∂t2
− O2)q = s

(
1
v2

∂2

∂t2
− O2)p = r · q

the reflection wavefield p, the reference wavefield q, the (smooth)
background velocity v .
r , which is the stacked migration image, is responsible for all
reflections in this model, it is normally called the (rough) reflectivity.
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Lagrange multiplier method

Lagrange multiplier method is defined as:

L(p, q, λp, λq; v) = J(p) +

〈
λq, (

1
v2

∂2

∂t2
− O2)q − s

〉
(1)

+

〈
λp, (

1
v2

∂2

∂t2
− O2)p − r · q

〉
(2)

Here, λq and λp are the adjoint wavefields that satisfy adjoint-state
equations.
If J(p) = JCC (p), λq and λp can be solved with following equations:

(
1
v2

∂2

∂t2
− O2)λp = −p0

(
1
v2

∂2

∂t2
− O2)λq = r · λp
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The gradient of the objective equation

The gradient of the objective equation:

OJ =

〈
λq,−

2
v
O2q

〉
+

〈
λp,−

2
v
O2p

〉
First term corresponding to the incident waves from the source side,
while the second-term corresponds to the reflection waves at the
receiver side.
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Example

Figure : Partial gradient images at times t=0.87s, 0.39s, respectively for the top
two plots (in clockwise). The bottom right plot corresponds to the final complete
gradient corresponding to this trace, i.e., at time t=0.0s. The bottom left plot is
the gradient after an inversion of a shot gather.
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Example

Figure : Gradient image after inversion with the whole 41-shotsof reflection data.
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Conclusions

In this abstract we have discussed some fundamental issues of
traditional waveform inversion in data domain.
We propose to (1) base waveform inversion on optimization
functionals, such as cross-correlation, that emphasize more on
traveltime information;
(2) use a demigration approach instead of model-based forward
modelling to simulate data.
With the migration/demigration processes, we can produce the
synthetic data that can be used to match the observed data with less
worrying about the cycle-skip problem that is intrinsic in classic
waveform inversion.
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