Image amplitudes in reverse time
migration /inversion

Chris Stolk!, Tim Op 't Root?, Maarten de Hoop?

1 University of Amsterdam
2 University of Twente
3 Purdue University

TRIP Seminar, October 6, 2010



RTM based linearized inversion

» Seismic imaging is mathematically treated as a linearized
inverse problem

» Kirchhoff migration can correspond to a method for inverting
discontinuities (Beylkin, 1985).

» There are conditions on the background medium. Single
source: no multipathing. Multisource: Traveltime Injectivity
Condition (Rakesh, 1988; Nolan and Symes 1997; Ten Kroode
Et Al 1998)

» RTM has the advantage that there are no approximations
from ray-theory and one-way methods. We will do linearized
inverse scattering by a modified reverse time migration (RTM
algorithm



The linearized inverse problem

Source field ugyc
1 » 2
ﬁat — Vi ) Usre(X, ) = 0(x — Xere)0(t)

Scattered field: Linearize in the velocity ﬁ — ﬁ(l + r(x)).
v the smooth velocity model, r contains singularities

1 r
(\/283 — Vi) Uscat (X, t) = —ﬁafusrc.

Problem: Determine r(x) from the following data:

Uscat (X, t) for x = (x1, x2, x3) in a subset of x3 =0, t € [0, Tynax]



A new view on Reverse Time Migration

» Numerically solve wave equation to obtain
Ugre(X, t) = incoming (source) wave field
Upie(X, t) = reverse time continued receiver field

» New imaging condition

_ 2i /w2 Tsre (X, W) trte (X, w) — V2 Vigre (X, w) Ve (X, w) dw
27rw3 msrc(xa w)|2 .

I(x)
(cf. Kiyashchenko et al., 2007)
» Characterization of /
I(x) = R(x, Dy)r,

Here R is a pseudodifferential operator that describes the
aperture effect, i.e. R(x,&) = 1 for “visible" reflectors (cf.
Beylkin, 1985).
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Model problem

Notation x = (xi, x2, X3).

Source field is plane wave with velocity (0,0, v)
src A -
e 1) = AB(t— )

Scattered field slightly simplified

(2 07 — V2t (£,%) = AB(t — 2)r(x).

v
Perfect backpropagation: uyt. solution of a final value problem
L .o 2
(?81. — vx)UrtC(X, t) =0
Urtc(xa Tl) = Uscat(xa Tl)a aturtc(xa Tl) = atUscat(Xv Tl)a X € R3-



Solving the wave equation

Spatial Fourier transform
(v7207 +€) (€. 1) = F(€.1).
Duhamel’s principle: Let w(¢§,t,s)
(V7207 + €)w(€, t.s,) =0,
w(&,s,s)=0 O (€, s,s) = v2 (s €).

Result

5 ‘ i —s —iv —s 2? ) S
u(g,t):/o (e™lelle=s) _ =il >)V2iv(”€£”)ds

Needed: Fourier transform of r.h.s. Ad(t — 22)r(x)



Fourier transform f(x,t) = Ad(t — 2)r(x)

v

f&,t) = /A(S(t - X—\j)r(x)e"""g dx

= VA F(x 0 )—(61,62) M(§1, 62, vot) e

—i&3vt

Computations involve two similar terms, take only one of those.

-~ ‘ V3 —iv —s)—i&3vs
Uscat(€7t):/o TH&HE 1€ll(t=s)—its AF(xq s0)s(e1,60) (€1, 62, vs) ds

+ pos. freq. term
Av?

= e VIEItHE &, &5 — ||€]|) + pos. freq. term,
e I 1€l

if t is after the incoming has passed supp(r)
Back to space domain

_ ! AV2 ixe-ivlele
e t) = 2Re ooy [ e (6-(0.0,¢])) de



Interpretation

Scattered field

_ - AV2 ixe-ivlgles
e t) = 2Re s [ e (60,0, 1) d

Wave vectors
A -0/l

refl

& outgoing wave number
(0,0,1&l) incoming wave number
& —(0,0,||&]|) reflectivity wave number

(Ol



Modified excitation time imaging condition

Same formula for the backpropagated field! Valid for all ¢

L AV eivlglen
el 6) = 2Re s [ e 7(€ — (0,0, ) de

Basic image: Ip(x) = tyic(Xx, x3/V).

Linearized inverse scattering: Try
2
I(x) = A (0r + vOxy) Urte(X, X3/ V)

(meaning first take derivatives then insert (x,t) = (x,x3/v) )
Straightforward calculation yields

ke (16 Vae
100 =2Re i [ (12 ) 7te - .0, €l e



A change of variables

Copy from previous slide:

— 2Re ! SR
100 =2Re s [ (12 ) 7te - 0.0, €l e

4 0]

refl

Change of variables

i _ &
» Jacobian 1 e
» Domain £ € R2 x R

Result:

_ 1 ~E Lix-E 4T _ 1 (& ix-é
I(x) = 2Re 7(277)3 /]R2XR<O r(§)e™sd¢ = 7(277)3 /R2XR#O r(&)e™s d¢€.

Reconstruction except for £&3 = 0, corresponding to reflection over
180 degrees.



Modified ratio imaging condition
We had
2
I(x) = A (0 + (0,0, v) - V) trte(X, x3/V)

Rewrite into modified ratio imaging condition
» Use that (0,0, v) = v2V T(x), and that

Ugre(x,w) = Ae_i“’T(x),

ansrc(X,w) ~ — iwVy T(X)Ae_i“JT(X)_

2 :
> Insert factors “; left out in model problem
This results in

2i / W2 Tgre (X, W) Urte(X, w) — V2 Vigpe(X, w) Ve (x, w)

- o) dw.
273 [Tore (%, )2 w

I(x)



Extension to variable background

Local vs. global analysis

» A local analysis generalizes the explicit formulas to variable
coefficients, and leads to explicit inversion formulas

» A global analysis takes into account the of global effect of
curved rays. No source-multipathing is allowed to exclude
kinematic artifacts (“cross talk”). Cf. Rakesh (1988), Nolan
and Symes (1997).

Tools: microlocal analysis
» Fourier integral operators (FIO's), pseudodifferential operators
(WVDO's)
» Description of the mapping properties of operators for

localized plane wave components. Work in (x, &) or (x, t,&,w)
domain.



Variable coefficients: The wave equation

Local analysis

Solve the wave equation using WKB with plane wave initial values.
Result is an FIO

u(y, t) = (271r)3 // eia(y’t_s’g)a(y, t—s,S)?(E,s) ds d€+pos. freq. term,

« satisfies the eikonal equation; a a transport equation. Formula is
valid for t,s in a bounded time interval

Global analysis

» Propagation of localized plane wave components along rays,
properly described as curves in (x,t, &, w) space

» Time reversal property is globally valid



Continued scattered field and linearized forward map
Define the continued scattered field wuy, as the “perfect”
backpropagated field from a fixed time, full position space
Local result

For a localized contribution to r

tn,a(Y, t) e P TEXO Ay, t,x, €) r(x) d€ dx.

With phase function
@T(yv t,x, 5) = a(y, t— T(X), 5) -

Global result €ln.x
The map F_ : r— uy is a FIO.
Mapping of wave components (x 7))
(X7C) = (y7 ta'rhw): see pic—
ture

(y.t1)




RT continuation from the boundary

Preprocess data:
» WDO cutoff Wp(y1, y2, t, M1, M2, w) with three effects

» Smooth taper near acquisition boundary
» Remove direct waves
» Remove tangently incoming waves

> Normalize wave field to get true amplitude time reversal

Characterize mathematically the aperture effect
Result There are WDO'’s P_, P, such that
Upe(X, t) = P_(t,x, Dy)un — + P+ (t,x, Dy)un +

in which uy 4 is the part of u, with =w > 0. To highest order

P+(s,x,&) = Vr(y1, y2, t,m1,7m2,w) if there is a acquisition
reverse,
ray with +w > 0, connecting (x, s, &, w) timecont;

with (y1, y2, t,n1, M2, W)




Inverse scattering
Modified excitation time imaging condition

2 a1
/(x) = 0, *? [at + vV T - vx] urtc(xa t)

Asrc (X) ‘

» From the global analysis, there are no nonlocal contributions
and

I(x) = WDO r(x)
» From the local analysis
I(x) = (R-(x, Dx) + R+(x, Dx)) r(x)
To highest order

R:I:(Xa C) = P:I:(x7£)
if ¢ and & are related through y
¢=€6+wVT(x). <
X~

inc

Modified ratio imaging condition derived similarly as above



Example: A vertical gradient medium
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Example 1: Velocity perturbation, reconstructed velocity
perturbation, and three traces for background medium
v =2.0+0.001z (z in meters and v in km/s). Error 8-10 %.



Example: Horizontal reflector with receiver side caustics

Velocity. rays and fronts
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Example 2: (a) A velocity model with some rays; (b) Simulated
data, with direct arrival removed; (c) Velocity perturbation;

(d) Reconstructed velocity perturbation. Error 0-10%



Conclusion and discussion

» We modified reverse time migration to become a linearized
inverse scattering method

» We characterized the resolution operator as a partial inverse,
a WDO with symbol describing aperture effects

» The modified imaging condition suppresses low-frequency
artifacts

» Good numerical results in (bandlimited) examples

» Straightforward generalization of the imaging condition to
downward propagation methods
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