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RTM based linearized inversion

I Seismic imaging is mathematically treated as a linearized
inverse problem

I Kirchhoff migration can correspond to a method for inverting
discontinuities (Beylkin, 1985).

I There are conditions on the background medium. Single
source: no multipathing. Multisource: Traveltime Injectivity
Condition (Rakesh, 1988; Nolan and Symes 1997; Ten Kroode
Et Al., 1998)

I RTM has the advantage that there are no approximations
from ray-theory and one-way methods. We will do linearized
inverse scattering by a modified reverse time migration (RTM
algorithm



The linearized inverse problem

Source field usrc(
1

v2
∂2

t −∇2
x

)
usrc(x, t) = δ(x− xsrc)δ(t)

Scattered field: Linearize in the velocity 1
v(x)2

→ 1
v(x)2

(1 + r(x)).

v the smooth velocity model, r contains singularities(
1

v2
∂2

t −∇2
x

)
uscat(x, t) = − r

v2
∂2

t usrc.

Problem: Determine r(x) from the following data:

uscat(x, t) for x = (x1, x2, x3) in a subset of x3 = 0, t ∈ [0,Tmax]



A new view on Reverse Time Migration

I Numerically solve wave equation to obtain
usrc(x, t) = incoming (source) wave field
urtc(x, t) = reverse time continued receiver field

I New imaging condition

I (x) =
2i

2πω3

∫
ω2 ûsrc(x, ω)ûrtc(x, ω)− v2∇ûsrc(x, ω)∇ûrtc(x, ω)

|ûsrc(x, ω)|2
dω.

(cf. Kiyashchenko et al., 2007)

I Characterization of I

I (x) = R(x,Dx)r ,

Here R is a pseudodifferential operator that describes the
aperture effect, i.e. R(x, ξ) = 1 for “visible” reflectors (cf.
Beylkin, 1985).
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Model problem

Notation x = (x1, x2, x3).

Source field is plane wave with velocity (0, 0, v)

usrc(x, t) = A δ(t − x3

v
)

Scattered field slightly simplified

(
1

v2
∂2

t −∇2
x)uscat(t, x) = A δ(t − x3

v
)r(x).

Perfect backpropagation: urtc solution of a final value problem

(
1

v2
∂2

t −∇2
x)urtc(x, t) = 0

urtc(x,T1) = uscat(x,T1), ∂turtc(x,T1) = ∂tuscat(x,T1), x ∈ R3.



Solving the wave equation

Spatial Fourier transform

(v−2∂2
t + ξ2) û(ξ, t) = f̂ (ξ, t).

Duhamel’s principle: Let ŵ(ξ, t, s)

(v−2∂2
t + ξ2)ŵ(ξ, t, s, ) = 0,

ŵ(ξ, s, s) = 0 ∂tŵ(ξ, s, s) = v2f̂ (s, ξ).

Result

û(ξ, t) =

∫ t

0

(
e iv‖ξ‖(t−s) − e−iv‖ξ‖(t−s)

) v2 f̂ (ξ, s)

2iv‖ξ‖
ds

Needed: Fourier transform of r.h.s. A δ(t − x3
v )r(x)



Fourier transform f (x, t) = A δ(t − x3
v )r(x)

f̂ (ξ, t) =

∫
A δ(t − x3

v
)r(x)e−ix·ξ dx

= vAF(x1,x2) 7→(ξ1,ξ2)r(ξ1, ξ2, v0t)e
−iξ3vt .

Computations involve two similar terms, take only one of those.

ûscat(ξ, t) =

∫ t

0

v3

−2iv‖ξ‖
e−iv‖ξ‖(t−s)−iξ3vsAF(x1,x2) 7→(ξ1,ξ2)r(ξ1, ξ2, vs) ds

+ pos. freq. term

=
Av2

−2iv‖ξ‖
e−iv‖ξ‖t r̂(ξ1, ξ2, ξ3 − ‖ξ‖) + pos. freq. term,

if t is after the incoming has passed supp(r)
Back to space domain

uscat(x, t) = 2 Re
1

(2π)3

∫
Av2

−2iv‖ξ‖
e ix·ξ−iv‖ξ‖t r̂(ξ−(0, 0, ‖ξ‖)) dξ



Interpretation

Scattered field

uscat(x, t) = 2 Re
1

(2π)3

∫
Av2

−2iv‖ξ‖
e ix·ξ−iv‖ξ‖t r̂(ξ−(0, 0, ‖ξ‖)) dξ

Wave vectors

ξ outgoing wave number
(0, 0, ‖ξ‖) incoming wave number
ξ − (0, 0, ‖ξ‖) reflectivity wave number

!

!"(0,||!||)

(0,||!||)

in
refl



Modified excitation time imaging condition

Same formula for the backpropagated field! Valid for all t

urtc(x, t) = 2 Re
1

(2π)3

∫
Av2

−2iv‖ξ‖
e ix·ξ−iv‖ξ‖t r̂(ξ − (0, 0, ‖ξ‖)) dξ

Basic image: I0(x) = urtc(x, x3/v).

Linearized inverse scattering: Try

I (x) =
2

v2A
(∂t + v∂x3) urtc(x, x3/v)

(meaning first take derivatives then insert (x, t) = (x, x3/v) )
Straightforward calculation yields

I (x) = 2 Re
1

(2π)3

∫
R3

(
1− ξ3

‖ξ‖

)
r̂(ξ − (0, 0, ‖ξ‖)) dξ



A change of variables
Copy from previous slide:

I (x) = 2 Re
1

(2π)3

∫
R3

(
1− ξ3

‖ξ‖

)
r̂(ξ − (0, 0, ‖ξ‖)) dξ

Change of variables

ξ̃ = ξ − (0, 0, ‖ξ‖)

I Jacobian 1− ξ3

‖ξ‖

I Domain ξ̃ ∈ R2 × R<0

!

!"(0,||!||)

(0,||!||)

in
refl

Result:

I (x) = 2Re
1

(2π)3

∫
R2×R<0

r̂(ξ̃)e ix·ξ̃ d ξ̃ =
1

(2π)3

∫
R2×R 6=0

r̂(ξ̃)e ix·ξ̃ d ξ̃.

Reconstruction except for ξ3 = 0, corresponding to reflection over
180 degrees.



Modified ratio imaging condition

We had

I (x) =
2

v2A
(∂t + (0, 0, v) · ∇x) urtc(x, x3/v)

Rewrite into modified ratio imaging condition

I Use that (0, 0, v) = v2∇T (x), and that

ûsrc(x, ω) = Ae−iωT (x),

∇xûsrc(x, ω) ≈ − iω∇xT (x)Ae−iωT (x).

I Insert factors v2

ω2 left out in model problem

This results in

I (x) =
2i

2πω3

∫
ω2 ûsrc(x, ω)ûrtc(x, ω)− v2∇ûsrc(x, ω)∇ûrtc(x, ω)

|ûsrc(x, ω)|2
dω.



Extension to variable background

Local vs. global analysis

I A local analysis generalizes the explicit formulas to variable
coefficients, and leads to explicit inversion formulas

I A global analysis takes into account the of global effect of
curved rays. No source-multipathing is allowed to exclude
kinematic artifacts (“cross talk”). Cf. Rakesh (1988), Nolan
and Symes (1997).

Tools: microlocal analysis

I Fourier integral operators (FIO’s), pseudodifferential operators
(ΨDO’s)

I Description of the mapping properties of operators for
localized plane wave components. Work in (x, ξ) or (x, t, ξ, ω)
domain.



Variable coefficients: The wave equation

Local analysis

Solve the wave equation using WKB with plane wave initial values.
Result is an FIO

u(y, t) =
1

(2π)3

∫∫
e iα(y,t−s,ξ)a(y, t−s, ξ)f̂ (ξ, s) ds dξ+pos. freq. term,

α satisfies the eikonal equation; a a transport equation. Formula is
valid for t, s in a bounded time interval

Global analysis

I Propagation of localized plane wave components along rays,
properly described as curves in (x, t, ξ, ω) space

I Time reversal property is globally valid



Continued scattered field and linearized forward map

Define the continued scattered field uh, as the “perfect”
backpropagated field from a fixed time, full position space

Local result
For a localized contribution to r

uh,a(y, t) =
1

(2π)3

∫∫
e iϕT (y,t,x,ξ)A(y, t, x, ξ) r(x) dξ dx.

With phase function

ϕT (y, t, x, ξ) = α(y, t − T (x), ξ)− ξ · x

Global result
The map F− : r 7→ uh is a FIO.
Mapping of wave components
(x, ζ) 7→ (y, t,η, ω): see pic-
ture ‖ξ‖ns

−‖ξ‖ns

ζ

ξ

(x, Ts(x))

η

(y, t1)



RT continuation from the boundary
Preprocess data:

I ΨDO cutoff ΨM(y1, y2, t, η1, η2, ω) with three effects
I Smooth taper near acquisition boundary
I Remove direct waves
I Remove tangently incoming waves

I Normalize wave field to get true amplitude time reversal

Characterize mathematically the aperture effect

Result There are ΨDO’s P−,P+, such that

urtc(x, t) = P−(t, x ,Dx)uh,− + P+(t, x ,Dx)uh,+

in which uh,± is the part of uh with ±ω > 0. To highest order

P±(s, x, ξ) = ΨM(y1, y2, t, η1, η2, ω) if there is a

ray with ±ω > 0, connecting (x, s, ξ, ω)

with (y1, y2, t, η1, η2, ω)

acquisition

reverse
time cont.



Inverse scattering
Modified excitation time imaging condition

I (x) =
2

Asrc(x)
∂
− n+1

2
t

[
∂t + v2∇T · ∇x

]
urtc(x, t)

I From the global analysis, there are no nonlocal contributions
and

I (x) = ΨDO r(x)

I From the local analysis

I (x) = (R−(x,Dx) + R+(x,Dx)) r(x)

To highest order

R±(x, ζ) = P±(x, ξ)

if ζ and ξ are related through
ζ = ξ ± ω∇T (x).

y

!
inc

!
"

x

#

Modified ratio imaging condition derived similarly as above



Example: A vertical gradient medium

stolkcc, Sun Apr  5 13:57 stolkcc, Sun Apr  5 14:02

stolkcc, Sun Apr  5 14:27 stolkcc, Sun Apr  5 14:27 stolkcc, Sun Apr  5 14:27

Example 1: Velocity perturbation, reconstructed velocity
perturbation, and three traces for background medium
v = 2.0 + 0.001z (z in meters and v in km/s). Error 8-10 %.



Example: Horizontal reflector with receiver side caustics
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stolkcc, Tue Apr  7 16:04

stolkcc, Sun Apr  5 18:11 stolkcc, Sun Apr  5 18:11

Example 2: (a) A velocity model with some rays; (b) Simulated
data, with direct arrival removed; (c) Velocity perturbation;
(d) Reconstructed velocity perturbation. Error 0-10%



Conclusion and discussion

I We modified reverse time migration to become a linearized
inverse scattering method

I We characterized the resolution operator as a partial inverse,
a ΨDO with symbol describing aperture effects

I The modified imaging condition suppresses low-frequency
artifacts

I Good numerical results in (bandlimited) examples

I Straightforward generalization of the imaging condition to
downward propagation methods
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