


CAAM641 Spring 2007

The Eikonal equation ‖∇Φ(x)‖ = n(x) : mod-

els, theory, simulation.

Chapter 0 : http://www.tangentspace.net/cz/archives/2006/11/eikonal-equation

• Where :
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• When :

• Homework - Grading ?

Outline :



Where does it come from ? What is it used for ?

• Formal asymptotic solutions of Helmholtz

• Eikonal and Ray tracing

• Going behind caustics (Maslov theory)

• Wigner Transform

• GTD

• Gaussian Beams
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• Other examples of occurence of the Eikonal equation



What do we know about ?

• Law of refraction : History - Fermat principle

• Euler Lagrange and ray tracing (CV)

• Lagrangian → Eulerian : Classical solutions

• Basics on Viscosity solutions

• Optimal control interpretation of the viscosity solution

• Explicit formula Lax-Oleinik
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• in the (Max,+) Algebra ...

• Relationship with Hyperbolic Conservation Laws ...



How do we compute it ?

• Quick recap on classic methods for ray tracing

• The need for more : wavefront construction

• Viscosity solutions : derivation of a simple 1-D Upwind scheme

• Convergence theory

• Rouy-Tourin scheme in 2-D

• Fast algorithms (Fast marching, Sweeping ...)
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• ”LAgrangian Schemes : Explicit formula Lax-Oleinik

• Fast Legendre Transfoms

• Algorithm in (Max,+) Algebra ..



Helmholtz equation

(see also W. Symes seminar notes on time domain ... and

www.cscamm.umd.edu/programs/hfw05/runborg survey hfw05.pdf )

∆u(X) + k2n2(X)u(X) = 0

(local) .... to make it well posed add

• a (possibly infinite) domain.

• Radiation conditions or absorbing boundary conditions .

• Source terms or boundary conditions (diffraction problem) .
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Formal asymptotic solution

Debye expansion (1911) - Chap 1. Equations with Rapidly Oscil-
lating solutions Partial Differential equations V , M.V. Fedoryuk

uk(X) = eikΦ(X)
∞∑
j=0

1

(ik)j
Aj(X)

Apply H. operator and order in powers of k

∆uk + k2n2uk = −k2(‖∇Φ‖2 − n2)+

ik(2∇Φ · ∇A0 +A0∆Φ)+

(∆A0 + ....)+
...

FAS :

{
∆

k2
+ n2}(A0(X)eikΦ(X)) = O(k−1)
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The Eikonal equation (EE) - Ray Tracing Solution (RTS)

‖∇Φ(X)‖2 = n(X)2

Method of characteristics (assuming ∇Φ is smooth) :
d
dsY (s) = ∇Φ(Y (s)). Set P = ∇Φ(Y ) then

dY

ds
= P (s),

dP

ds
=

1

2
∇n2(Y (s))

The phase Φ, can be computed as the integral of ‖P‖2 along a
ray Y (s), since

d

ds
Φ(Y (s)) =

dY

ds
· ∇Φ(Y (s)) = ‖P (s)‖2 = n2(Y (s))

Rem. 1 : All this is completely local ! BC IC ?
Rem. 2 : parameterization of paths can be changed (ex : dt =
n2(Y (s))ds is a possibility )
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A word about Amplitudes

Setting B(s) = A(Y (s)) gives (TE) :

d

ds
B(s) =

dY

ds
· ∇A(Y (s)) = B(s) ∆Φ(Y (s))

... Instead remark that TE :

∇ · (A2∇Φ) = 0

Integrate on a ”ray tube” {Y (s, y0)|0 < s < t | y0 ∈ B(y0, ε)} and

use the divergence th. yields

B2nJ |Y (s,y0)
= constant

where J = det(∂Y (s,y0)
∂y0

)
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Ex. 1 : n = 1 plane wave solution

u(X) = Ae±ikξ·X

if ‖ξ‖ = 1.

RTS :

Y (s, Y0) = Y0 + sξ, P (s, Y0) = ξ, Φ(Y (s, Y0)) = Φ0(Y0) + s

ICs on z = 0 : Y0 = (x,0), P (0, Y0) = ξ, Φ0(x, z = 0) = xξx give

Φ(X) = ξ ·X
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Physical Optics

For a diffracion pbm (u = Ceikeθ·x+ uscat) us the integral formu-

lation (u = 0 on the scatterer)

u(x) =
∫
∂Ω

G(k|x− x′|)
∂u

∂n
dx′

and the geometric optic approximation u = Ceikeθ·x−Ceike−θ·x to

replace by

u(x) =
∫
∂Ωlight

G(k|x− x′|)(2Ciksinθ)dx′
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Ex. 2 : Hu = δx0 fundamental solution : Hankel function,

point source

u(X) = H1
0(k|X −X0|)

As k → +∞ u(X) ' (
√

2
πk|X−X0|

e−i
π
4)eik|X−X0|

RTS :

Y (s, θ) = X0 + s~eθ, P (s, θ) = ~eθ, Φ(Y (s, θ)) = Φ0(θ) + s

ICs for θ ∈ [0,2π[ : Y (0, θ) = X0, P (0, θ) = ~eθ, Φ0(θ) = 0 give

Φ(X) = |X −X0|
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Asymptotic interpretation of the R.B.C.

The solution behave asymptotically (in kr) as

u ' A(θ)
eikr
√
r

which is to say that far form source or scaterrer solution behaves

like geometric point source in homegenous space with amplitudes

modulated by θ .
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Ex. 3 : A fold caustic case

gauche x < 0 n2(x, z) = 1
droite x ∈ [0,1− ε] n2(x, z) = 1− x , x ∈ [0,1− ε]

x > 1− ε n2(x, z) = ε

uinc = eik~eα·X
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Separation of variables → 1D

We can set u(z, x) = ũ(x)eikz sinα then

ũ′′g(x) + k2(cos2α)ũg(x) = 0 ũg(x) = eik cosαx +Re−ikx cosα

ũ′′d(x) + k2(cos2α− x)ũd(x) = 0 ũd(x) = CAi(−k
2
3ρ(x))+

ρ(x) = cos2α− x DBi(−k
2
3ρ(x))

As k → +∞ : On the shadow side (ρ(x) < 0 )

Ai(−k
2
3ρ(x)) → 0 Bi(−k

2
3ρ(x)) → +∞

So we take D = 0, determine R,C with the compatibility condi-

tions at x = 0 and
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on the lighted side ( ρ(x) > 0 )

ũd =
C

2
√
πρ

1
4

{e−i
π
4eik(

2
3ρ

3
2) + ei

π
4e−ik(

2
3ρ

3
2)}+O(k−1)

(Stationnary phase on Ai(−k
2
3ρ(x)) =

∫
eik(ρ(x)ξ−

ξ3

3 )dξ)
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Next RTS

Only work in x ∈ [0,1 − ε], n2(x) = 1 − x, take Y (s, z0) =

(y(s, z0), z(s, z0)) and P = (py, pz) we get :

ẏ = py y(0, z0) = 0

ż = pz z(0, z0) = z0

ṗy = −1
2 py(0, z0) = cosα

ṗz = 0 pz(0, z0) = sinα

Φ̇ = 1− y Φ(0, z0) = sinαz0

which yields Y (s, z0) = (−1
4s

2 + s cosα, s sinα+ z0)

16



Use z as parameterization and finally

At (x, z) = Y (s, z±0 ) → 2 phases :

Φ±(x, z) = z sinα± 2
3ρ(x)

3/2 + 2
3 cos2α

Away from a Fold caustic, stationary phase theorem gives

u = a−e−iπ/4 eikΦ
−

+ a+eiπ/4eikΦ
+

+O(k−1)
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Global Asymptotic solutions (Maslov)

Need to know the ”catastrophe” which ruins the standard FAS.

Simplest case is the ”Fold caustic” :

Consider (locally) the smooth manifold

M = {(y(z, z0), z, py(z, z0), pz(z, z0)) | z0 ∈ Z0, z ∈ Z}

then ”TH.” (Hörmander, Duistermaat, ...) : ∃φ(X, θ), X = (x, z)

θ ∈ R such that

1. M = {(X,∇Xφ) | ∂θφ = 0, z ∈ Z}.

2. ∀X ∈M , ∃θ±(X) such that ∂θφ(X, θ
±(X)) = 0 and
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∂θ2φ(X, θ
±(X)) 6= 0.

3. Use generalized ansatz u(X) = ( k
2π)

d
2
∫
A(X, θ, k)eikφ(X,θ)dθ

and expansion A(x, θ, k) =
∑∞
j=0

1
(ik)j

Aj(X, θ) then away from

Caustic, stationnary phase Th. gives

u(X) =
∑
±

A0(X, θ
±(X))

|∂θφ(X, θ±(X))|
1
2

e∓iπ/4eikφ(X,θ
±(X)) +O(k−1)

→ superposition of simple AS. Computable by RTS (or in

this case with 2 Eikonal Equations).

4. ∂θ2φ(X, θ
±(X)) = 0 indicate the caustic where the station-

nary point is degenerate and give a contirbution in O(k).



Rem. 1 : Other option is find a change of variable such that

φ(X, ξ) = φ0(X) + ρ(X)ξ − ξ3

3 → Airy function.

Rem. 2 : Other catastrophe in 2D is the cusp which leads to

Pearcey and 3 branches.



other Ex. (from Runborg)
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Motivation 1 : Discretisation depend on k

Finite Element Solution of the Helmholtz Equation with High

Wave Number Part II: The h-p Version of the FEM

Frank Ihlenburg; Ivo Babuska SIAM Journal on Numerical Anal-

ysis, Vol. 34, No. 1. (Feb., 1997), pp. 315-358.

For degree-p Lagrangian FE in 1D

‖u− uh‖ ≤ C1(hk)
p + C2k(hk)

p+1

Rule of thumbs : hk < 1 → Very Large systems to solve.

http://alphard.ethz.ch/hafner/Workshop/Hiptmair.pdf
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Motivation 2 : Theory and practice of Migration Opera-

tors Mathematical Theory For Seismic Migration and spatial

resolution. G. Beylkin

check W. Symes seminar notes

http://www.trip.caam.rice.edu/txt/tripinfo/other list.html
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The Wigner Transform Approach

vε(x, y) = u(x+ ε
2y)ū(x−

ε
2y), (x, y) ∈ R2

fε(x, ξ) = Fy→ξvε(x, y) =
∫
e−iy·ξvε(x, y)dy

Some properties

‖u(x)‖2 = vε(x,0) = {F−1f}(x,0) =
∫
f(x, ξ)ei0·ξdξ

εRe{u(x)∇u(x)} = ∂
∂yvε(x,0) = ∂

∂y{F
−1f}(x,0) =

∫
iξf(x, ξ)ei0·ξdξ
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Looking at the Wigner transform of Assymptotic Solutions gives

some insight :

u = A(x) eikφ(x) → vε(x, y) = A2(x)eik(εy∇φ(x)+O(ε3)) +O(ε2)

Taking ε = k−1 and neglecting high order terms we get :

f(x, ξ) = A2(x)
∫
eiy·(∇φ(x)−ξ)dy = A2(x)δ(ξ −∇φ(x))

Rem. 1 : Same with sums of AS
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The kinetic equation for

∆u(x) + ε−2n2(x)u(x) = δ(x)

Notice : ∇y ·∇xvε = ε
2[∆u(x+ ε

2y)ū(x−
ε
2y)−u(x+ ε

2y)∆ū(x− ε
2y)]

and thus we have :

i∇y · ∇xvε(x, y) + i
2ε[n

2(x+ ε
2y)− n2(x− ε

2y)]vε(x, y) = σε(x, y)

Fourier Transform and

ξ · ∇xfε + Zε(x, ξ) ?ξ fε = Qε(x, ξ)
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As ε→ 0

Zε(x, ξ) =
i

2ε
Fy→ξ[n

2(x−
ε

2
y)− n2(x−

ε

2
y)]

So formaly (Taylor expand the n2 functions above around x) :

Zε(x, ξ) →ε→0
1

2
∇xn2(x) · ∇ξδ(ξ)

Can also check that

Qε(x, ξ) = Fy→ξ[σε(x, y)] →ε→0 δ(x)δ(|ξ| = 1)
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Finally :

ξ · f(x, ξ) +
1

2
∇xn2(x) · ∇ξf(x, ξ) = δ(x− x0)δ(|ξ| = 1)

which can be reformulated as a time dependent problem f(x, ξ) =∫∞
0 f̃(s, x, ξ) ds (particles go at infty with time) :

∂sf̃(s, x, ξ) + ξ · ∇xf̃(s, x, ξ) + 1
2∇xn

2(x) · ∇ξf̃(s, x, ξ) = 0,

f̃(0, x, ξ) = δ(x− x0)δ(|ξ| = 1)

Back to Ray tracing : Set

f0(s, x, ξ) =
∑
θ∈Θ δ(x− Y (s, θ))δ(ξ − P (s, θ))
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where {Y (s, θ), P (s, θ)} satisfy the RT equations

dY

ds
= P (s),

dP

ds
=

1

2
∇n2(Y (s))

with point source initialisation :

Y (0, θ) = x0 , P (0, θ) = (cos θ, sin θ)

satify the limit kinetic equation. Use a test function g(x, ξ) and

setting < f, g >=
∫
fg dx dξ. Then one can check formally that

(Y, P depend on s, θ)

< ∂sf0, g >=
∑
θ∈Θ{dYds · ∇xg(Y, P ) + dP

ds · ∇ξg(Y, P )}

=
∑
θ∈Θ{P · ∇xg(Y, P ) + 1

2∇n
2(Y ) · ∇ξg(Y, P )}

= < ξ · ∇xg(x, ξ) + 1
2∇n

2(x) · ∇ξg(x, ξ), f0 >

= − < ξ · ∇xf0, g > − < 1
2∇n

2(x) · ∇ξf0, g >
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Rem . : Morrey Campanato semi-norms involved in Helmholtz

case (see B. Perthame et al, High Freqency limit of the Helmholtz

equation. Rev. Iber. Americana ... )

Rem. : As ε→ 0 convergence is weak in S ′

Wigner Functions versus WKB-Methods in Multivalued Geometrical

Optics, Christof Sparber ? , Peter A. Markowich. y. , Norbert

J. Mauser
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More : Level sets, Image processing PDE (second order

terms ...)

www.intlpress.com/CMS/issue4/levelset imaging chapter.pdf

www.math.uci.edu/~zhao/publication/publication.html

More : Shape From Shading

perception.inrialpes.fr/Publications/2006/PF06a/chapter-prados-faugeras.pdf

More : Geodesics Mesh Refinement, Creeping rays, RT in

Anisotropic media

www.nada.kth.se/~olofr/Publications/article-creep2-1.pdf

math.unice.fr/~rascle/psfiles/hr01.ps
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Symes Quian elastic waves (See TRIP WWW)

More vaguely related but more Fashionable : BlackScholes

(finance) 2nd order terms...



Distance functions

d(x, x0) = |x− x0| satisfies |∇xd| = 1.

Anticipating : φ(x) = minx0∈∂Ω d(x, x0) is the viscosity solution

of

|∇φ| = 1 in Ω, φ = 0 on ∂Ω.
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Level sets image processing

dΓ(t,α)
dt = v(Γ(t, α)) and set Γ(t, α) = {x, φ(x, t) = 0} then φ is

solution of
∂φ

∂t
+ v · ∇φ = 0

Ex. 1 : Normal motion v = n ∇φ
|∇φ| . Note n may depend on x.

Ex. 2 : Motion by mean curvature (Evans and Spruck .... ) :

v = ∇.( ∇φ|∇φ|)
∇φ
|∇φ|

Ex. 3 : Surface reconstruction : v = ∇d, |∇d| = 1, d(x) =

0 for x ∈ S
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Shape From Shading

Lambertian scene hypothesis (L, light and n, normal to the sur-

face vectors) I(x1, x2) = R(n(x1, x2)) = cos(L, n) = L
|L| ·

n
|n|
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”Orthographic SFS” with a far light source

L = (~l, γ) is constant and such that |L| = 1

S : x = (x1, x2) → (x, u(x)) is a the surface parameterization so

that n(x) = (−∇u(x),1).

I(x) =
−∇u(x) ·~l+ γ√
1 + |∇u(x)|2

With L = (0,0,1) → |∇u(x)|2 = 1
I2(x)

− 1
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Mesh refinements

Now use a Riemannian metric G. Note : length of dx is defined

as |dx|G(x) = |G
1
2dx|. If G = diag(lx, ly) and lx 6= ly → anisotropy.

Again : φ(x) = minx0∈∂Ω dG(x, x0) is the viscosity solution of

|G
1
2∇φ| = 1 in Ω, φ = 0 on∂Ω.

Now define G using a surface (x, z(x)) : G(x) = Id+∇z ⊗∇z or

Id+H(z)tH(z).
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Law of refraction : Small experiment - History/Motivation

Minimizing travel time (τ =
∫

dist/speed) in a two layered medium.

sinφ1

c1
=

sinφ2

c2

History (Historia Mathematica 10 (1983) 48-62 The Mathemat-

ical Technique in Fermat’s deduction of the Law of refraction.

K. Andersen. )

• 1637 Descartes Dioptrique Assuming light goes faster in denser

media.
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• 1657 (letter to C. De la Chambre) principle of least time.

application of his method to find minima : Methodus ad

disquirendam et minimam Fermat. ”adequation”

f(a+ e) ' f(a)

then simplify, divide by e and finally ”equate”. he obtained

expressions with ”an irregular and fantastic proportion” af-

ter long and tedious calculations and ”his natural inclination

towards indolence” had made him stop.

• 1662, completes computations. Finds Descartes’s law !

• (Differential Calculus) Leibnitz (1684) and Newtown (1687)
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The optical length of a Path

Fermat principle says Rays are the path Y that minimize (actually

extremize) traveltime

φ(Y (T )) =
∫ T
0
n(Y (s))|Ẏ (s)|ds+ φ(Y (0))

(n = 1
c)

Simplify to 1+1 D problem (time + space) : Y (s) = (t, y(t))

(paraxial assumption)

44



Fix t, x,

min
{y∈C∞, y0∈R y(t)=x}

F (y, y0) =
∫ t
0
L(s, y(s), ẏ(s))ds+ φ0(y0)

with L(t, y, v) = n(t, y(t))
√

1 + v2(t).

Classical problem (L.C. Young, Lecture on the Calculus of Vari-

ations ) important hypothesis : strict convexity of v → L(t, y, v).

Existence : (hints)
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First variation vanishes

Euler-Lagrange equations :

the Frechet derivative satisfy F ′(y, y0) = 0

F (y+ h, y0 + h0)− F (y, y0) =
∫ t
0 L(s, y+ h(s), ˙y+ h(s))− L(s, y(s), ẏ(s))ds+ φ0(y0 + h0)− φ0(y0)

=
∫ t
0 Lx(s, y(s), ẏ(s))h(s) + Lv(s, y(s), ẏ(s))ḣ(s)ds+O(|h|2) + φ0

x(y0)h0 +O(h2
0)

|h| = sups∈[0,t]{|h(s)|+ |ḣ(s)|}

=
∫ t
0{Lx(s, y(s), ẏ(s))−

d
ds
Lv(s, y(s), ẏ(s))}h(s)ds+O(|h|2) + ...

{Lv(0, y(0), ẏ(0))− φ0
x(y0)}h0 +O(h2

0).
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< ∂F
∂y (y0, y), h >=

∫ t
0{Lx(s, y(s), ẏ(s))−

d
dsLv(s, y(s), ẏ(s))}h(s)ds

∂F
∂y0

(y0, y)h0 = Lv(0, y(0), ẏ(0))− φ0
x(y0)


Lx(s, y(s), ẏ(s))− d

dsLv(s, y(s), ẏ(s)) = 0

Lv(0, y(0), ẏ(0))− φ0
x(y0) = 0.
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Recap. on the Legendre Fenchel transform (Lvv > 0)

Define

H(t, x, p) = L?v→p(t, x, p) = sup
v∈Rd

{p.v − L(t, x, v)}

Then L(t, x, v) = L?? = supp∈Rd{p.v −H(t, x, p)}

and Hp = (Lv)−1 i.e.

v = Hp(t, x, p) ↔ p = Lv(t, x, v)

and are the optimal args, and for (v, p) linked as above we have

L(t, x, v) = Lv(t, x, v).v−H(t, x, Lv(t, x, v)) = p.Hp(t, x, p)−H(t, x, p))

and

Lx(t, x, v) = Hx(t, x, p)
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Examples

L(v) =
1

2
v2 → H(p) =

1

2
p2

(Burgers equation)

L(t, x, v) = n(t, x)
√

1 + v2 → H(t, x, p) = −
√
n2(t, x)− p2

(Eikonal equation)
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The Hamiltonian system

Set

p(s) = Lv(s, y(s), ẏ(s)),

which automatically gives

ẏ(s) = Hp(s, y(s), p(s)), y(0) = y0 (by construction).

take the time derivative of p

ṗ(s) = −Hx(s, y(s), p(s)), p(0) = φ0
x(y0), (Euler − Lagrange).

also remark that φ(y(t)) =
∫ t
0L(s, y(s), ẏ(s))ds+ φ(y0) satisfies

φ̇(s) = Hp(t, y(s), p(s)).p−H(s, y(s), p(s)), φ(0) = φ0(y0)
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Back to RT

In practice y, p, φ as functions of (t, y0)

Apply H(t, x, p) = −
√
n2(t, x)− p2

ẏ(s) = p√
n2−p2

y(0, y0) = y0

ṗ(s) = − nxn√
n2−p2

p(0, y0) = φ0
x(y0)

φ̇(s) = n2√
n2−p2

φ(0, z0) = φ0(y0)

Setting q =
√
n2 − p2 and ż(s) = q and then change parame-

terization dz = ds
√
n2 − p2 to recover our original ray tracing

equations for {Y = (y, z), P = (p, q)}.

51



Lagrangian → Eulerian : Classical solutions

Consider ΩT = {y(t, y0), ∀(t, y0) ∈ [0, T ]×Rd}.

As long as J(t, y0) = det(∂y(t,y0)∂y0
) 6= 0. One can invert

y0 → x = y(t, y0)

Then define ψ(t, x) as

ψ(t, y(t, y0)) = φ(t, y0).

ψ is smooth and

ψx(t, y(t, y0)) = p(t, y0).
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The Hamilton-Jacobi equation

Time differentiate :

∂tψ(t, y(t, y0)) +Hp(t, y(t, y0), p(t, y0)) · ∇xψ(t, y(t, y0)) =

p(s, y0) ·Hp(s, y(s, y0), p(s, y0))−H(s, y(s, y0), p(s, y0)),

Write in Eulerian coordinates

 y(t, y0) → x

p(t, y0) = ∇xψ(t, y(t, y0)) → ∇xψ(t, x)
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We get

∂tψ(t, x) +H(t, x,∇xψ(t, x)) = 0, ψ(0, x) = φ0(x).

Rem : ∂tψ > 0 and H = −
√
n2 − p2 (paraxial hypothesis), we find

the original 2-D the Eikonal equation.
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Classical solutions break down at caustics

Looking around a Caustic point : {yc = y(yco), p
c = p(yco)}.

Fold : 
∂y
∂yo

= 0

∂2y
∂2yo

6= 0

Then (TE) :

y(yo) = yc + 0 +
(yo − yco)

2

2

∂2y

∂2yo
(yco) +O{(yo − yco)

3}
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Cusp : 
∂y
∂yo

= 0
∂2y
∂2yo

= 0

Then :

y(yo) = yc + 0 + 0 +
(yo − yco)

3

6

∂3y

∂3yo
(yco) +O{(yo − yco)

4}
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An example :

n(t, x) = 2.8 if |x − 0.2 sin 0.3 t| ≥ 1 and n(t, x) = 2.8 + 0.4 ∗
exp−10 (x−0.2 sin 0.3 t)2 else,
φo ≡ 0 as initial condition.
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Basics on viscosity solutions

G. Barles, Solutions de viscosités des Equ. de H,-J., Springer

1994

P.L. Lions, Generalized solutions of H.-J. Equations, Pitmann

Some good ressources online , in French though ... .

www.math.psu.edu/bressan/PSPDF/simy.pdf

Has evolved into a very general theory of existence and approxi-

mation for non-linear equations.

F (x, u(x), Du(x), D2u(x)) = 0

F (x, u, P,M) Needs :

- Uniform continuity. - (Strict) convexity in p.

- Coercivity in p. - Ellipticity in M .
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Consider simplified Pbm

εu+H(x,Du) = 0 x ∈ Rd

(same with Dirichlet/Neumann or Cauchy problems).

Defs :

• u(x) ∈ C(Rd) is a viscosity sub(super)-solution if ∀φ ∈ C1

x0 is a point of max. (min.) of u− φ

⇒ εu+H(x,Dφ) ≤ (≥) 0

• u is a viscosity solution iff sub- and super-solution.
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First Remarks

• One can restrict to φ s.t. u(x0) = φ(x0).

• One can restrict to strict min/max assumption : φ = φ +

α|x− x0|2.

• Classical solutions are viscosity solutions.
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Exemple (1-d)

|u′| = 1, u(0) = u(1) = 0 H(u′) = |u′| − 1

Has no classical solutions.

Has many ”generalized” W1,∞ solutions.

Has a unique BUC viscosity solution.

Viscosity solution allows upward (but not downward) kinks :
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Properties

maximum principle...

Prop. (Unicity) : Let u (resp. u) be a l.s.c. (resp. u.s.c) super-

(resp. sub-) viscosity solution of then u ≤ u.

Evanescent viscosity : ∀δ > 0,{
−δ∆u+ εu+H(x,Du) = 0 x ∈ Ω

has a unique C2 ∩W1,∞ solution uδ which converges to the vis-

cosity solution (ε = 0).

(Sketch of the proof).
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Back to the Calculus of Variation and Cauchy Pbm Con-

sider  ∂tu+H(x,Du) = 0 t > 0, xRd

u(0, x) = u0(x)

Set L = H? (see recap. on Legendre Transform) and

v(t, x) = inf
y0

(u0(y0) + inf
γ ∈ W1,∞(0, t)
γ(t) = x
γ(0) = y0

∫ t
0
L(t, γ, γ̇)dt)

Then v is the unique BUC and Lipschitz viscosity solution of the

HJ equ.
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Sketch

• Inf is reached by γ ∈ C2, |γ̇| ≤ Ct.

• v super-solution (inf prop.)

• v sub solution (pontryagin).

• Lipschitz.

+ Du = Lv
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Intro. to explicit formula (Lax-Oleinik

Let H(p) be convex in and depending only on p. Remember

L = H?, then the viscosity solution of

∂tu+H(ux) = 0 , u(0, x) = u0(x)

can be written as (backward parameterization)

u(t, x) = inf
v
{u0(γ(t)) +

∫ t
0
H?(v)ds}

where γ̇ = −v, γ(0) = x. Then use Jensen inequality∫ t
0
H?(v)ds ≥ tH?(

1

t

∫ t
0
vds) = tH?(

x− γ(t)

t
)
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i.e. straight lines from x→ y = γ(t) are optimal. We can rewrite

the viscosity solution as :

u(t, x) = inf
y
{u0(y) + tH?(

x− y

t
)ds}

(Lax Oleinik formula).

For ex. H(p) = −
√

1− p2 → H?(v) =
√

1 + v2 gives the distance

funtion from the Cauchy data.
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An example n ≡ 1 :
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An example n ≡ 1 :
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Link with conservation laws in 1D. Setting formally u = φx

yields

∂tφ+H(φx) = 0 ⇔ ∂tu+ (H(u))x = 0

Ex. : Burgers H(p) = |p|2
2

Rem. 1 : H.-J. is similar to Homegenous GO.

Rem. 2 : Inf principle of the Viscosity solution is equivalent to

R.H. condition. Shock speed : s = u++u−
2
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Back to RT (numerics)


dY
ds = P (s)

dP
ds = 1

2∇n
2(Y (s))

The phase Φ, can be computed as the integral of ‖P‖2 along a

ray Y (s), since

d

ds
Φ(Y (s)) =

dY

ds
.∇Φ(Y (s)) = ‖P (s)‖2 = n2(Y (s))

In practice solve for a family of rays parameterized by Y0 or θ.

Generally with a RK or adapative RK method.

note : should say a word on symplectic solvers...
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Does it work ? : RT in Marmousi

http://www-rocq.inria.fr/ benamou/testproblem.html
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Dynamical (or Paraxial Ray tracing)

Ray methods in Seismology, Cerveny, Molotkov, Pscencik, Charles

U. Praha (77) ....

G. Lambaré 2002 GO++ winter school notes

Idea : Linearize RTS (and change notations :(δx, δp) : first order

variation in (x, p) = (Y, P ))
dδx
ds = δp

dδp
ds = ∇(1

2∇n
2(x))δx
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Propagator matrix

Because this is linear in the initial conditions, one can factor
various computations in a ”propagator matrix”

(δx, δp)(s) = (δx, δp)(s0)P(s, s0)

(transpose)

dP
ds

=

(
0 Id

∇(1
2∇n

2(x)) 0

)
P, P(s0, s0) = Id

Rem. 1 : this can be computed very accurately along each ray.

Rem 2. : this provide a 2nd order accurate estimate of the
Lagrangian submanifold {(x(s, y0), p(s, y0)) | y0 ∈ ...}.

x(y0 + δy0, p0 + δp0) = x(y0, p0) + ....
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Also give second order derivatives of travel time ... discuss

ray coordinates ...
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Wavefront construction

Main idea : maintain ray density through interpolation (adapta-

tive gridding). Need a good criterium.

Problem : stretching or concentration may also may also occur

in the p dimensions.
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Sol 1 : Vinje ... x distance. Problem stretching or concentration

may also may also occur in the p dimensions.

Sol 2 : Sun ... use x and p distance.



Sol 3 : Lambaré et al ... Use paraxial quantities to estimate

error.
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Intro to Eulerian FD upwinding

Consider the simplest non trivial HJ equ. (c > 0)

ut + cux = 0

i.e. H(p) = cp (note L(v) = 0 for v = c and ∞ else) with explicit

solution u(t, x) = u0(x − ct). Then discretize : ukj = u(k dt, j dx)

and ”upwind”. Two solutions
uk+1
j = ukj + dt

ukj+1−u
k
j

dx

uk+1
j = ukj + dt

ukj−u
k
j−1

dx
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Remarks

• Right upwinding does not converge (try u0 = 0 for x > 0 and

6= 0 for x < 0.

• Numerical propagation speed is dt
dx. consider sequences s.t.

(k dt, j dx) → (t, x) as (dt, dx) → 0 and define

c̃ = limsup
dx

dt

Then no convergence (wrong dependance) if c̃ < c. This is

the sense of the CFL condition :

c
dt

dx
≤ 1
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• Left Upwinding can be rewritten

uk+1
j = (1− c

dt

dx
)ukj + c

dt

dx
ukj−1

Scheme is monotone (max principle) under CFL.



Back To H.J in 1+1 D

Take (for instance) H(p) = −
√

1− p2 and look a a time step

[tj, tj+1] around xi.

Assume further that the phase ψ is piewise linear with left and

right slopes ψ∓x .

Let y(t) be a ray beween (tj, x) and (tj+1, xi) such that x =

y(tj) < xi.
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Integrate the Lagrangian phase (Riemman problem)

ψ(tj+1, xi) = φ(tj+1) = φ(tj) +
∫ tj+1
tj

p(s)Hp(s, y(s), p(s))−H(p(s))ds

= φ(tj) + ψ−x (xi − y(tj))− dtH(ψ−x )

= ψ(tj, xi)− dtH(ψ−x )

Looks like a FD scheme for the H.-J. equ.

ψ
j+1
i = ψ

j
i − dtH(ψ−x )
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Upwinding : Minimize traveltime ...

A. ψ−x ≥ 0, ψ+
x ≥ 0.

B. ψ−x ≥ 0, ψ+
x < 0.

C. ψ−x < 0, ψ+
x ≥ 0.

D. ψ−x < 0, ψ+
x < 0.
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the ”Godunov” scheme

∂tψi(t) = −H(t, xi, ψ
u
x,i(t)) = 0, ψi(0) = φ0(xi).


ψux,i(t) = max((ψlx,i(t))

+, (ψlx,i(t))
−)

ψlx,i(t) =
ψi(t)− ψi−1(t)

dx , ψrx,i(t) =
ψi+1(t)− ψi(t)

dx .

(p)+ = max(p,0) and p− = min(p,0).

85



Note on B.C. I.C CFL bound on Hp ....
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Generalization 1. (convex H with min at p = 0)

Recall H(t, x, p) = supv{p.v − L(t, x, v)} and L = H? also convex

with min at v = 0 (Hp = (lv)−1) .

Remark that (omit (t, x)) H(p) = max(H+(p), H−(p)) with

 H+(p) = supv≥0{p.v − L(v)} = H(p+)

H−(p) = supv≤0{p.v − L(v)} = H(p−)

H.-J. becomes (upwinding)

∂tψi(t) = max(H+(ψlx,i(t)), H
−(ψrx,i(t)))
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Generalisation 2 (Godunov numerical Hamiltonian)

HG(ψ−x , ψ
+
x ) = Ext

p∈I(ψ−x ,ψ+
x )
H(p)

where

Extp∈I(a,b) =

 mina<p<b if a ≤ b

maxb<p<a if a > b

88



Lax-Friedrich

HLF (t, xi, ψ
+
x,i(t), ψ

−
x,i(t)) = H(t, xi,

ψ+
x,i(t) + ψ−x,i(t)

2
)−α

ψ+
x,i(t)− ψ−x,i(t)

dx

α chosen to maintain monotonicity (derivative of H).
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Higher Order (ENO, WENO ...), time integration ...
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Recall ....

Recall H(t, x, p) = supv{p.v − L(t, x, v)} and L = H?.

Remark that (omit (t, x)) H(p) = max(H+(p), H−(p)) with

 H+(p) = supv≥0{p.v − L(v)}

H−(p) = supv≤0{p.v − L(v)}

H.-J. becomes (upwinding)

∂tψi(t) = max{H+(ψ−x,i(t)), H
−(ψ+

x,i(t))}

91



Time discretization (.k)

ψk+1
i = ψki − dt ∗max{H+(tk, xi, D

−ψki ), H
−(tk, xi, D

+ψki )}

where : Dlψki =
ψki−ψ

k
i−1

dx Drψki =
ψki+1−ψ

k
i

dx

H+(p) = supv≥0{p.v − L(v)} H−(p) = supv≤0{p.v − L(v)}
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Rewrite as :

ψk+1
i = min{U−ψki , U

+ψki }

where :
U−ψki = infv≥0{dtH?(tk, xi, v) + dt

dx v ψ
k
i−1 + (1− dt

dx v)ψ
k
i }

U+ψki = infv≤0{dtH?(tk, xi, v)− dt
dx v ψ

k
i+1 + (1 + dt

dx v)ψ
k
i }

Important remark : can restrain to |v| ≤ V = (‖Hp‖∞). The CFL

condition can be written :

V
dt

dx
≤ 1
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Fondamental properties of the numerical scheme

• Consistence : For a smooth function φ, looking at a sequence

s.t. (k dt, j dx) → (t, x) as (dt, dx) → 0 and setting ψki =

φ(tk, xi), we get

lim{ψk+1
i −min(U−ψki , U

+ψki )} = ∂tφ(t, x)−H(t, x, φx(t, x))
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• Monotone : Check that (ψk+1
i )i is a monotone (increasing)

function of (ψki )i.

Just need 1± dt
dx v > 0, CFL condition is enough for U±.
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• Stability : (under CFL) the discrete solution is uniformly

bounded (independently of (dt, dx).)

‖U±ψki |∞ ≤ dt‖H?‖∞ + C‖ψki ‖∞

so

‖ψk+1
i ‖∞ ≤ dt‖H?‖∞ + C‖ψki ‖∞

is enough for finite time horizon.
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Outline of convergence proof.

1. Using stability define :

ψ(t, x) = lim(k dt,i dx)→(t,x) supψki

ψ(t, x) = lim(k dt,i dx)→(t,x) inf ψki

by construction ψ ≤ ψ.

2. Show that (monotonicity + consistence) ψ is an upper semi

continuous viscosity sub-solution.

Show that (monotonicity + consistence) ψ is a lower semi

continuous viscosity super-solution.

3. Then strong uniqueness garantees : ψ ≤ ψ.
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Back to full 2-D (x, y)

E. Rouy and A. Tourin. A viscosity solutions approach to shape-from-shading.

SIAM J. Numer. Anal. 3 (1992) 867--884.

The Eikonal equation

‖∇ψ(X)‖2 = n(X)2 X = (x, y)

can be written (optimal control formulation)

sup
‖Q‖≤1

{∇ψ(x, y).Q− n(x, y)} = 0.

Sup is reached for q = ∇ψ
|∇ψ| so can also use

sup
‖Q‖=1

{∇ψ(x, y).Q− n(x, y)} = 0.
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”Lagrangian” discretisation

sup
‖Q‖≤1

{
ψ((x, y)− dtQ)− ψ(x, y)

−dt
− n(x, y)} = 0

Rem. : This is first order (if the solution is smooth !)

ψ((x, y)− dtQ)− ψ(x, y) = −dt∇ψ(x, y).Q+O(dt2)

Rem. : this is upwinding

ψ(x, y) = inf
‖Q‖≤1

{ψ((x, y)− dtQ)}+ dt n(x, y)

Recall

Ẏ = ∇ψ = Qopt‖∇ψ‖
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Grid interpolation

Grid : (xi, yj) = (i dx, j dy). Note ψ(xi, yj) = ψij and n(xi, yj) =

nij

First assume that (x, y)−dt q) ∈ T = {(xi, yj), (xi+1, yj), (xi, yj−1)}
(restrict Q to point in one of the quadrant).

ψ using a “convex linear” combination of the value at grid points :

ψ((x, y)− dt q) = αψij + β ψi+1j + γ ψij+1

where α, β and γ are such that{
(x, y)− dt q = α (xi, yj) + β (xi+1, yj) + γ (xi+1, yj+1))
α+ β + γ = 1.

Rem : Again first order approximation.
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The optimization problem now depends on (α, β, γ). It can be

worked out for the four quadrants and taking dt = dx dy√
dx2+dy2

simplifies into the discrete Hamiltonian :

gij(ψij, ψi+1j, ψij+1, ψi−1j, ψij−1) = 0, ∀(i, j)

where

gij(ψij, ψi+1j, ψij+1, ψi−1j, ψij−1) =√
max(a+, b−)2 + max(c+, d−)2 − n(xi, yj),

a+ = max(0, a), b− = max(0,−b) and

a = D−x ψij =
ψij−ψi−1j

dx b = D+
x ψij =

ψi+1j−ψij
dx

c = D−y ψij =
ψij−ψij−1

dy d = D+
y ψij =

ψij+1−ψij
dy
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Relaxation

S. J. Osher and L. Rudin

Rapid convergence of approximate solution to shape form shading

problem.

Never Published

gij(ψij, ψi+1j, ψij+1, ψi−1j, ψij−1) = 0, ∀(i, j)
is a system of nonlinear equations ... may be difficult to solve
directly. Instead is is easy to prove that the algorithm obtained
by the following relaxation scheme converges :

Compute a sequence of (ψnij)i,j solutions of

gij(ψ
n
ij, ψ

n−1
i+1j, ψ

n−1
ij+1, ψ

n−1
i−1j, ψ

n−1
ij−1) = 0, ∀(i, j)

Note this is like reintroducing time ...
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On the positive quadrant

we have to solve for t = ψnij (h = dx = dy)√
((ψn−1

i+1j − t)−)2 + ((ψn−1
ij+1 − t)−)2 − h ∗ nij = 0

Solution is explicitely given as

ψn+1
ij = 0.5 (ψn−1

ij+1 + ψn−1
i+1j +

√
2h2 n2

ij − (ψn−1
i+1j − ψn−1

i+1j)
2 if |ψn−1

i+1j − ψn−1
i+1j| < hnij

ψn+1
ij = min(ψn−1

i+1j, ψ
n−1
i+1j) + hnij else

Extend to all four quadrant by seleecting min...
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Slightly faster way is to revisit as P1 interpolation on each tri-

angle made by the 5 point stencil.

ψ((x, y)− dt (qx, qy)) = ψij − dt qx (Dxψij) − dt qy (Dyψij)

Three unknown (ψnij, Dxψij, Dyψij) and 2 equations ((qx, qy) =

(h,0), (qx, qy) = (0, h))

ψn−1
ij+1 = ψnij − hDyψij)

ψn−1
i+1j = ψnij − hDxψij)

then close with the Eikonal equation ..

‖∇ψ(X)‖2 = n(X)2 X = (x, y) ⇔
√

(D+
x ψ

+
ij )

2 + (D+
y ψ

+
ij )

2−nij = 0

Extension to all four quadrant yield the scheme
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Fondamental properties of the numerical (implicit!) scheme

• Consistance : For a smooth function φ, looking at a sequence

s.t. (i dx, j dy) → (x, y) as (dy, dx) → 0 and setting ψij =

φ(xi, yj), we get

lim gij(ψij, ψi+1j, ψij+1, ψi−1j, ψij−1) = ‖∇φ(x, y)‖ − n(x, y)
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• Monotonicity : if (uij)ij < (vij)ij then for all t and all i, j we

have

gij(t, ui+1j, uij+1, ui−1j, uij−1) < gij(t, vi+1j, vij+1, vi−1j, vij−1)

(Upwind scheme acts as a ”time” dependent equation in the

ray direction).
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• Stability : unconditionnaly stable (implicit !)
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Relaxation and convergence proof
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http://www.levelset.com/system/html/modules/sections/index.php?op=viewarticle&artid=5

Interview with Stanley Osher at National University of Singapore :

Stanley Osher is an extraordinary mathematician who has ....

It turned out that I had a friend who knew the District Attorney or somebody, and I

was then doing video image enhancement with my colleague L. Rudin, We were able to resolve the speck into a rose tattoo and it was a great application of what we were doing. After the Denny case trial (the tattoo led to the conviction of the suspect) we had a lot of media publicity and our company specialized in the area of image enhancement. Eventually I sold my share of the company to Rudin. He has a package on video image enhancement which is used by the police around the world, and he’s quite successful.

....

I: You could be rich. Hollywood would be paying you millions.

O: People work for salaries. There is money, ego and fun. It’s a very nonlinear function. I don’t know which is most important. Fun is very important. It’s a very good life. I would recommend people going into this stuff now. If you have the talent for it, it’s the best life.
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