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Harmonic Average Rule for a 1D Problem

the two-point boundary value problem

− d
dx

(
aε(x)

duε

dx

)
= f x ∈ Ω = [0, L]

uε(0) = uε(L) = 0

assume aε(x) = a(x/ε) and a(y) is smooth and periodic with
period 1

0 < α ≤ a(y) ≤ β, ∀y ∈ [0, 1]

we want to study the behavior of uε, as ε→ 0

3



Harmonic Average Rule for a 1D Problem

from the variational formulation∫
Ω

aε
duε

dx

dv

dx
dx =

∫
Ω

fv dx , ∀v ∈ H1
0 (Ω)

taking v = uε

⇒ ‖uε‖H1(Ω) ≤
1

α
‖f ‖H−1(Ω), ∀ε > 0

extracting a subsequence, still denoted by uε such that

uε ⇀ u weakly in H1
0 (Ω)
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Harmonic Average Rule for a 1D Problem

introduce

ξε = aε
duε

dx

ξε ∈ L2(Ω) since aε ∈ L∞(Ω), then

− dξε

dx
= f

so {ξε} ⊆ H1(Ω) and bounded. we can extract a subsequence, still
denoted by ξε such that

ξε → ξ strongly in L2(Ω)

by Rellich compactness theorem
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Harmonic Average Rule for a 1D Problem

Def: if g ε, g ∈ L∞(Ω), g ε ⇀∗ g weak-* in L∞(Ω) means∫
Ω

g εφ dx =

∫
Ω

gφ dx , ∀φ ∈ L1(Ω)

1

aε
⇀∗ M(a) :=

∫ 1

0

1

a(y)
dy weak-* in L∞(Ω). then

1

aε
ξε ⇀M(a)ξ weakly in L2(Ω)

6



Harmonic Average Rule for a 1D Problem

du

dx
↼

duε

dx
=

1

aε
ξε ⇀M(a)ξ weakly in L2(Ω) ⇒ du

dx
=M(a)ξ

since − dξ
dx

= f ,

− d
dx

( 1

M(a)

du

dx

)
= f

the homogenized operator is given by

A = −ā
d2

dx2

where ā =
1

M(a)
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Sobolev Space of Periodic Functions

Td : d-dimensional unit cube, or called unit cell

f : Rd → R called 1-periodic fun if

f (y + ei ) = f (y) ∀y ∈ Rd i = 1, · · · , d

where {ei}di=1 is the standard basis in Rd

C∞per (Td): the restriction to Td of C∞(Rd) that are 1-periodic

Lp
per (Td): the completion of C∞per (Td) w.r.t. Lp-norm

H1
per (Td) =

{
u : u ∈ L2

per (Td),∇u ∈ L2
per (Td)

}
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Fredholm Alternative for Periodic Elliptic PDEs
consider the PDE

Au = −∇ ·
(

A(y)∇u(y)
)

= f (y), u(y) is 1−periodic

Lemma. assume A is 1-periodic, uniformly coercive and bounded.
then the following alternative holds.

i) either there exists a unique solution for every f ∈ L2
per (Td); or

ii) the homogeneous equation

Au = 0, u is 1−periodic

has at least one nontrivial solution and

1 ≤ dim
(
N (A)

)
= dim

(
N (A∗)

)
<∞.

in this case the problem has a weak solution if and only if

(f , v)Td = 0, ∀v ∈ N (A∗)
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More Applicable Corollary: Solvability Condition

Corollary. let f (y) ∈ L2
per (Td). there exists a solution in H1

per (Td)
(unique up to an additive constant) of the elliptic PDE if and only
if
∫

Td f (y)dy = 0
Proof. indeed, consider the homogeneous adjoint equation

A∗v = −∇ ·
(

AT∇v
)

= 0.

clearly, the constant function v = 1 is a solution of this equation.
the uniform ellipticity of the matrix A implies that∫

Td

|∇v |2dy = 0

so that v is a constant. hence N (A∗) = span{1}
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Elliptic PDEs in d-Dimension

stationary diffusion equation in divergence form

−∇ ·
(

Aε∇uε
)

= f in Ω ⊂ Rd

uε = 0 on ∂Ω

uε = uε(x): an unknown scalar field

f = f (x): a given scalar field

a coefficient tensor Aε(x) = A(x/ε) = A(y), A is 1-periodic
w.r.t. y , uniformly coercive and bounded, i.e.,

α|ξ|2 ≤
d∑

i ,j=1

Aij(y)ξiξj ≤ β|ξ|2, ∀ξ ∈ Rd ,∀y , β ≥ α > 0
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Two-scale Asymptotic Expansions

sol uε in the form of a power series expansion in ε

uε = u0 + εu1 + ε2u2 + · · ·

claim: {ui} depend explicitly on x and y = x/ε and 1-periodic
w.r.t. y (idea of multiple scales)

⇒ uε(x) = u0

(
x ,

x

ε

)
+ εu1

(
x ,

x

ε

)
+ ε2u2

(
x ,

x

ε

)
+ · · ·
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Two-scale Asymptotic Expansions

y = x/ε⇒ ∇ = ∇x +
1

ε
∇y e.g., g ε(x) := g(x , x

ε )

∇g ε(x) = ∇xg(x , y)
∣∣∣
y= x

ε

+
1

ε
∇y g(x , y)

∣∣∣
y= x

ε

Aε := −∇ · (A(y)∇) in the form

Aε =
1

ε2
A0 +

1

ε
A1 +A2

where

A0 := −∇y ·
(

A(y)∇y

)
A1 := −∇y ·

(
A(y)∇x

)
−∇x ·

(
A(y)∇y

)
A2 := −∇x ·

(
A(y)∇x

)
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Two-scale Asymptotic Expansions

the equation becomes( 1

ε2
A0 +

1

ε
A1 +A2

)
uε = f (x , y) ∈ Ω× Td

uε = 0 (x , y) ∈ ∂Ω× Td

moreover

1

ε2
A0u0 +

1

ε
(A0u1 +A1u0) + (A0u2 +A1u1 +A2u0) +O(ε) = f
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Two-scale Asymptotic Expansions

disregard all terms of order higher than 1

O(1/ε2) A0u0 = 0

O(1/ε) A0u1 = −A1u0

O(1) A0u2 = −A1u1 −A2u0 + f (x)
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A0u0 = 0

u0(x , y) = u(x), i.e., u0 independent of y ⇐ ellipticity of A

α

∫
Td

|∇y u0(x , y)|2 dy ≤
∫

Td

A(y)∇y u0 · ∇y u0 dy

= −
∫

Td

u0A0u0 dy = 0

=⇒ ∇y u0(x , y) = 0
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A0u1 = −A1u0

A0u1 = ∇y · (A∇xu) and u1(x , y) is 1-periodic w.r.t. y ,∫
Td u1 dy = 0 check the solvability condition∫

Td

∇y · (A∇xu) dy =

∫
∂Td

n · (A∇xu) dS = 0

by periodicity of A(·)
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solving u1

use separation of variables: u1(x , y) =
d∑

i=1

∂u

∂xi
(x)ωi (y) where

χ(y) =
[
ω1(y), · · · , ωd(y)

]
is called the first-order corrector and

they satisfy the cell problem

−∇y ·
(

A(y)∇yωi (y)
)

= ∇y ·
(

A(y)ei

)
ωi (y) is 1− periodic

where {ei}di=1 is the standard basis in Rd
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A0u2 = −A1u1 −A2u0 + f (x)

the solvability condition of the O(1) equation implies∫
Td

(A2u0 +A1u1) dy = f (x)

where ∫
Td

A2u0 =

∫
Td

−∇x ·
(

A(y)∇xu
)

dy

= −∇x ·
[( ∫

Td

A(y) dy
)
∇xu

]
and∫

Td

A1u1 dy =

∫
Td

(
−∇y · (A(y)∇xu1)−∇x · (A(y)∇y u1)

)
dy

:= I1 + I2
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Continuing ...

I1 = 0 by periodicity and

I2 =

∫
Td

−∇x · (A(y)∇y u1) dy

= −
∫

Td

∇x ·
(

A(y)∇y (χ · ∇xu)
)

dy

= −∇x ·
(∫

Td

A(y)∇yχ(y)T dy
)
∇xu

finally, the homogenized equation

∇x · (Ā∇xu) = f in Ω

u = 0 on ∂Ω

where

Ā =

∫
Td

(
A(y) + A(y)∇χ(y)T

)
dy
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Continuing ...

∇χ(y)T =


∂ω1

∂y1
· · · ∂ω1

∂yd
...

. . .
...

∂ωd

∂y1
· · · ∂ωd

∂yd


and

(A(y)∇χ(y)T )ij =
∑
k

Aik(y)
∂ωj

∂yk
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Comments from Allaire’s Slides

explicit formula for the effective parameters but no longer true
for non-periodic problems

Ā not depend on ε, f , u or the boundary conditions, still true
in the non-periodic case

Ā is positive definite, but not necessary isotropic even if A(y)
was so

one can check that

lim
ε→0

uε = u, lim
ε→0
∇uε = ∇u, lim

ε→0
A(

x

ε
)∇uε = Ā∇u

lim
ε→0

A(
x

ε
)∇uε · ∇uε = Ā∇u · ∇u

same results for evolution problems

very general method, but heuristic and not rigorous

22



1D Elliptic Problem

let d = 1 and Ω = [0, L]. then the two-point boundary value
problem

− d
dx

(
a
(x

ε

) duε

dx

)
= f x ∈ [0, L]

uε(0) = uε(L) = 0

assume a(y) is smooth and periodic with period 1 and

0 < α ≤ a(y) ≤ β, ∀y ∈ [0, 1]
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1D Elliptic Problem

the cell problem in 1D

− d
dy

(
a(y)

dχ
dy

)
=

da(y)

dy
y ∈ [0, 1]

χ is 1− periodic,
∫

Td

χ(y) dy = 0(⇐ uniqueness)

integration from 0 to y

a(y)
dχ(y)

dy
= −a(y) + c1

once again

χ(y) = −y + c1

∫ y

0

1

a(y)
dy + c2

c1 =
( ∫ 1

0 1/a(y) dy
)−1

by periodicity of χ
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1D Elliptic Problem

then the 1D effective coefficient - the harmonic average

ā =

∫ 1

0

(
a(y) + a(y)

dχ(y)

dy

)
dy =

(∫ 1

0
1/a(y) dy

)−1

one can easily prove

α ≤ ā ≤ β, ā ≤
∫ 1

0
a(y) dy
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