
Reducing the Computational Complexity
of Adjoint Computations

William W. Symes

CAAM, Rice University, 2007

Agenda

• Discrete simulation, objective definition

• Adjoint state method

• Checkpointing

• Griewank’s optimal schedule

• Implementation

• Examples

• Continuum adjoint state and adaptive time stepping

• Summary

1

Discrete Time Evolution

un+1 = Hn[c,un], n = 0, 1, ..., N − 1

Note:

• un ∈ U approximates state instate spaceU at t = tn, n = 0, ...N ;

• time-dependence of RHS accommodates possible time-dependence of control
c ∈ C, C = control space, and of other factors;

• control c can be initial data and/or material parameter fields or source term or
actuator history or pump rate or ...

• RHS (Hn) represents solution operator of discrete dynamics - can beeither ex-
plicit or implicit. Originates in a continuum dynamics system (PDE), via finite
element / difference / volume method.

2

Objective or Cost Functions

u[c] = (u0,u1, ...,uN)T ∈ UN = time history of simulation - implicitly a function
of c.

S : UN → E = sampling operator- assume linear for simplicity,, though this is
not really necessary. Sample spaceE may beU (Meyer control) or time series of
projections ofU (seismic traces, trajectory projections,...) or ...

G : E → R = “goodness” function.

Objectiveor costfunctionJ : C → R via

J [c] = G[S[u[c]]]

3

Adjoint State Method

For computing the gradient ofJ :

• computeu[c] = (u0,,uN)T ;

• initialize g ∈ C andwN+1 ∈ U to zero. Then forn = N − 1, ...0

wn+1 = DuH
n+2[c,un+1]Twn+2 + [ST (∇G)[S[u[c]]]]n+1

g = g + DcH
n[c,un]wn+1

• whenn = 0 is reached,∇J [c] = g.

Observation:u evolvesforward in step index,w backwardin step index, but they
are needed at indicesn, n + 1 respectively,n = N − 1, ...0.

4

Computational Complexity

Strategies for simultaneous access toun,wn+1 – in all caseswn+1 evolved back-
wards fromn = N to n = 0.

1. For eachn, evolveun from n = 0, or

2. Computeu0, ...,uN , store all; For eachn retrieveun, or

3. Computeu0,uN , store everykth state,k > 1; for eachn, interpolaten state
from closest stored states, or

4. Computeu0, ...uN , evolveun backwards in time fromn = N .

5

Computational Complexity

Cost: in units of simulation steps (flops) to computeu, and number of state vectors
stored:

1. working storage (1 state vector) for butN 2/2 steps - prohibitive;

2. N steps,N state vectors;

3. alsoN steps,N/k state vectors, but loss of accuracy due to use of interpolation
rather than evolution;

4. 2N steps, 1 state vector, but only possible for conservative / time reversible
problems.

6

Example: Reverse Time Migration

(“RTM”): Adjoint state method applied to least squares residual seismogram. The-
ory ⇒ in some instances, gradient of least squares residual isimageof subsurface.

Increasingly popular because of its insensitivity to complexity of acoustic wavepaths
(full session, 06 SEG).

3D RTM - typical state space dimension' 1013 w (= 109 space grid× 104 shots),
N ' 104. Flops per space-time gridpoint for standard regular grid finite difference
schemes' 102.

⇒ cost per time step' 1015 flops. Storage per state vector' 109 w (natural algo-
rithms work per shot).

7

Example: Reverse Time Migration

Upshot:

• strategy 1 hopeless (O(1038) flops);

• probably also strategy 2 (10 − 100TB storage);

• absorbing boundary conditions make wave equation time-irreversible, but some
schemes admit variants of strategy 4 with considerable additional storage (not
available with attenuation modeling).

Commercial 2D prototypes use strategy 3 withk ' 10. Even for 2D (×10−3),
application is I/O bound; for 3D, requires 1 - 10 TB.

8

Checkpointing

Alternative to strategies 1-4. Requires allocation of

• NB buffers, each storing one state vector;

• NC >> NB checkpoints = integers between0 andN .

Forward sweep (n=0,...,N): solve forward evolution problem to computeu0, ...,uN ;
storeNB checkpoints in the buffers, including the first (always n=0)and last.

Backwards sweep (n=N-1,...,0): begin by using strategy 1,starting at the last check-
point. When then = last checkpoint, re-use its buffer to store another checkpoint.
computing its state by application of strategy 1 starting from the previous stored
checkpoint. Continue using strategy 1, starting from next-to-last checkpoint [this
must be the replacement for the last checkpoint, unless it was previously stored].
Continue. At end of algorithm, buffers store some number of states starting with
n = 0; finish using strategy 2.

9

Checkpointing

Example withN = 15, NB = 3, NC = 6

Meaning of colums:

• bufk records checkpoint stored in buffer k;

• recomprecords the previously computed steps which arerecomputedin each
step of the backwards sweep, ordashif no recomputation necessary in step;

• bold facedcheckpoints used as Cauchy data for strategy 1;

• italic: n for whichun combined withwn+1 in evaluation of gradient update.

During forward sweep checkpoints 0, 6, 11 recorded in buffers 1, 2, and 3.

10

step buf1 buf2 buf3 recomp
14 0 6 11 12,13,14
13 0 6 11 12,13
12 0 6 11 12
11 0 6 11 7, 8
10 0 6 8 9, 10
9 0 6 8 9
8 0 6 8 -
7 0 6 8 7
6 0 6 8 -
5 0 1 3 1, 2, 3, 4,5
4 0 1 3 4
3 0 1 3 -
2 0 1 3 2
1 0 1 3 -
0 0 1 3 -

11

Griewank’s Optimal Checkpoint Schedule

Big question: how do you choose checkpoints to

• minimize the amount of recomputation for given storage allocation (NB), or

• minimize the amount of storage required for a given level of recomputation.

Solution by Griewank,Opt. Meth. and Software, 1992, published as Alg. 799,
Griewank and Walther,ACM TOMS2000, in terms ofrecomputation ratio= total
number of forward steps required to compute adjoint /N .

12

Griewank’s Optimal Checkpoint Schedule

Example,N = 10000:

buffers 3 5 10 15 20 25 30 35 40 60
ratio 27.9 11.3 5.8 4.5 3.8 3.6 3.4 3.1 2.9 2.8

Storage for 36 state vectors⇔ total cost of adjoint' 3 times forward simulation +
1.5 times for adjoint step (wn+1

7→ wn) ' 4.5 times simulation cost.

Comparisons: with straight app of strategy 2, cost is 2.5 times simulation cost and
300 times as much storage!Strategy 3 requires “only” 30 times as much storage
but loses accuracy.

Example: for 3D RTM, use of opt. checkpointing drops requires storage toO(100)

GB, may eliminate disk i/o.

13

Implementation

Within TSOpt framework, adjoint step with optimal checkpointing implemented
via three classes:

RealFunction: abstract interface specializingLocalDataContainer, rep-
resenting a function of a real variable via aset(Scalar t) method.

GriewankRealFunction: implementation ofRealFunction using aStencil
object to compute and store checkpointed state vectors, returns interpolation of
nearest stored checkpoints to requested “time”.Uses TOMS Alg 799 code!!!

Dynamics: base class for time stepping, includesadjStep method, which ac-
cepts a state vector arg of typeLocalDataContainer.

14

Example

2D RTM using standard centered difference (2,4) schemes implemented in TSOpt.

Parallelization over shots (i.e. individual simulations)via parallelDataContainer
subclassMPI PackageContainer. [For 3D, parallelization of individual simu-
lations will be required as well.]

Applied to Marmousi benchmark synthetic data: 240 shots, 3 sdata 4 ms. Model is
826× 2350 gridpoints (4m× 4m), absorbing boundaries on all sides (PML). With
internally computed time grid,' 8000 time steps.

Time per simulation on AMD Opteron 275: 10 min. Time to simulate entire data
set on Rice Cray XD-1 Opteron cluster using 120 cores: 20 min.

Time for adjoint state computation using 32 checkpoints, 120 cores (recomp ratio
= 3): 90 min.

15

Continuum Adjoint State and Adaptive Time
Stepping

With adaptive time stepping, grid for simulationmust in general be independent of
grid for linearized and adjoint simulation. [Trivial example: adaptive quadrature.]

Therefore must return tocontinuumadjoint state method for the differential equa-
tion

du

dt
= H[c,u, t]; u(0) = u0

and the objectiveJ defined as before,

∇J [c] = Du[c]TST
∇G[S[u[c]]]

=

∫ T

0

dtDcH[u[c](t), c, t]Tw(t),

16

Continuum Adjoint State and Adaptive Time

Stepping

where thecontinuum adjoint statew satisfies

dw

dt
(t) + DuH [u[c](t), c, t]Tw(t) = ST

∇G[S[u[c](t)]]

How to approach this computation: use a comparably accuratescheme to solve this
adjoint state equation, and a “real function” class likeGriewankRealFunction

to return the values ofu[c](t) required, as efficiently as possible for a given allo-
cation of auxiliary storage. NB: these values withneverbe those computed in the
computation ofu[c] by time stepping!

More details: stay tuned forMarco Enriquez MA thesis.

17

Summary

• Adjoint state method poses interesting computational complexity problem;

• Griewank solved it, and provided C and F77 realizations in ACM TOMS 799
(2000);

• This is enabling technology: it brings problems into reach which would other-
wise be untouchable, and reduces the floating point and memory complexity of
large-scale sim-driven opt problems (eg. 3D RTM) to manageable levels;

• TSOpt incorporates Griewank’s optimal checkpointing scheme;

• Modification for adaptive gridding straightforward: sinceGriewank checkpoint-
ing doesdiscretebackwards stepping optimally, it is also the optimal tool for
extracting state at arbitrary times (augmented by interpolation).

18

