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How do you turn lots of this... (field seismogram from the Gulf

of Mexico - thanks: Exxon.)
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into this (a fair rendition of subsurface structure)?
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Central Point of These Talks:

Estimating the index of refraction (wave velocity) is the central

issue in seismic imaging.

Combines elements of

• optics, radar, sonar - reflected wave imaging

• tomography - with curved rays

Many unanswered mathematical questions with practical impli-

cations!
4



A mathematical view of reflection seismic imaging, as practiced

in the petroleum industry:

• an inverse problem, based on a model of seismic wave prop-

agation

• contemporary practice relies on partial linearization and high-

frequency asymptotics

• recent progress in understanding capabilities, limitations of

methods based on linearization/asymptotics in presence of

strong refraction: applications of microlocal analysis with

implications for practice

• limitations of linearization lead to many open problems

5



Agenda

1. Seismic inverse problem in the acoustic model: nature of data
and model, linearization, reflectors and reflections idealized
via harmonic analysis of singularities.

2. High frequency asymptotics: why adjoints of modeling oper-
ators are imaging operators (“Kirchhoff migration”). Beylkin
theory of high frequency asymptotic inversion.

3. Adjoint state imaging with the wave equation: reverse time
and reverse depth.

4. Geometric optics, Rakesh’s construction, and asymptotic in-
version w/ caustics and multipathing.

5. A step beyond linearization: a mathematical framework for
velocity analysis, imaging artifacts, and prestack migration
après Claerbout.
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1. The Acoustic Model and Linearization
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Marine reflection seismology apparatus:

• acoustic source (airgun array, explosives,...)

• acoustic receivers (hydrophone streamer, ocean bottom ca-
ble,...)

• recording and onboard processing

Land acquisition similar, but acquisition and processing are more
complex. Vast bulk (90%+) of data acquired each year is marine.

Data parameters: time t, source location xs, and receiver loca-
tion xr or half offset h = xr−xs

2 , h = |h|.
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Idealized marine “streamer” geometry: xs and xr lie roughly on

constant depth plane, source-receiver lines are parallel → 3 spa-

tial degrees of freedom (eg. xs, h): codimension 1. [Other ge-

ometries are interesting, eg. ocean bottom cables, but streamer

surveys still prevalent.]

How much data? Contemporary surveys may feature

• Simultaneous recording by multiple streamers (up to 12!)

• Many (roughly) parallel ship tracks (“lines”), areal coverage

• single line (“2D”) ∼ Gbyte; multiple lines (“3D”) ∼ Tbyte

Main characteristic of data: wave nature, presence of reflections

= amplitude coherence along trajectories in space-time.
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Data from one source firing, Gulf of Mexico (thanks: Exxon)
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Lightly processed version of data displayed in previous slide -

bandpass filtered (in t), truncated (“muted”).
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Distinguished data subsets: “gathers”, “bins”, extracted from

data after acquisition.

Characterized by common value of an acquisition parameter

• shot (or common source) gather: traces with same shot

location xs (previous expls)

• offset (or common offset) gather: traces with same half off-

set h

• ...
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• presence of wave events (“reflections”) = coherent space-

time structures - clear from examination of the data.

• what features in the subsurface structure could cause reflec-

tions to occur?
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Blocked logs from well in North Sea (thanks: Mobil R & D).

Solid: p-wave velocity (m/s), dashed: s-wave velocity (m/s),

dash-dot: density (kg/m3). “Blocked” means “averaged” (over

30 m windows). Original sample rate of log tool < 1 m. Re-

flectors = jumps in velocities, density, velocity trends.
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Known that abrupt (wavelength scale) changes in material me-

chanics, i.e. reflectors, act as internal boundary, causing reflec-

tion of waves.

What is the mechanism through which this occurs?

Seek a simple model which quantitatively explains wave reflection

and other known features of the Earth’s interior.
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The Modeling Task: any model of the reflection seismogram
must

• predict wave motion

• produce reflections from reflectors

• accomodate significant variation of wave velocity, material
density,...

A really good model will also accomodate

• multiple wave modes, speeds

• material anisotropy

• attenuation, frequency dispersion of waves

• complex source, receiver characteristics
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Acoustic Model (only compressional waves)

Not really good, but good enough for today and basis of most

contemporary processing.

Relates ρ(x)= material density, λ(x) = bulk modulus, p(x, t)=

pressure, v(x, t) = particle velocity, f(x, t)= force density (sound

source):

ρ
∂v

∂t
= −∇p+ f ,

∂p

∂t
= −λ∇ · v (+ i.c.′s,b.c.′s)

(compressional) wave speed c =
√
λ
ρ
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acoustic field potential u(x, t) =
∫ t
−∞ ds p(x, s):

p =
∂u

∂t
, v =

1

ρ
∇u

Equivalent form: second order wave equation for potential

1

ρc2
∂2u

∂t2
−∇ ·

1

ρ
∇u =

∫ t
−∞

dt∇ ·
(

f

ρ

)
≡
f

ρ

plus initial, boundary conditions.
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Weak solution of Dirichlet problem in Ω ⊂ R3 (similar treatment

for other b. c.’s):

u ∈ C1([0, T ];L2(Ω)) ∩ C0([0, T ];H1
0(Ω))

satisfying for any φ ∈ C∞0 ((0, T )×Ω),∫ T
0

∫
Ω
dt dx

{
1

ρc2
∂u

∂t

∂φ

∂t
−

1

ρ
∇u · ∇φ+

1

ρ
fφ

}
= 0

Theorem (Lions, 1972) Suppose that log ρ, log c ∈ L∞(Ω), f ∈
L2(Ω×R). Then weak solutions of Dirichlet problem exist; initial

data

u(·,0) ∈ H1
0(Ω),

∂u

∂t
(·,0) ∈ L2(Ω)

uniquely determine them.
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Further idealizations: (i) density is constant, (ii) source force

density is isotropic point radiator with known time dependence

(“source pulse” w(t))

f(x, t; xs) = w(t)δ(x− xs)

⇒ acoustic potential, pressure depends on xs also.

Forward map S = time history of pressure for each xs at receiver

locations xr (predicted seismic data), depends on velocity field

c(x):

S[c] = {p(xr, t; xs)}

Reflection seismic inverse problem: given observed seismic

data Sobs, find c so that

S[c] ' Sobs
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This inverse problem is

• large scale - up to Tbytes, Pflops

• nonlinear

Almost all useful technology to date relies on partial
linearization: write c = v(1 + r) and treat r as relative first
order perturbation about v, resulting in perturbation of presure
field δp = ∂δu

∂t = 0, t ≤ 0, where(
1

v2

∂2

∂t2
−∇2

)
δu =

2r

v2

∂2u

∂t2

Define linearized forward map F by

F [v]r = {δp(xr, t; xs)}
Analysis of F [v] is the main content of contemporary reflection
seismic theory.
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Critical question: If there is any justice F [v]r = derivative DS[v][vr]

of S - but in what sense? Physical intuition, numerical simula-

tion, and not nearly enough mathematics: linearization error

S[v(1 + r)]− (S[v] + F [v]r)

• small when v smooth, r rough or oscillatory on wavelength

scale - well-separated scales

• large when v not smooth and/or r not oscillatory - poorly

separated scales

2D finite difference simulation: shot gathers with typical marine

seismic geometry. Smooth v(z), oscillatory r(z) (“layered medi-

um”) extracted from “Marmousi” synthetic data set (Grau &

Versteeg, 1994)
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Velocity v(x1) (function of depth only) used in numerical lin-
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merical linearization study.
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Source pulse w(t) used in numerical linearization study.
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(a) S[v(1 + r)], (b) S[v] + F [v]r, (c) S[v(1 + r)] − S[v] − F [v]r,

(d) S[v(1 + r) + 0.02v]− S[v(1 + r)] + F [v(1 + r)](0.02v)
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Implications:

• Some geologies have well-separated scales - cf. sonic logs -

linearization-based methods work well there. Other geologies

do not - expect trouble!

• v smooth, r oscillatory⇒ F [v]r approximates primary reflec-

tion = result of wave interacting with material heterogeneity

only once (single scattering); error consists of multiple re-

flections, which are “not too large” if r is “not too big”,

and sometimes can be suppressed (lecture 4).

• v nonsmooth, r smooth ⇒ error consists of time shifts in

waves which are very large perturbations as waves are oscil-

latory.

No mathematical results are known which justify/explain these

observations in any rigorous way.
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Partially linearized inverse problem = velocity analysis problem:
given Sobs find v, r so that

S[v] + F [v]r ' Sobs

Linear subproblem = imaging problem: given Sobs and v, find
r so that

F [v]r ' Sobs − S[v]

Last 20 years:

• much progress on imaging problem

• much less on velocity analysis problem.
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