3. Wave equation migration
(i) Reverse time

(ii) Reverse depth



Reverse time computation of adjoint F[v]*:

Start with the zero-offset case - easier, but only if you replace it
with the exploding reflector model, which replaces F'[v] by

Flolr(xs,t) = w(xs,t), xs € X5,0<¢t<T
4 82 2 27“ L
To compute the adjoint, start with its definition: choose d &
E(Xs x (0,T7)), so that

< Flvl*d,r >=< d, F[v]r >

T
= [ d / dt d(xs, t)w(xs, t
X, Ls 0 ( s )w( s )



The only thing you know about w is that it solves a wave equation
with » on the RHS. To get this fact into play, (i) rewrite the
integral as a space-time integral:

= [ [ L /XS das d(xs, )5 (x — x5)w(x, £)

(ii) write the other factor in the integrand as the image of a field
g under the (adjoint of the) wave operator (it's self-adjoint), that
IS,
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(iii) integrate by parts
T 4 92

— [ 4 / dt _ V2 t t
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which works if ¢ = 0, ¢t > T (final value condition); (iv) use the
wave equation for w

T 2
= d / dt r(x)o(t)q(x,t
R N S CLOERD
(v) observe that you have computed the adjoint:

2 =1k
= /R3 dx r(x) [U(X)QQ(X,O)] =< Fv]"d >

2
’U(X)Qq

Flo]*d = (x,0)



Summary of the computation, with the usual description:

e Use that data as sources, backpropagate in time - i.e. solve
the final value (“reverse time" ) problem

4 92
(—— — V2> q(x,t) = /X drsd(xs,t)6(x —Xs), ¢q=0,t>T

02 Ot2
e read out the “image” (= adjoint output) at ¢t = 0O:

2
v(x)21

Flv]*d = (x,0)

Note: The adjoint (time-reversed) field ¢q is not the physical field
(6uw) run backwards in time, contrary to some imputations in the
literature.



Known as ‘“two way reverse time finite difference migration’ in
geophysical literature (Whitmore, 1982) - uses full (two way)
wave equation, propagates adjoint field backwards in time, gen-
erally implemented using finite difference discretization. Same
as “adjoint state method”, Lions 1968, Chavent 1974 for con-
trol and inverse problems for PDEs - much earlier for control of
ODEs - Lailly, Tarantola '80s.

A slightly messier computation computes the adjoint of F'[v] (i.e.
multioffset or prestack migration):

Flo]*d(x) = —UQX) / das /OT dt (%v%) (x, £ Xs)

where adjoint field g satisfies ¢ =0, t > T and

<i8_2 — v2> q(x,t;,xs) = / dxr d(Xr, t; Xs5)0(X — Xr)



Proof:

< Fv]*d,r >=<d, F[v]r >

_//dajsda:r,«/ dt d(xr, t; Xs)aéu(xrat;xs)

—/da:S/d,a:/ dt {/ dxy d(xr, t; XS)(;(X—XT)}@(X, t; Xs)
—/d:Es/d:I:/ dt (%8—2 V2> q] %(X, t; Xs)

T 1 8 0




(boundary terms in integration by parts vanish because (i) du =
0,t << 0; (ii) g=0, t >> 0; (iii) both vanish for large x, at each

t)
T 2r 821 dq _
— _/ azs / da /o at <v2 o2 8t> (%, 8 %s)

= —/ dzs / dmr(x)vzﬁx) /OT dt (%%) (x,t; Xs)

=< r, F[v]*d >




Algorithm: finite difference or finite element discretization in x,
finite difference time stepping.

e For each x5, solve wave equation for w forward in t, record
final (t=T) Cauchy data, also (for example) Dirichlet bound-
ary data.

e Step u and g backwards in time together; at each time step,
data serves as source for g (“backpropagate data”)

e During backwards time stepping, accumulate (approxima-
tions to)

2 T 02u dq _
QI+ = oo [t (T35 i

v2(x)
( “crosscorrelate reference and backpropagated field”).

e next xg - after last x;, F[v]*d = Q.



Reverse depth computation of F[v]*
e Claerbout, early 70's
e zero offset version: Claerbout IEI (“swimming pool equa-
tion”).
e multioffset version: ‘“survey sinking’, double-square-root ( “DSR"")
equation, BEIL.

Start with zero-offset. Again, assume exploding reflector model:

Flvlr(xs,t) = w(xs,t), xs € Xs,0 <t < T

4 92 2
(———v2>w=5(t)l, w=0,1t<0
U

Basic idea: 2nd order wave equation permits waves to move in
all directions, but waves carrying reflected energy are (mostly)
moving up. Should satisfy a 1st order equation for wave motion
in one direction.
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For the moment use 2D notation x = (x,z) etc. Write wave
equation as evolution equation in z:

02w 4 92 92

— === == |w=-10)—5
D2z2 V20t2 Ox2 02
Suppose that you could take the square root of the operator in
parentheses - call it B. Then the LHS of the wave equation

becomes
9] 0 2r
—  —B|)|—+ B = —0(t)—
(82 ) (82 T )w ( )vz
SO setting
0
-— (% 1 g
v (82 T )w
you get
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which might be the required equation for upcoming waves.

Two major problems: (i) how the h—I do you take the square root
of a PDO? (ii) what guarantees that the equation just written
governs upcoming waves?

Calculus of pseudodifferential operators: recall that products of
W DOs are WDOs. Computations simple for subclass of WDQOs
with symbols given by asymptotic expansions:

p(x,8) ~ > pi(x,8), €| — o0

j<m
in which p; is homogeneous in § of degree j:

pj(X7 Tg) — ijj(xa Tf)) T, |€‘ > 1
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The principal symbol is the homogeneous term of highest degree,
i.e. pm above.

Product rule for WDOs: if

pl(x,&) = > pi(x,8), p°(x,6) = Y p(x,6)

j<ml j<m?

then principal symbol of p!(x, D)p?(x, D) is p} ,(x,&)p2 5(x,8),
and there is an algorithm for computing the rest of the expansion.

In an open neighborhood X x = of (xg,£p), symbol of pl(x, D)p?(x, D)
depends only on symbols of pl, p2 in X x =.
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Consequence: if a(x,D) has an asymptotic expansion and is of
order m € R, and am(xg,&n) > 0 in P C R™ x R™ — 0, then there
exists b(x, D) of order m/2 with asymptotic expansion for which

(a(x, D) — b(x, D)b(x, D))u € E(R")
for any v € &'(R™) with WF(u) C P.

Moreover, b, 5(x,€) = \/am(x,€), (x,€) € P. Will call b a mi-
crolocal square root of a.

Similar construction: if a(x,£) #= 0 in P, then there is ¢(x, D) of
order —m so that

c(x,D)a(x,D)u —u, a(x,D)c(x,D)u —u € E(R")
for any v € &'(R™) with WF(u) C P.
Moreover, c_m(x,€) = 1/am(x,£), (x,€) € P. Will call b a mi-

crolocal inverse of a.
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Application: symbol of
92 4 92 4
0x2  w(z,2)20t2  v(w,z)2

a(x,z, D¢, Dy) = DtQ — D:%

4 2 .2
’7- —_—
o2 ¢

a(x7 Z) T? £) —

For § > O, set

Ps(z) = {(x,t,a,ﬂ e >t 5)52}

Then according to the last slide, there is an order 1 WDO-valued
function of z, b(x, z, D¢, D), with principal symbol

’7_ —_—
v(z, 2)2 v(z, 2)2 72’

2
b1<az,zm£>=\/ * 252:TJ Y S (w6 € Py(2)
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for which a(x, z, D¢, Dz)u =~ b(x, z, D¢, D2)b(x, 2, D¢, Dy)u if WEF(u) C
Ps(z).

b is the world-famous single square root ('“SSR"”) operator -
see Claerbout, BEI.

To what extent has this construction factored the wave operator:

(% —1b(x, z, Dy, Dt)) (% + ib(x, 2, Dy, Dt))

2
;74—1)(3: z,Dg, D¢)b(x, z, Dy, Dy) —I——(JZ z, Dz, Dy)

SSR Assumption: For some § > 0, the wavefield w satisfies
(ﬂﬁ,Z,t,f,C,T) S WF(’U}) = (x7t7€77_) S 7)5(2) and CT > 0
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This statement has a ray-theoretic interpretation (which will
eventually make sense): rays carrying significant energy are nowhere
horizontal. Along any such ray, z decreases as t increases - com-
ing up!

B(w, 2, 1) = (83 +ib(z, 2, Do, D) ) w(z, 2,1)
2
4

v(z, 2)2

b(az,z,Dx,Dt)b(a:,z,Dm,Dt)w2 ( DtQ_D£>w
with a smooth error, so

2r(x, z)
v(z, 2)2

(3 ~ ib(z, 2, Dy, D) ) (2,7, 1) =

0z o)

+i (3b<x, 2 Do, D)) ) (i, 2,1)
0z
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(since b depends on z, the z deriv. does not commute with b).
SO w = wg + w1, where

o _ 2r(x, 2)
(a — zb(x, z, Dy, Dt)) wo($, 2 t) — _’U(CU, Z)25(t)

(this is the SSR modeling equation)

0
(o = ib(e,2 Do, DY) ) (2, 2,8) = i (gb(x, % Ds, D)) ) w(a, 2,)
0z 0z

Claim: WF(wy) C WF(w).

Granted this = WF(wg) C WF(w) also.
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Upshot: SSR modeling

FO[’IJ]’I"(QZ‘S, <8 t) — QI)O(:US; <8y t)

produces the same singularities (i.e. the same waves) as explod-
ing reflector modeling, so is as good a basis for migration.

SSR migration: assume that sources all lie on zg = 0.

< F’o[v]*d,r >=<d, Fb[v]’l“ >

:/dms / dt d(zs, t)To(zs, 0, 1)
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=/d:cs / dt/dzd(x;,t)cs(z)’cbo(xs,z,t)
Define the adjoint field g by

<§ — b(z, 2, Dy, Dt)) q(xz,z,t) = d(x,t)0(2), q(x,2,t) =0, 2 <0
2

which is equivalent to solving the initial value problem

(aﬁ — ib(x, 2, Da, Dt>> q(z,2,t) =0, 2> 0;, q(z,0,t) = d(=,?)
Z

Insert in expression for inner product, integrate by parts, use
self-adjointness of b, get

< d, Fg[v]r >=/dw / dz igiwéqu(m,z,O)
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whence
2

v(x, 2)

Standard description of this algorithm:

Folv]*d(z, 2) =

5q(z,2,0)

e downward continue data (i.e. solve for q)

e image at t = 0.

The art of SSR migration: computable approximations to b(x, z, Dz, D¢)
- swimming pool operator, many SUCCeSSors.
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Unfinished business: proof of claim

Depends on celebrated Propagation of Singularities theorem
of Hormander (1970).

Given symbol p(x, £), order m, with asymptotic expansion, define
bicharateristics as solutions (x(t) g(t)) of Hamiltonian system

dX
dat

with p(x(t),£(t)) = 0.

Op
( ,€), —a—X(X,ﬁ)

Theorem: Suppose p(x, D)u = f, and suppose that for tg <t <

t1, (x(t),&(t)) ¢ WF(f). Then either {(x(t),&(t)) :tg <t <t1} C
WEF((u) or {(x(t),6(t)) :tg <t<t1} CT*(R") — WF(u).
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At least two distinct proofs:
e Nirenberg, 1972
e HOormander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR operator are
just upcoming rays of geom. optics for wave equation. These
pass into ¢t < 0 where RHS is smooth, also initial condn at large
z is smooth - so each ray has one “end” outside of WF(w1).
If ray carries singularity, must pass of WF of w, but then it's
entirely contained by P of S applied to w. q. e. d.
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Nonzero offset (“prestack’”): starting point is integral represen-
tation of the scattered field

2 r(x
Flvlr(xr, t; xs) = %/ dx i(}({);

By analogy with zero offset case, would like to view this as
“exploding reflectors in both directions”: reflectors propagate
energy upward to sources and to receivers. However can’'t do
this because reflection location is same for both.

/ ds G(xr,t — s;x)G(Xs, 8, X)

Bold stroke: introduce a new space variable y, define

N 02

Fv]R(xy, t; Xs) =@//da:dyR(x,y)/dsG(XT,t—s;X)G(Xs,s;y)
and note that F[v]R = F[v]r if

Reoy) =5 (2 66— )
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This trick decomposes F'[v] into two “exploding reflectors”:

F['U]R(X'r, t, Xs) — U(X, t, XS)‘XZXT

where

2
<U(i)2§t2 T v)%) u(th; XS) — / dy R(Xa Y)G(Xs,t; Y)

— 'lUS(Xs, t, X)

( “upward continue the receivers"),

1 82 5 |
(‘v(y)Qat2 - VY) ws(y,t;x) = R(x,y)d(t)

( “upward continue the sources”).
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This factorization of F[v] (r — R — F[v]R) leads to a reverse
time computation of adjoint with - will discuss on Friday.

It's equally possible to continue the receivers first, then the
sources, which leads to

2
(v(;)Qc‘?t? B v§> b, ty) = / dz R(x,y)G(xr, t; %)

= wT(Xra t; Y)

(“upward continue the sources”),

2
(ot~ ) v = 20

(“upward continue the receivers").
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Apply reverse depth concept: as before, go 2D temporarily, x =
(z,2r),y = (y, z5), all sources and receivers on z = 0.

Double Square Root (“DSR"”) assumption: For some § > 0,
the wavefield u satisfies

(:szrat)y7287£7<S7T7777C7") ~ WF(U) =4

(x7t7€77-) < 7)5(27")7 (yatanaT) S 7)5('28)7 and CT’T > 07 CST > Oa

As for SSR, there is a ray-theoretic interpretation: rays from
source and receiver to scattering point stay away from the verti-
cal and decrease in z for increasing t, i.e. they are all upcoming.
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Since z will be singled out (and eventually R(x,y) will have a
factor of 6(x,y)), impose the constraint that

R(QZ‘, Zyd, ZS) — R(x7y7 Z)CS(ZJ T ZS)

Define upcoming projections as for SSR:

- 0 .
Ws — ( _I_Zb(y?ZSvDyaDt)) Ws,
0z

0
’lI)fr' — < _I_Zb(x,Zr,Dw,Dt)) W,
aZ'r

0

- 0 .
i = (823 + ib(y, zs, Dy, Dt)) ((’9

_I_ ’Lb(:lj, 27, Daj, Dt)) u

r
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Except for lower order commutators which we justify throwing
away as before,

0 , - _
(8,2 — 1b(y, zs, Dy, Dt)) Ws = RO(zr — 25)0(1),
S

9 )
( — ib(z, 2z, Da, Dt)> By = R (2 — 25)5(2),
Ozr

0
( — 'Lb(CU, 2y ng, Dt)) U = Wg
8Zfr

[
g
=3

0 -
( 5 — by 25, Dy Dt>) 7

Initial (final) conditions are that w,, ws, and @ all vanish for large
z - the equations are to be solve in decreasing z (“upward con-

tinuation”).
29



Simultaneous upward continuation:
0 o0 0

—’11(33, Zy t, Y, Z) — —’lj(fc, Zg tv Y, Z)|Z:Zr _I_ —ﬂ(xa < tv Y, z8)|Z:Zs
0z Oz Oz

— [Zb($, 2Ty D$7 Dt)ﬁ’ —I_ 'lT)S + Zb(y7 zS) Dy7 Dt)ﬂ’ _I_ ﬁjr]zr:zszz

Since ws(y, z,t; z, 2) = Wr(x, 2, t;y, 2) = R(x,y, 2)5(t), @ is seen to
satisfy the DSR modeling equation:

a ~
(8— — ’Lb(337 z, Dy, Dt) — Zb(ya 2 Dy7 Dt)) ﬂ'(xa z, .Y, Z) — QR(LE, Y, Z)é(t)
<

F[v]R(xr, t; zs) = @(xy,0,t; x5, 0)
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Computation of adjoint follows same pattern as for SSR, and
leads to

DSR migration equation: solve

o,
(8— - ’I,b(CB, 2 DCU? Dt) — Zb(ya < Dya Dt)) éj(waya Zat) =0
<

in increasing z with initial condition at z = O:
(j‘(ahﬁ Ls, 07 t) — d(x’ﬁ Ls, t)
Then Fv]*d(z,y,2) = §(z,y, z,0)
The physical DSR model has R(z,y, z) = r(z, 2)é(x —y), so final
step in DSR computation of F[v]* is adjoint of r — R:
Flv]*d(z, 2) = 4(z, =, 2,0)
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Standard description of DSR migration (Claerbout, IEI):

e downward continue sources and receivers (solve DSR migra-
tion equation)

e image at t = 0 and zero offset (z = y)

Another moniker: ‘“survey sinking”: DSR field ¢ is (related to)
the field that you would get by conducting the survey with
sources and receivers at depth z. At any given depth, the zero-
offset, time-zero part of the field is the instantaneous response
to scatterers on which source = receiver is sitting, therefore
constitutes an image.

As for SSR, the art of DSR migration is in the approximation of
the DSR operator.
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