
4. Geometric optics, Rakesh’s construction, and imaging

and inversion in the presence of multipathing.
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The theory developed by Beylkin and others cannot be the end

of the story:

• The “single ray” hypotheses generally fails in the presence

of strong refraction.

• B. White, “The Stochastic Caustic” (1982): For “random

but smooth” v(x) with variance σ, points at distance O(σ−2/3)

from source have more than one ray connecting to source,

with high probability 1 - multipathing associated with forma-

tion of caustics = ray envelopes.

• Formation of caustics invalidates asymptotic analysis on which

Beylkin result is based.
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• Strong refraction leading to multipathing and caustic for-

mation typical of salt (4-5 km/s) intrusion into sedimentary

rock (2-3 km/s) (eg. Gulf of Mexico), also chalk tectonics

in North Sea and elsewhere - some of the most promising

petroleum provinces!
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sin1: velocity field

2D Example of strong refraction: Sinusoidal velocity field v(x, z) =

1 + 0.2 sin πz
2 sin 3πx
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sin1: rays with takeoff angles in range 1.41372 to 1.72788

Rays in sinusoidal velocity field, source point = origin. Note for-

mation of caustic, multiple rays to source point in lower center.
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How do we get away from “simple geometric optics”, SSR, D-
SR,... - all violated in sufficiently complex (and realistic) models?

Rakesh Comm. PDE 1988, Nolan Comm. PDE 1997: global
description of Fδ[v] as mapping reflectors 7→ reflections.

Y = {xs, t,xr} (time × set of source-receiver pairs) submfd of R7

of dim. ≤ 5, Π : T ∗(R7)→ T ∗Y the natural projection

supp r ⊂ X ⊂ R3

Canonical relation CFδ[v] ⊂ T ∗(X) − {0} × T ∗(Y ) − {0} describes
singularity mapping properties of F :

(x, ξ,y, η) ∈ CFδ[v] ⇔

for someu ∈ E ′(X), (x, ξ) ∈WF (u), and (y, η) ∈WF (Fu)
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Rays of geometric optics: solutions of Hamiltonian system

dX

dt
= ∇ΞH(X,Ξ),

dΞ

dt
= −∇XH(X,Ξ)

with H(X,Ξ) = 1− v2(X)|Ξ|2 = 0 (null bicharacteristics).

Characterization of CF :

((x, ξ), (xs, t,xr, ξs, τ, ξr)) ∈ CFδ[v] ⊂ T
∗(X)− {0} × T ∗(Y )− {0}

⇔ there are rays of geometric optics (Xs,Ξs), (Xr,Ξr) and times

ts, tr so that

Π(Xs(0), t,Xr(t),Ξs(0), τ,Ξr(t)) = (xs, t,xr, ξs, τ, ξr),

Xs(ts) = Xr(t− tr) = x, ts + tr = t, Ξs(ts)− Ξr(t− tr)||ξ
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Since Ξs(ts), −Ξr(t − tr) have same length, sum = bisector ⇒
velocity vectors of incident ray from source and reflected ray

from receiver (traced backwards in time) make equal angles with

reflector at x with normal ξ.

Upshot: canonical relation of Fδ[v] simply enforces the equal-

angles law of reflection.

Further, rays carry high-frequency energy, in exactly the fashion

that seismologists imagine.

Finally, Rakesh’s characterization of CF is global: no assump-

tions about ray geometry, other than no forward scattering and

no grazing incidence on the acquisition surface Y , are needed.
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Plan of attack: recall that

F [v]r(xr, t; xs) =
∂δu

∂t
(xr, t; xs)

where

1

v2

∂2δu

∂t2
−∇2δu =

1

v2

∂2u

∂t2
r

1

v2

∂2u

∂t2
−∇2u = δ(t)δ(x− xs)

and u, δu ≡ 0, t < 0.

Need to understand (1) WF (u), (2) relation WF (r)↔ WF (ru),

(3) WF of soln of WE in terms of WF of RHS (this also gives

(1)!).
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(1) Singularities of u

Main tool: Propagation of Singularities theorem of Hörmander

(1970).

Given symbol p(x, ξ), order m, with asymptotic expansion, define

null bicharateristics (= rays) as solutions (x(t), ξ(t)) of Hamilto-

nian system

dx

dt
=
∂p

∂ξ
(x, ξ),

dξ

dt
= −

∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Suppose p(x, D)u = f , and suppose that for t0 ≤ t ≤
t1, (x(t), ξ(t)) /∈WF (f). Then either {(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂
WF (u) or {(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ T ∗(Rn)−WF (u).
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RHS of wave equation for u = δ function in x, t. WF set =

{(x, t, ξ, τ) : x = xs, t = 0} - i.e. no restriction on covector part.

⇒ (x, t, ξ, τ) ∈WF (u) iff a ray starting at (xs,0) passes over (x, t)

- i.e. (x, t) lies on the “light cone” with vertex at (xx,0). Sym-

bol for wave op is p(x, t, ξ, τ) = 1
2(τ2 − v2(x)|ξ|2), so Hamilton’s

equations for null bicharacteristics are

dX

dt
= −v2(X)Ξ,

dΞ

dt
= ∇ log v(X)

Thus ξ is proportional to velocity vector of ray.

[(ξ, τ) normal to light cone.]
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(2) Wavefront set of ru (Gabor calculus: Duistermaat, Ch. 1)

Here r is really (r◦π)u, where π(x, t) = x. Choose bump function
φ localized near (x, t)

̂φ(r ◦ π)u(ξ, τ) =
∫
dξ′ dτ ′φ̂r(ξ′)δ(τ ′)û(ξ − ξ′, τ − τ ′)

=
∫
dξ′φ̂r(ξ′)û(ξ − ξ′, τ)

This will decay rapidly as |(ξ, τ)| → ∞ unless (i) you can find
(x′, ξ′) ∈ WF (r) so that x,x′ ∈ π(suppφ), ξ − ξ′ ∈ WF (u), i.e.
(ξ, τ) ∈WF (r ◦ π) +WF (u), or (ii) ξ ∈WF (r) or (ξ, τ) ∈WF (u).

Possibility (ii) will not contribute, so effectively

WF ((r ◦ π)u) = {(x, ts, ξ + Ξs(ts), ·) : (x, ξ) ∈WF (r), x = Xs(ts)

for a ray (Xs,Ξs) with Xs(0) = xs, some τ .
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(3) Wavefront set of δu

Once again use propagation of singularities: (xr, t, ξr, τr) ∈WF (δu)⇔
on ray (Xr,Ξr) passing through WF (ru). Can argue that time

of intersection is t− tr < t.

That is,

Xr(t) = xr,Xr(t− tr) = Xs(ts) = x,

t = tr + ts, and

Ξr(ts) = ξ + Ξs(ts)

for some ξ ∈WF (r). Q. E. D.
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Rakesh also showed that F [v] is a Fourier Integral Operator =

class of oscillatory integral operators, introduced by Hörmander

and others in the ’70s to describe the solutions of nonelliptic

PDEs.

Phases and amplitudes of FIOs satisfy certain restrictive con-

ditions. Canonical relations have geometric description similar

to that of F [v]. Adjoint of FIO is FIO with inverse canonical

relation.

ΨDOs are special FIOs.

Composition of FIOs does not yield an FIO in general. Beylkin

had shown that F [v]∗F [v] is FIO (ΨDO, actually) under simple

ray geometry hypothesis - but this is only sufficient.
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Smit, tenKroode and Verdel (1998): provided that

• source, receiver positions (xs,xr) form an open 4D manifold

(“complete coverage” - all source, receiver positions at least

locally), and

• the Traveltime Injectivity Condition (“TIC”) holds: C−1
F [v] ⊂

T ∗Y − {0} × T ∗X − {0} is a function - that is, initial data

for source and receiver rays and total travel time together

determine reflector uniquely.

then F [v]∗F [v] is ΨDO ⇒ application of F [v]∗ produces im-

age, and F [v]∗F [v] has microlocal parametrix (“asymptotic in-

version”).
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TIC is nontrivial constraint:

Symmetric waveguide: time (xs → x̄ → xr) same as time (xs →
x→ xr), so TIC fails.
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Stolk (2000): under “complete coverage” hypothesis, v for which

F [v]∗F [v] is = [ΨDO + rel. smoothing op] form open, dense set.

NB: application of F [v]∗ involves accounting for all rays connect-

ing source and receiver with reflectors. Standard practice still

attempts imaging with single choice of ray pair (shortest time,

max energy,...). Operto et al (2000) give nice illustration that

all rays must be included.
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Limitation of Smit-tenKroode-Verdel: most idealized data ac-
quisition geometries violate “complete coverage”: for example,
idealized marine streamer geometry (src-recvr submfd is 3D)

Nolan (1997): result remains true without “complete coverage”
condition: requires only TIC plus addl condition so that pro-
jection CF [v] → T ∗Y is embedding - but examples violating TIC
are much easier to construct when source-receiver submfd has
positive codim.

Synthetic 2D Example (Stolk and WWS, 2001): Strongly re-
fracting acoustic lens (v) over horizontal reflector (r), Sobs =
F [v]r. (i) for open source-receiver set, F [v]∗Sobs = good image
of reflector - within limits of finite frequency implied by numer-
ical method, F [v]∗F [v] acts like ΨDO; (ii) for common offset
submfd (codim 1), TIC is violated and WF (F [v]∗Sobs) is larger
than WF (r).
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Example (Stolk & WWS, 2001): Gaussian lens over flat reflector

at depth 2 km (r(x) = δ(x1 − 2), x1 = depth).
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F [v]∗Sobs for complete coverage (all source and receiver posi-

tions): good image of reflector.
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Same, but for single offset - codim 1: TIC is violated, F [v]∗F [v] is

not ΨDO. Image overlain with ray pairs sharing same first factor

in C−1
F [v] (i.e. these reflect at 3 reflecting elements corresponding

to same reflection).

22


