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• Seismic waves are reflected where the medium varies discontinuously.

• From the recorded reflections that can be observed in the data, the problem is
reconstruct the discontinuities.

• The simplest theory to explain the reflections is the linear (constant density)
acoustics model: the significant property of the Earth is thewave speed.
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The scale gap

• Seismic imaging methods are typically based on the splitting of the seismic
model into a reflecting part (short-scale) and a propagatingpart (long-scale).

• This scale separation can be established theoretically on the basis of the Born
approximation (Lailly, 1983). In practice,

– Long scale fluctuations (km for sediments) of the velocity are resolved via
velocity analysis.

– Short scale variations (10’s m) of the velocity (i.e. the reflectivity) are re-
solved viamigration or linearized inversion.

• The traditional seismic imaging techniques donot appear to estimate the inter-
mediate scale wavelengths (∼ 60m - 300m).
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What can we get from reflection seismology?

According to Claerbout (IEI, page 47) and Tarantola (1989),seismic data donot
contain reliable information on the intermediate scales ofvelocity.

Note: The above conclusion is purely empirical. No theoretical basis has been set
forth to back it up.

3



Proposed work

• We think we can provide a new way to look at this familiar ”fact”.

• However, because the seismic problem is nonlinear - these are components of
the velocity, one would expect “energy” or (lack of) ”information” to cascade
between scales.

• Try to understand the influence of the medium scale on the resolution of the long
(background velocity) and short (image) scales.

• Take this intermediate scale velocity into account and treat it as arandom process
precisely to model the associated uncertainty (and its consequences).

• Goal: Estimate the background velocity bycombiningideas on time reversal and
imaging in randomly inhomogeneous media set forth by Borcea, Papanicolaou
et al., and the velocity estimation methods of differentialsemblance type.
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Agenda

• Motivation

• The seismic inverse problem

– The convolutional model
– Differential semblance optimization

• Time reversal and imaging in random media

– The point source example
– Application to seismic imaging

• Proposed work

– Estimation of the background velocity
– Cross-correlation tomography

• Conclusions and future work
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The forward map
• Constant density linear acoustics model: the mechanical properties of the Earth

are represented by the velocityc.

• Linearization: splitc = c0 + δc where:

– c0 is the smooth background velocity (the macro-model medium)

– δc is a first-order perturbation which contains the high-frequency content of
the wave speed (define thereflectivity by r ∼ δc/c0).

• High-frequency asymptotics.

The reflection data is predicted by the linearized forward map F [c0]

(c0, r) 7→ F [c0]r

N.B. the forward mapF [c0] is a linear operator acting on the reflectivityr and
parametrized byc0. The dependence onc0 is (highly) nonlinear!
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The seismic inverse problem
• The seismic inverse problem problem can be stated as follows: given observed

seismic datad, determinec0 andr so thatF [c0]r ' d.

• Caveat: as stated, this inverse problem isintractable, e.g. the data fitting formu-
lation via least-squares requires global methods such as simulated annealing.

• Solution: decouple the problem into two steps.

1. Assumec0 known; then try to reconstruct the reflectivityr (this ismigration).
In this case, the resulting data formulation is a linear least-squares, hence
“easy” to solve.

2. Use the redundancy in the data; we haved = (xs, ys, xr, yr, t) ∈ R
5 andr =

r(x, y, z) ∈ R
3, so the data can be partitioned into3-D subsets (calledbins),

and each of these subsets may be used for an independent reconstruction of
the reflectivity (basis forvelocity analysis, i.e. for reconstructingc0).
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The convolutional model (1/2)

• Assume a laterally homogeneous medium, i.e.c = c(z).

– Each data bin is parametrized by offseth = (xs − xr, ys − yr, 0). There-
fore, independent reconstructions of the reflectivityr are regarded as offset
dependent, i.e.r ≡ r(z, h).

• In practice, the following time-depth conversion is used:

t0 = 2

∫ z

0

dz

c0(z)
⇒ c0 = c0(t0), r = r(t0, h).

is the vertical (zero-offset) two-way travel time.

• Denote byT (t0, h) the two-way travel time function corresponding to deptht0
and offseth and byT0(t, h) the inverse function, i.e.

T (T0(t, h), h) = t, T0 (T (t0, h), h) = t0
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The convolutional model (2/2)
• With these conventions, the forward modeling operator is (Symes, 1999)

d(t, h) = f(t) ∗t r(T0(t, h), h) ≡ Fh[c0]r(t, h),

• Ignore convolution (assume perfect source signature deconvolution, i.e.f ∼ δ).

• Optimum choice of reflectivityr for each offseth:

r(t0, h) = d(T (t0, h), h) ≡ Gh[c0]d(t0, h)

HereGh[c0] is the inverse ofFh[c0] (obtained by an inverse change of variables).
Note that it producesr which depends (artificially) onh!

• Note: for more complex models,Gh is an asymptotic inverse toFh, i.e.

Gh[c0] ≡ F−1
h [c0] ' (F ∗

h [c0]Fh[c0])
−1 F ∗

h [c0] ' F ∗
h [c0].

The proof involves showing thatF ∗
hFh is pseudodifferential. The aggregate op-

eratorG performs the so-calledmigrationof the seismic data.
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The semblance principle

• Semblance principle: if the background modelc0 is “right”, then all ther(h)’s
should be thesame, or at least similar (there is only one Earth!).

• Given an operatorW measuring semblance, thevelocity analysisproblem can
be cast as an optimization problem: given datad, determinec0 so as to optimize

Wr such thatr = G[c0]d (i.e.F [c0]r ' d)

• Specialization to layered acoustics model:Wr must vanish whenr is indepen-
dent of offseth. Therefore, we take

W = ∂/∂h.
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Differential semblance optimization

• Formulation via differential semblance (Gockenbach, 1994and Song, 1994):

min
c0

J [c0] = 1
2
‖HWG[c0]d‖

2

HereH is a smoothing pseudodifferential operator designed to keep the spec-
trum of the functional output comparable to that of the data.

• Remark: if c0 is correct, WG[c0] annihilatesthe data.

• Many theoretical results on DSO (Symes, 1999, Stolk & Symes,2003, Stolk,
2002): e.g. in the layered medium case, all stationary points of the above objec-
tive are global minimizers (Symes, 1999).

• Also, there have been many numerical implementations of DSOonrealdata sets
to support these results (Chauris, 2000, Chauris & Noble, 2001).
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Time reversed acoustics

• In time-reversal experiments, a signal emitted by a localized source is recorded
by an array of transducers. It is then re-emitted into the medium reversed in
time, i.e. the tail of the signal is sent back first.

• Because of the time-reversability of the wave equation, theback-propagated
signal retraces its path backwards and refocuses approximately near the source
(since the array is limited in size).

• Time reversal has two striking properties inrandomlyinhomogeneous media:

– the presence of inhomogeneities in the medium improves the refocusing res-
olution: this is thesuper-resolutioneffect.

– the refocused signal does not depend on the realization of the random medium:
it is self-averaging(i.e. deterministic).
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Three scale asymptotics
Thesetting is as follows: single scattering approximation, 3-scale asymptotics:

• “Deterministic” reflectors are structures on wavelength scale λ (corresponding
to the short-scale component of velocity).

• Propagation distanceL is also the scale of the background velocity “macro-
model” (the component which may be estimated via VA).

• The intermediate scale velocity is assumed torandomly fluctuateon the scalel.

Asymptotic assumption: high-frequencyregimeλ � l � L, i.e.

• waves propagate over many correlation lengths somultipathingis significant.

• random fluctuations are slowly varying on the wavelength scale, i.e. the geomet-
rical optics approximation is appropriate.
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Setup for “imaging” a point source target (Borcea et al, 2003)
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Modeling of the point source example (1/3)

• Wave propagation modeled by (stochastic) acoustic wave equation. Note that
the right-hand-side (the source) isg(x, t) = f(t)δ(x − y).

• The data measured at receiverxr is given by the time convolution

d(xr, t) = (f(·) ∗t G(xr,y, ·)) (t) =
1

2π

∫ ∞

−∞

f̂(ω)Ĝ(xr,y, ω)e−iωtdω.

whereĜ solves the Helmholtz equation

∆Ĝ(x,y, ω) + k2n2(x)Ĝ(x,y, ω) = −δ(x − y),

lim
r→∞

r
(
∂Ĝ/∂r − iknĜ

)
= 0, r = |x − y|.

Herek = ω/c0 is the wavenumber,c0 is the reference speed,n = c0/c(x) is the
randomindex of refraction, andc(x) is therandompropagation speed.
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The scattering regime
We assume that the refraction index is randomly fluctuating about the (constant)
background velocity on the scalel:

n2(x) = 1 + σµ
(
x

l

)

where

• l is the correlation length, i.e. the scale at which the mediumfluctuates.

• σ � 1 (weak fluctuations - waves scattered mostly in the directionof propaga-
tion).

• µ is a stationary, isotropic random field with mean〈µ(x)〉 = 0, and covariance

R(x) = R(|x|) = 〈µ(x′ + x)µ(x′)〉 .

which decays at∞ so that there are no long range correlations of the fluctuations.
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Modeling of the point source example (2/3)

• Define the operatorF mapping the sourceg to datad: Fg = d.

• Abusing notation, the least-squares solution is

g ' (F ∗F )−1F ∗d ' F ∗d.

• To compute the adjoint, start with the definition

〈F ∗d, g〉 = 〈d, Fg〉 = . . .

• We obtain the so-calledpoint spread function

F ∗d ≡ ΓTR(yS, t) =
N∑

r=−N

d(xr,−t) ∗t G(xr,y
S, t)

Note: adjoint = time reversal + backpropagation!
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Modeling of an active target (3/3)

• Assuming that the source is real, i.e.

f(t) = f(t) ⇒ f̂ (ω) = f̂ (−ω),

time reversal isequivalent to complex conjugation in frequency domain:

d(xr,−t) = (f(·) ∗t G(xr,y, ·)) (−t) =
1

2π

∫ ∞

−∞

f̂ (ω) Ĝ(xr,y, ω)e−iωtdω.

• Therefore, we obtain:

ΓTR(yS, t) =

N∑

r=−N

d(xr,−t) ∗t G(xr,y
S, t)

=
1

2π

∫ ∞

−∞

f(ω)
N∑

r=−N

Ĝ(xr,y, ω)Ĝ(xr,y
S, ω)e−iωtdω
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Refocusing resolution

The TR point-spread function is evaluated at theexact rangeη = 0 and at the
arrival time t = 0:

• In homogeneousmedia, the (deterministic) cross-range resolution can be shown
to beλ0L/a. Clearly, thelarger the physical aperturea of the array, thebetter
the resolution.

• Amazingly, in inhomogeneous media, the cross-range resolution isλ0L/ae, where
ae � a is theeffective apertureof the array.

N.B. A certain number of approximations and calculations have tobe made to ob-
tain, in each case, explicit formula that yield these resolution estimates.
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Super-resolution in inhomogeneous media

L

λ0L/aeaae
y

L

Forward propagation Time-reversed fields

Intuitive explanation: because ofmultipathing, waves that move away from the
array get scattered onto it by the inhomogeneities⇒ the refocusing is much tighter
than in homogeneous media (∼ λ0L/ae), ae is theeffective apertureof the array.
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Self-averaging property
The super-resolution phenomenon happens foressentiallyevery realization of the
random medium! The time-reversed backpropagated field isself-averaging(i.e.
deterministic). In the limitl/L → 0, we have:

〈(
ΓTR(yS, t)

)2
〉
≈

〈
ΓTR(yS, t)

〉2

Thus (thereby using Chebyshev inequality)

P
{∣∣ΓTR(yS, t) −

〈
ΓTR(yS, t)

〉 ∣∣ > δ
}
≤

〈(
ΓTR(yS, t) −

〈
ΓTR(yS, t)

〉)2
〉

δ2
≈ 0

That is:

ΓTR(yS, t) ≈
〈
ΓTR(yS, t)

〉

The refocused field isstatistically stable, i.e. it doesnot depend on the particular
realization of the random medium.
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The moment formula

• Because of the self-averaging property, the product of random Green’s functions
in the point spread functional may be replaced by its expectation.

• The stochastic analysis yields the so-calledmoment formula:
〈
Ĝ(xr,y, ω)Ĝ(xr,y

S, ω)
〉
≈ Ĝ0(xr,y, ω)Ĝ0(xr,y

S, ω)e
−

k2a2
eξ2

2L2

Note that all of the statistics of the medium are confined to a single parameter,
the effective apertureae (the super-resolution arises from the Gaussian factor).

• Key to self-averaging is thenear cancellationof the random phases. Heuristi-

cally, Ĝ ' Aei(kr+φ) and since the TR functional containŝGĜ (nearbypaths),
the random phasesφ almost cancel.
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Application to seismic imaging
• Setting: three scale asymptoticsλ � l � L.

• With the Born approximation, the scattered field measured ata receiverxr is

d(xs,xr, t) =

∫ ∞

−∞

k2f̂(ω)

2π

[∫
r(y)Ĝ(xs,y, ω)Ĝ(xr,y, ω)dy

]
e−iωtdω

Note that the above Green’s functions are random (they contain both long scale
and medium scale components of the velocity).

• Contrast with TR : the fluctuations in the medium arenot known, so migration
is donefictitiously, in the background medium.

• We obtain terms such aŝGĜ0, i.e. there remain random phases in migration
operators corresponding to long random paths from the source to the reflector
and back to the receiver:lack of statistical stability.

25



Local data covariances

• To achieve statistical stability, we must cancel random phases in the datad.

• Idea (Borcea et al., 2003): divide the data set into smaller partsand constructlo-
cal data covariancesbycross-correlating nearbytracesd(xs,xr, t) andd(xs′,xr′, t),
i.e.

d(xs,xr, t) ? d(xs′,xr′, t) =
1

2π

∫ ∞

−∞

d̂(xs,xr, ω)d̂(xs′,xr′, ω)eiωtdω

Note that we obtain the terms:

Ĝ(xs,y, ω)Ĝ(xs′,y
′, ω) and Ĝ(xr,y, ω)Ĝ(xr′,y

′, ω)

• In essence, this approach can be viewed as apre-processingstep in which, start-
ing with the randomly fluctuating datad(xs,xr, t), we obtain areduced, self-
averagingdata set.
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Cross-correlation tomography (1/8)

• We have seen how to construct self-averaging data sets. So what good is it for
velocity analysis?

• The ideas introduced above have been applied by Borcea and colleagues to the
problem of “imaging” targets embedded in random media.

• The proposed work addresses (in a first stage) the issue of estimating the back-
ground velocity; we will see that this entails establishingnew differential sem-
blance principles.

• We first show that cross-correlation of seismic traces do contain velocity infor-
mation. The question is: how to get it?
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Cross-correlation tomography (2/8)

• Suppose there areno fluctuations,

• Assume layered Earth model, i.e.c0 = c0(t0).

• Assume there is a single reflector at “depth”t0.

• Use thehyperbolic moveout approximation: for “small” offsetsh,

T (t0, h) =

√

t20 +
h2

c2
rms(t0)

, crms(t0) =

√
1

t0

∫ t0

0

c2
0

• Define two key quantities:

p(t, h) ≡
∂T

∂h
(T0(t, h), h) =

h

tc2
rms(T0(t, h))

(theray slowness)

s(t, h) ≡
∂T0

∂t
(t, h) (thestretch factor)
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Cross-correlation tomography (3/8)

Because there is only one reflector, the trace has only one event att0 so

d(t, h) = f (t − T (t0, h)) .

Therefore:

(d(·, h) ? d(·, h′)) (t) = f ? f (t + T (t0, h) − T (t0, h
′))

A first-order Taylor approximation yields

(d(·, h) ? d(·, h′)) (t) ' (f ? f)′ (t)
∂T

∂h
(t0, h)(h − h′)

= (f ? f)′ (t)
h

tc2
rms(t0)

(h − h′)

i.e. the cross-correlationd ? d′ containsarrival time slowness, hencebackground
velocity information!
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Cross-correlation tomography (4/8)

• Recall that the (simplified) convolutional model writes:

d(t, h) = r(T0(t, h)).

• Idea: To obtain the background velocity, construct an operator which when ap-
plied to the data with thecorrectbackground medium yields a vanishing out-
come.

• Denote byc∗0 the correctbackground velocity, with corresponding traveltime
T ∗(t0, h) and inverse traveltimeT ∗

0 (t, h).

• Assume model-consistent data (i.e. noise-free):d(t, h) = r∗(T ∗
0 (t, h)).
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Cross-correlation tomography (5/8)

• A short calculation shows that:
∂T0

∂h
(t, h) = −s(t, h)p(t, h).

• We will also need:

∂d

∂t
(t, h) =

∂T ∗
0

∂t
(t, h)

∂r∗

∂t0
(T ∗

0 (t, h)) ⇒
∂r∗

∂t0
(T ∗

0 (t, h)) =

[
∂T ∗

0

∂t
(t, h)

]−1
∂d

∂t
(t, h)

and∂d/∂h is computed in a similar way.

• Choose a trial velocityc0, compute correspondingT0, and define theweighted
cross-correlations:

Ct(t, h, h′) =

∫ [
d(t + τ, h)

∂T0

∂τ
(τ, h)

∫ τ

−∞

d(·, h′)

]
dτ

Ch(t, h, h′) =

∫ [
d(t + τ, h)

∂T0

∂h
(τ, h)

∫ τ

−∞

d(·, h′)

]
dτ
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Cross-correlation tomography (6/8)

Define the functional: I(t, h) =

[
∂Ct

∂h′
+

∂Ch

∂t

]
(t, h, h′ = h).

Then it can be shown that:

I(t, h) =

∫
d(t + τ, h)

{ [
∂T ∗

0

∂h

∂T0

∂τ
−

∂T ∗
0

∂τ

∂T0

∂h

]
(τ, h)

[
∂T ∗

0

∂τ
(τ, h)

]−1 }
d(τ, h)dτ

Note thatI(t, h) vanisheswhenT ∗
0 = T0, i.e. whenc0 = c∗0. Using the quantities

defined above, we can rewriteI(t, h) as

I(t, h) =

∫ ∞

−∞

d(t + τ, h)s(τ, h) [p(τ, h) − p∗(τ, h)] d(τ, h)dτ

This functional measures themismatch of event slowness, weighted by data auto-
correlation and stretch factor.
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Cross-correlation tomography (7/8)

• With the hyperbolic moveout approximation, we obtain:

I(t, h) =

∫ ∞

−∞

d(t + τ, h)s(τ, h)
h

τ

[
c−2

rms− c∗,−2
rms

]
(T0(τ, h)) d(τ, h)dτ

• Velocity analysis algorithm:

min
c0

J = 1
2‖I(t, h)‖2

Use gradient-based optimization methods (assumingJ is smooth inc0).

• This approach clearly is a variant of differential semblance optimization. It is
also a waveform variant ofstereotomography(Sword, 1986, Biondi, 1990, Bil-
lette and Lambaré, 1998).
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Cross-correlation tomography (8/8)
Conjectures:

• Objective just defined hasglobalminimums, as has been proved for other DSO
variants (e.g. the layered medium case as shown above).

• When intermediate scale random fluctuations are allowed, the cross-correlations
with slowly-varying weights are statistically stable, as is the case without weights.

• The gradient ofJ is also statistically stable.

• Stationary points ofJ with cross-correlation weights computed from long-scale
velocity component are optimal estimators of background velocity.

Ultimately : Velocity analysis is essentially stable against random fluctuations on
the medium scalel!
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Conclusions

• The proposed work represents the first attempt at estimatingthe velocity macro-
model in this three-scale asymptotics regime. i.e. when uncertainty at the middle
scales is modeled by a random field.

• As such, it also represents an innovative way of combining two very different
theories: the traditional (deterministic) approach to theproblem coupled to the
tools and ideas used to study time reversal in random media.

• In essence, it is an attempt to build a theoretical basis for assessing the influ-
ence of the intermediate scale of velocity on the estimationof the background
velocity.
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Future work

Immediate:

• Work through the set of conjectures set forth. In particular, the first step is to
verify that the weighted cross-correlations are self-averaging.

• Implementation in SVL and TSOpt for numerical investigation on real data sets.

Possible extension:

• Extension to more complex models.

• Investigation of the applicability of the imaging results obtained by Borcea, Pa-
panicolaou and colleagues to migration.
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Billette, F. and Lambaŕe, G.: Velocity macro-model estimation from seismic reflection data by
stereotomography,Geophys. J. Int. 135, 1998.

Differential semblance

Carazzone J. and Symes, W.: Velocity inversion by differential semblance optimization,Geophysics
56, 1991.

41



Symes, W.: A differential semblance algorithm for the inverse problem of reflection seismology,
Comput. Math. Appl. 22, 1991

Symes, W.: A Differential Semblance Criterion for Inversion of Multioffset Seismic Reflection Data,
J. Geoph. Res. 88, 1993.

Gockenbach, M.S.: An abstract analysis of differential semblance optimization, PhD thesis, CAAM
Department, Rice University, 1994.

Song, H.: On a transmission inverse problem, PhD thesis, CAAM Department, Rice University,
1994.

Symes, W.: All stationary points of differential semblanceare asymptotic global minimizers: lay-
ered acoustics, TR99-08, CAAM Dept., Rice University, 1999.

Chauris, H.: Analyse de vitesse par migration pour l’imagerie des structures complexes en sismique
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