Statistically stable velocity macro-model estimation

Eric A. Dussaud

Thesis Proposal, December 5th, 2003

Committee:

Dr. William W. Symes (chair) - Dept. of Computational and Applied Mathematics
Dr. Liliana Borcea - Dept. of Computational and Applied Mathematics
Dr. Alan Levander - Dept. of Earth Science

Courtesy: Schlumberger

- Seismic waves are reflected where the medium varies discontinuously.
- From the recorded reflections that can be observed in the data, the problem is reconstruct the discontinuities.
- The simplest theory to explain the reflections is the linear (constant density) acoustics model: the significant property of the Earth is the wave speed.

The scale gap

- Seismic imaging methods are typically based on the splitting of the seismic model into a reflecting part (short-scale) and a propagating part (long-scale).
- This scale separation can be established theoretically on the basis of the Born approximation (Lailly, 1983). In practice,
 - Long scale fluctuations (km for sediments) of the velocity are resolved via velocity analysis.
 - Short scale variations (10's m) of the velocity (i.e. the reflectivity) are resolved via **migration** or **linearized inversion**.
- The traditional seismic imaging techniques do **not** appear to estimate the intermediate scale wavelengths ($\sim 60m 300m$).

What can we get from reflection seismology?

According to Claerbout (IEI, page 47) and Tarantola (1989), seismic data do **not** contain reliable information on the intermediate scales of velocity.

Note: The above conclusion is purely empirical. No theoretical basis has been set forth to back it up.

Proposed work

- We think we can provide a new way to look at this familiar "fact".
- However, because the seismic problem is nonlinear these are components of the velocity, one would expect "energy" or (lack of) "information" to cascade between scales.
- Try to understand the influence of the medium scale on the resolution of the long (background velocity) and short (image) scales.
- Take this intermediate scale velocity into account and treat it as a random process precisely to model the associated uncertainty (and its consequences).
- **Goal**: Estimate the background velocity by **combining** ideas on time reversal and imaging in randomly inhomogeneous media set forth by Borcea, Papanicolaou et al., and the velocity estimation methods of differential semblance type.

Agenda

- Motivation
- The seismic inverse problem
 - The convolutional model
 - Differential semblance optimization
- Time reversal and imaging in random media
 - The point source example
 - Application to seismic imaging
- Proposed work
 - Estimation of the background velocity
 - Cross-correlation tomography
- Conclusions and future work

The forward map

- Constant density linear acoustics model: the mechanical properties of the Earth are represented by the velocity c.
- Linearization: split $c = c_0 + \delta c$ where:
 - $-c_0$ is the smooth background velocity (the macro-model medium)
 - $-\delta c$ is a first-order perturbation which contains the high-frequency content of the wave speed (define the **reflectivity** by $r \sim \delta c/c_0$).
- High-frequency asymptotics.

The reflection data is predicted by the linearized forward map $F[c_0]$

$$(c_0, r) \mapsto F[c_0]r$$

N.B. the forward map $F[c_0]$ is a linear operator acting on the reflectivity r and parametrized by c_0 . The dependence on c_0 is (highly) nonlinear!

The seismic inverse problem

- The seismic inverse problem problem can be stated as follows: given observed seismic data d, determine c_0 and r so that $F[c_0]r \simeq d$.
- **Caveat**: as stated, this inverse problem is intractable, e.g. the data fitting formulation via least-squares requires global methods such as simulated annealing.
- Solution: decouple the problem into two steps.
 - 1. Assume c_0 known; then try to reconstruct the reflectivity r (this is migration). In this case, the resulting data formulation is a linear least-squares, hence "easy" to solve.
 - 2. Use the redundancy in the data; we have $d = (x_s, y_s, x_r, y_r, t) \in \mathbb{R}^5$ and $r = r(x, y, z) \in \mathbb{R}^3$, so the data can be partitioned into 3-D subsets (called **bins**), and each of these subsets may be used for an independent reconstruction of the reflectivity (basis for velocity analysis, i.e. for reconstructing c_0).

The convolutional model (1/2)

- Assume a laterally homogeneous medium, i.e. c = c(z).
 - Each data bin is parametrized by offset $h = (x_s x_r, y_s y_r, 0)$. Therefore, independent reconstructions of the reflectivity r are regarded as offset dependent, i.e. $r \equiv r(z, h)$.
- In practice, the following time-depth conversion is used:

$$t_0 = 2 \int_0^z \frac{dz}{c_0(z)} \Rightarrow c_0 = c_0(t_0), \ r = r(t_0, h).$$

is the vertical (zero-offset) two-way travel time.

• Denote by $T(t_0, h)$ the two-way travel time function corresponding to depth t_0 and offset h and by $T_0(t, h)$ the inverse function, i.e.

 $T(T_0(t,h),h) = t, \quad T_0(T(t_0,h),h) = t_0$

The convolutional model (2/2)

• With these conventions, the forward modeling operator is (Symes, 1999)

$$d(t,h) = f(t) *_t r(T_0(t,h),h) \equiv F_h[c_0]r(t,h),$$

- Ignore convolution (assume perfect source signature deconvolution, i.e. $f \sim \delta$).
- Optimum choice of reflectivity r for each offset h:

$$r(t_0, h) = d(T(t_0, h), h) \equiv G_h[c_0]d(t_0, h)$$

Here $G_h[c_0]$ is the inverse of $F_h[c_0]$ (obtained by an inverse change of variables). Note that it produces r which depends (artificially) on h!

• Note: for more complex models, G_h is an asymptotic inverse to F_h , i.e.

$$G_h[c_0] \equiv F_h^{-1}[c_0] \simeq (F_h^*[c_0]F_h[c_0])^{-1}F_h^*[c_0] \simeq F_h^*[c_0].$$

The proof involves showing that $F_h^*F_h$ is pseudodifferential. The aggregate operator G performs the so-called migration of the seismic data.

The semblance principle

- Semblance principle: if the background model c_0 is "right", then all the r(h)'s should be the same, or at least similar (there is only one Earth!).
- Given an operator W measuring semblance, the velocity analysis problem can be cast as an optimization problem: given data d, determine c_0 so as to optimize

Wr such that
$$r = G[c_0]d$$
 (i.e. $F[c_0]r \simeq d$)

• Specialization to layered acoustics model: Wr must vanish when r is independent of offset h. Therefore, we take

$$W=\partial/\partial h.$$

Differential semblance optimization

• Formulation via differential semblance (Gockenbach, 1994 and Song, 1994):

$$\min_{c_0} J[c_0] = \frac{1}{2} \|HWG[c_0]d\|^2$$

Here H is a smoothing pseudodifferential operator designed to keep the spectrum of the functional output comparable to that of the data.

- **Remark**: if c_0 is correct, $WG[c_0]$ annihilates the data.
- Many theoretical results on DSO (Symes, 1999, Stolk & Symes, 2003, Stolk, 2002): e.g. in the layered medium case, all stationary points of the above objective are global minimizers (Symes, 1999).
- Also, there have been many numerical implementations of DSO on real data sets to support these results (Chauris, 2000, Chauris & Noble, 2001).

Agenda

- Motivation
- The seismic inverse problem
 - The convolutional model
 - Differential semblance optimization
- Time reversal and imaging in random media
 - The point source example
 - Application to seismic imaging
- Proposed work
 - Estimation of the background velocity
 - Cross-correlation tomography
- Conclusions and future work

Time reversed acoustics

- In time-reversal experiments, a signal emitted by a localized source is recorded by an array of transducers. It is then re-emitted into the medium reversed in time, i.e. the tail of the signal is sent back first.
- Because of the time-reversability of the wave equation, the back-propagated signal retraces its path backwards and refocuses approximately near the source (since the array is limited in size).
- Time reversal has two striking properties in randomly inhomogeneous media:
 - the presence of inhomogeneities in the medium improves the refocusing resolution: this is the super-resolution effect.
 - the refocused signal does not depend on the realization of the random medium: it is self-averaging (i.e. deterministic).

Three scale asymptotics

The **setting** is as follows: single scattering approximation, 3-scale asymptotics:

- "Deterministic" reflectors are structures on wavelength scale λ (corresponding to the short-scale component of velocity).
- Propagation distance L is also the scale of the background velocity "macromodel" (the component which may be estimated via VA).
- The intermediate scale velocity is assumed to randomly fluctuate on the scale *l*.

Asymptotic assumption: high-frequency regime $\lambda \ll l \ll L$, i.e.

- waves propagate over many correlation lengths so multipathing is significant.
- random fluctuations are slowly varying on the wavelength scale, i.e. the geometrical optics approximation is appropriate.

Setup for "imaging" a point source target (Borcea et al, 2003)

Modeling of the point source example (1/3)

- Wave propagation modeled by (stochastic) acoustic wave equation. Note that the right-hand-side (the source) is $g(\mathbf{x}, t) = f(t)\delta(\mathbf{x} \mathbf{y})$.
- The data measured at receiver \mathbf{x}_r is given by the time convolution

$$d(\mathbf{x}_r, t) = (f(\cdot) *_t G(\mathbf{x}_r, \mathbf{y}, \cdot))(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) \widehat{G}(\mathbf{x}_r, \mathbf{y}, \omega) e^{-i\omega t} d\omega.$$

where \widehat{G} solves the Helmholtz equation

$$\begin{split} \Delta \widehat{G}(\mathbf{x}, \mathbf{y}, \omega) + k^2 n^2(\mathbf{x}) \widehat{G}(\mathbf{x}, \mathbf{y}, \omega) &= -\delta(\mathbf{x} - \mathbf{y}), \\ \lim_{r \to \infty} r \left(\partial \widehat{G} / \partial r - ikn \widehat{G} \right) &= 0, \quad r = |\mathbf{x} - \mathbf{y}|. \end{split}$$

Here $k = \omega/c_0$ is the wavenumber, c_0 is the reference speed, $n = c_0/c(\mathbf{x})$ is the random index of refraction, and $c(\mathbf{x})$ is the random propagation speed.

The scattering regime

We assume that the refraction index is randomly fluctuating about the (constant) background velocity on the scale l:

$$n^2(\mathbf{x}) = 1 + \sigma \mu \left(\frac{\mathbf{x}}{l}\right)$$

where

- l is the correlation length, i.e. the scale at which the medium fluctuates.
- $\sigma \ll 1$ (weak fluctuations waves scattered mostly in the direction of propagation).
- μ is a stationary, isotropic random field with mean $\langle \mu(\mathbf{x}) \rangle = 0$, and covariance

$$R(\mathbf{x}) = R(|\mathbf{x}|) = \left\langle \mu(\mathbf{x}' + \mathbf{x})\mu(\mathbf{x}') \right\rangle.$$

which decays at ∞ so that there are no long range correlations of the fluctuations.

Modeling of the point source example (2/3)

- Define the operator F mapping the source g to data d: Fg = d.
- Abusing notation, the least-squares solution is

$$g \simeq (F^*F)^{-1}F^*d \simeq F^*d.$$

• To compute the adjoint, start with the definition

$$\langle F^*d,g\rangle = \langle d,Fg\rangle = \dots$$

• We obtain the so-called **point spread** function

$$F^*d \equiv \Gamma^{TR}(\mathbf{y}^S, t) = \sum_{r=-N}^N d(\mathbf{x}_r, -t) *_t G(\mathbf{x}_r, \mathbf{y}^S, t)$$

Note: adjoint = time reversal + backpropagation!

Modeling of an active target (3/3)

• Assuming that the source is real, i.e.

$$f(t) = \overline{f(t)} \quad \Rightarrow \quad \widehat{f}(\omega) = \overline{\widehat{f}(-\omega)},$$

time reversal is **equivalent** to complex conjugation in frequency domain:

$$d(\mathbf{x}_r, -t) = (f(\cdot) *_t G(\mathbf{x}_r, \mathbf{y}, \cdot))(-t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\widehat{f}(\omega)} \,\overline{\widehat{G}(\mathbf{x}_r, \mathbf{y}, \omega)} e^{-i\omega t} d\omega.$$

• Therefore, we obtain:

$$\Gamma^{TR}(\mathbf{y}^{S}, t) = \sum_{r=-N}^{N} d(\mathbf{x}_{r}, -t) *_{t} G(\mathbf{x}_{r}, \mathbf{y}^{S}, t)$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{f(\omega)} \sum_{r=-N}^{N} \overline{\widehat{G}}(\mathbf{x}_{r}, \mathbf{y}, \omega) \widehat{G}(\mathbf{x}_{r}, \mathbf{y}^{S}, \omega) e^{-i\omega t} d\omega$$

Refocusing resolution

The TR point-spread function is evaluated at the exact range $\eta = 0$ and at the arrival time t = 0:

- In **homogeneous** media, the (deterministic) cross-range resolution can be shown to be $\lambda_0 L/a$. Clearly, the **larger** the physical aperture *a* of the array, the **better** the resolution.
- Amazingly, in inhomogeneous media, the cross-range resolution is $\lambda_0 L/a_e$, where $a_e \gg a$ is the effective aperture of the array.

N.B. A certain number of approximations and calculations have to be made to obtain, in each case, explicit formula that yield these resolution estimates.

Super-resolution in inhomogeneous media

Intuitive explanation: because of multipathing, waves that move away from the array get scattered onto it by the inhomogeneities \Rightarrow the refocusing is much tighter than in homogeneous media ($\sim \lambda_0 L/a_e$), a_e is the effective aperture of the array.

Self-averaging property

The super-resolution phenomenon happens for **essentially** every realization of the random medium! The time-reversed backpropagated field is self-averaging (i.e. deterministic). In the limit $l/L \rightarrow 0$, we have:

$$\left\langle \left(\Gamma^{TR}(\mathbf{y}^{S},t) \right)^{2} \right\rangle \approx \left\langle \Gamma^{TR}(\mathbf{y}^{S},t) \right\rangle^{2}$$

Thus (thereby using Chebyshev inequality)

$$P\left\{\left|\Gamma^{TR}(\mathbf{y}^{S},t) - \left\langle\Gamma^{TR}(\mathbf{y}^{S},t)\right\rangle\right| > \delta\right\} \le \frac{\left\langle\left(\Gamma^{TR}(\mathbf{y}^{S},t) - \left\langle\Gamma^{TR}(\mathbf{y}^{S},t)\right\rangle\right)^{2}\right\rangle}{\delta^{2}} \approx 0$$

That is:

$$\Gamma^{TR}(\mathbf{y}^S, t) \approx \left\langle \Gamma^{TR}(\mathbf{y}^S, t) \right\rangle$$

The refocused field is statistically stable, i.e. it does **not** depend on the particular realization of the random medium.

The moment formula

- Because of the self-averaging property, the product of random Green's functions in the point spread functional may be replaced by its expectation.
- The stochastic analysis yields the so-called moment formula:

$$\left\langle \overline{\widehat{G}(\mathbf{x}_r, \mathbf{y}, \omega)} \widehat{G}(\mathbf{x}_r, \mathbf{y}^S, \omega) \right\rangle \approx \overline{\widehat{G}_0(\mathbf{x}_r, \mathbf{y}, \omega)} \widehat{G}_0(\mathbf{x}_r, \mathbf{y}^S, \omega) e^{-\frac{k^2 a_e^2 \xi^2}{2L^2}}$$

Note that all of the statistics of the medium are confined to a single parameter, the effective aperture a_e (the super-resolution arises from the Gaussian factor).

• Key to self-averaging is the near cancellation of the random phases. Heuristically, $\hat{G} \simeq A e^{i(kr+\phi)}$ and since the TR functional contains $\overline{\hat{G}} \widehat{G}$ (nearby paths), the random phases ϕ almost cancel.

Application to seismic imaging

- Setting: three scale asymptotics $\lambda \ll l \ll L$.
- With the Born approximation, the scattered field measured at a receiver \mathbf{x}_r is

$$d(\mathbf{x}_s, \mathbf{x}_r, t) = \int_{-\infty}^{\infty} \frac{k^2 \widehat{f}(\omega)}{2\pi} \left[\int r(\mathbf{y}) \widehat{G}(\mathbf{x}_s, \mathbf{y}, \omega) \widehat{G}(\mathbf{x}_r, \mathbf{y}, \omega) d\mathbf{y} \right] e^{-i\omega t} d\omega$$

Note that the above Green's functions are random (they contain both long scale and medium scale components of the velocity).

- **Contrast with TR**: the fluctuations in the medium are not known, so migration is done fictitiously, in the background medium.
- We obtain terms such as $\widehat{G}\overline{\widehat{G}_0}$, i.e. there remain random phases in migration operators corresponding to long random paths from the source to the reflector and back to the receiver: lack of statistical stability.

Local data covariances

- To achieve statistical stability, we must cancel random phases in the data d.
- Idea (Borcea et al., 2003): divide the data set into smaller parts and construct local data covariances by cross-correlating nearby traces d(x_s, x_r, t) and d(x_{s'}, x_{r'}, t), i.e.

$$d(\mathbf{x}_s, \mathbf{x}_r, t) \star d(\mathbf{x}_{s'}, \mathbf{x}_{r'}, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{\widehat{d}(\mathbf{x}_s, \mathbf{x}_r, \omega)} \widehat{d}(\mathbf{x}_{s'}, \mathbf{x}_{r'}, \omega) e^{i\omega t} d\omega$$

Note that we obtain the terms:

$$\overline{\widehat{G}(\mathbf{x}_{s},\mathbf{y},\omega)}\widehat{G}(\mathbf{x}_{s'},\mathbf{y}',\omega) \quad \text{and} \quad \overline{\widehat{G}(\mathbf{x}_{r},\mathbf{y},\omega)}\widehat{G}(\mathbf{x}_{r'},\mathbf{y}',\omega)$$

• In essence, this approach can be viewed as a pre-processing step in which, starting with the randomly fluctuating data $d(\mathbf{x}_s, \mathbf{x}_r, t)$, we obtain a reduced, selfaveraging data set.

A data pre-processing step

Agenda

- Motivation
- The seismic inverse problem
 - The convolutional model
 - Differential semblance optimization
- Time reversal and imaging in random media
 - The point source example
 - Application to seismic imaging
- Proposed work
 - Estimation of the background velocity
 - Cross-correlation tomography
- Conclusions and future work

Cross-correlation tomography (1/8)

- We have seen how to construct self-averaging data sets. So what good is it for velocity analysis?
- The ideas introduced above have been applied by Borcea and colleagues to the problem of "imaging" targets embedded in random media.
- The proposed work addresses (in a first stage) the issue of estimating the background velocity; we will see that this entails establishing new differential semblance principles.
- We first show that cross-correlation of seismic traces do contain velocity information. The question is: how to get it?

Cross-correlation tomography (2/8)

- Suppose there are **no** fluctuations,
- Assume layered Earth model, i.e. $c_0 = c_0(t_0)$.
- Assume there is a single reflector at "depth" t_0 .
- Use the hyperbolic moveout approximation: for "small" offsets h,

$$T(t_0, h) = \sqrt{t_0^2 + \frac{h^2}{c_{\rm rms}^2(t_0)}}, \quad c_{\rm rms}(t_0) = \sqrt{\frac{1}{t_0} \int_0^{t_0} c_0^2}$$

• Define two key quantities:

$$\begin{split} p(t,h) &\equiv \frac{\partial T}{\partial h} \left(T_0(t,h),h \right) = \frac{h}{t c_{\mathrm{rms}}^2 \left(T_0(t,h) \right)} & \text{(the ray slowness)} \\ s(t,h) &\equiv \frac{\partial T_0}{\partial t}(t,h) & \text{(the stretch factor)} \end{split}$$

Cross-correlation tomography (3/8)

Because there is only one reflector, the trace has only one event at t_0 so

$$d(t,h) = f(t - T(t_0,h)).$$

Therefore:

$$(d(\cdot, h) \star d(\cdot, h'))(t) = f \star f(t + T(t_0, h) - T(t_0, h'))$$

A first-order Taylor approximation yields

$$(d(\cdot, h) \star d(\cdot, h'))(t) \simeq (f \star f)'(t) \frac{\partial T}{\partial h}(t_0, h)(h - h')$$
$$= (f \star f)'(t) \frac{h}{tc_{\rm rms}^2(t_0)}(h - h')$$

i.e. the cross-correlation $d \star d'$ contains arrival time slowness, hence background velocity information!

Cross-correlation tomography (4/8)

• Recall that the (simplified) convolutional model writes:

 $d(t,h) = r(T_0(t,h)).$

- Idea: To obtain the background velocity, construct an operator which when applied to the data with the correct background medium yields a vanishing outcome.
- Denote by c_0^* the correct background velocity, with corresponding traveltime $T^*(t_0, h)$ and inverse traveltime $T_0^*(t, h)$.
- Assume model-consistent data (i.e. noise-free): $d(t,h) = r^*(T_0^*(t,h))$.

Cross-correlation tomography (5/8)

- A short calculation shows that: $\frac{\partial T_0}{\partial h}(t,h) = -s(t,h)p(t,h).$
- We will also need:

$$\frac{\partial d}{\partial t}(t,h) = \frac{\partial T_0^*}{\partial t}(t,h)\frac{\partial r^*}{\partial t_0}\left(T_0^*(t,h)\right) \implies \frac{\partial r^*}{\partial t_0}\left(T_0^*(t,h)\right) = \left[\frac{\partial T_0^*}{\partial t}(t,h)\right]^{-1}\frac{\partial d}{\partial t}(t,h)$$

and $\partial d/\partial h$ is computed in a similar way.

• Choose a trial velocity c_0 , compute corresponding T_0 , and define the weighted cross-correlations:

$$C_t(t,h,h') = \int \left[d(t+\tau,h) \frac{\partial T_0}{\partial \tau}(\tau,h) \int_{-\infty}^{\tau} d(\cdot,h') \right] d\tau$$
$$C_h(t,h,h') = \int \left[d(t+\tau,h) \frac{\partial T_0}{\partial h}(\tau,h) \int_{-\infty}^{\tau} d(\cdot,h') \right] d\tau$$

Cross-correlation tomography (6/8)

Define the functional: $I(t,h) = \left[\frac{\partial C_t}{\partial h'} + \frac{\partial C_h}{\partial t}\right](t,h,h'=h).$ Then it can be shown that:

$$I(t,h) = \int d(t+\tau,h) \Big\{ \left[\frac{\partial T_0^*}{\partial h} \frac{\partial T_0}{\partial \tau} - \frac{\partial T_0^*}{\partial \tau} \frac{\partial T_0}{\partial h} \right] (\tau,h) \left[\frac{\partial T_0^*}{\partial \tau} (\tau,h) \right]^{-1} \Big\} d(\tau,h) d\tau$$

Note that I(t, h) vanishes when $T_0^* = T_0$, i.e. when $c_0 = c_0^*$. Using the quantities defined above, we can rewrite I(t, h) as

$$I(t,h) = \int_{-\infty}^{\infty} d(t+\tau,h) s(\tau,h) \left[p(\tau,h) - p^*(\tau,h) \right] d(\tau,h) d\tau$$

This functional measures the mismatch of event slowness, weighted by data autocorrelation and stretch factor.

Cross-correlation tomography (7/8)

• With the hyperbolic moveout approximation, we obtain:

$$I(t,h) = \int_{-\infty}^{\infty} d(t+\tau,h) s(\tau,h) \frac{h}{\tau} \left[c_{\rm rms}^{-2} - c_{\rm rms}^{*,-2} \right] \left(T_0(\tau,h) \right) d(\tau,h) d\tau$$

• Velocity analysis algorithm:

$$\min_{c_0} J = \frac{1}{2} \|I(t,h)\|^2$$

Use gradient-based optimization methods (assuming J is smooth in c_0).

• This approach clearly is a variant of differential semblance optimization. It is also a waveform variant of **stereotomography** (Sword, 1986, Biondi, 1990, Billette and Lambaré, 1998).

Cross-correlation tomography (8/8)

Conjectures:

- Objective just defined has global minimums, as has been proved for other DSO variants (e.g. the layered medium case as shown above).
- When intermediate scale random fluctuations are allowed, the cross-correlations with slowly-varying weights are statistically stable, as is the case without weights.
- The gradient of J is also statistically stable.
- Stationary points of J with cross-correlation weights computed from long-scale velocity component are optimal estimators of background velocity.

Ultimately: Velocity analysis is essentially stable against random fluctuations on the medium scale *l*!

Agenda

- Motivation
- The seismic inverse problem
 - The convolutional model
 - Differential semblance optimization
- Time reversal and imaging in random media
 - The point source example
 - Application to seismic imaging
- Proposed work
 - Estimation of the background velocity
 - Cross-correlation tomography
- Conclusions and future work

Conclusions

- The proposed work represents the first attempt at estimating the velocity macromodel in this three-scale asymptotics regime. i.e. when uncertainty at the middle scales is modeled by a random field.
- As such, it also represents an innovative way of combining two very different theories: the traditional (deterministic) approach to the problem coupled to the tools and ideas used to study time reversal in random media.
- In essence, it is an attempt to build a theoretical basis for assessing the influence of the intermediate scale of velocity on the estimation of the background velocity.

Future work

Immediate:

- Work through the set of conjectures set forth. In particular, the first step is to verify that the weighted cross-correlations are self-averaging.
- Implementation in SVL and TSOpt for numerical investigation on real data sets.

Possible extension:

- Extension to more complex models.
- Investigation of the applicability of the imaging results obtained by Borcea, Papanicolaou and colleagues to migration.

Acknowledgments

I would like to express my gratitude to:

- Dr. William Symes and Dr. Liliana Borcea for many useful suggestions, but also for their continuous support and patience.
- Dr. Alan Levander for taking the time to serve on my thesis committee.
- The organizers and participants of CAAM 654 for helping me improve my presentation skills.

Key references

Geophysics

Claerbout, J.: Basic Earth Imaging ("BEI") and Imaging the Earth's Interior ("IEI"), available through SEP web site, sepwww.stanford.edu.

Yilmaz, Oz: Seismic Data Processing, 2nd editon, SEG, 1999.

Lailly, P.: The seismic inverse problem as a sequence of before-stack migrations, *Conference on Inverse Scattering: Theory and Applications*, 1983.

A. Tarantola et al.: Wavelengths of earth structures that can be resolved from seismic reflection data, *Geophysics 54*, 1989.

Billette, F. and Lambaré, G.: Velocity macro-model estimation from seismic reflection data by stereotomography, *Geophys. J. Int. 135*, 1998.

Differential semblance

Carazzone J. and Symes, W.: Velocity inversion by differential semblance optimization, *Geophysics* 56, 1991.

Symes, W.: A differential semblance algorithm for the inverse problem of reflection seismology, *Comput. Math. Appl.* 22, 1991

Symes, W.: A Differential Semblance Criterion for Inversion of Multioffset Seismic Reflection Data, J. Geoph. Res. 88, 1993.

Gockenbach, M.S.: An abstract analysis of differential semblance optimization, PhD thesis, CAAM Department, Rice University, 1994.

Song, H.: On a transmission inverse problem, PhD thesis, CAAM Department, Rice University, 1994.

Symes, W.: All stationary points of differential semblance are asymptotic global minimizers: layered acoustics, TR99-08, CAAM Dept., Rice University, 1999.

Chauris, H.: Analyse de vitesse par migration pour l'imagerie des structures complexes en sismique réflexion, *École des Mines de Paris*, 2000.

Chauris, H. and Noble, M.: Two-dimensional velocity macro model estimation from seismic reflection data by local differential semblance optimization: applications synthetic and real data sets, *Geophys. J. Int. 144*, 2001.

Stolk, C. and Symes, W.: Smooth objective functionals for seismic velocity inversion, *Inverse problems 19*, 2003.

Stolk, C.: On the stationary points of the seismic reflection tomography and differential semblance functionals in laterally homogeneous media, *Inverse problems 18*, 2002.

Imaging in random media

Borcea, L.: Imaging and time reversal in random media, Lecture notes, 2003.

Borcea, L. and Papanicolaou, G. C. and Tsogka, C.: Imaging the reflectivity of extended scatterers in random media, *preprint*, 2003.

L. Borcea, G. C. Papanicolaou, and C. Tsogka: A resolution study for imaging and time reversal in random media, *to appear in Contemporary Math*, 2003.

L. Borcea, G. C. Papanicolaou, C. Tsogka and J. Berryman: Imaging and time reversal in random media, *Inverse Problems*, 2002.

J. Berryman, L. Borcea, G. C. Papanicolaou and C. Tsogka: Statistically stable ultrasonic imaging in random media, *Journal of Acoustical Society of America*, 2002.

G. C. Papanicolaou, L. Ryzhik and K. Solna: Statistical stability in time reversal, 2002.

P. Blomgren, G. C. Papanicolaou and H. Zhao: Super-Resolution in Time-Reversal Acoustics, *Journal of Acoustical Society of America*, 2001.

G. C. Papanicolaou, L. Ryzhik and K. Solna: The parabolic wave approximation and time reversal, *Matematica Contemporanea, in press*, 2002.

D. Dowling and D. Jackson: Narrow-band performance of phase-conjugated arrays in dynamic random media, *J. Acoust. Soc. Am.*, 1992.