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Agenda

Basics: rays, traveltimes, eikonal,...

The Paraxial Eikonal: how to specify data

Numerical Aspects: high order schemes, adpative gridding

Extension 1 - beyond isotropy: quasi-P arrival times in elasticity

Extension 2 - beyond paraxial: full traveltime field by post-

sweeping

Extension 3 - beyond viscosity: multiple arrivals by slowness

matching
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Basics

(i) Ω ⊂ Rn open, bounded

(ii) velocity v ∈ CK(Ω), K ≥ 3, 0 < vmin ≤ v(x) ≤ vmax for all

x ∈ Ω

(iii) slowness s ≡ v−1.

(iv) Rays x(t) from source point xs ∈ Ω: first component of

solutions of Hamilton’s equations

dx

dt
=
∂H

∂p
,
dp

dt
= −

∂H

∂x
(1)

where H(x,p) = 1
2v

2(x)|p|2 is the Hamiltonian.
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Constraints on initial conditions of rays from xs:

x(0) = xs,

‖p(0)‖ = s(xs)

⇒ rays from xs parametrized by takeoff direction v(xs)p(0) ∈
Sn−1.

(v) t ≥ 0 is a traveltime from xs to x iff x = x(t) for some ray x

from xs.

(vi) Traveltimes generally not unique - but each xs there is an

open nbhd Ω(xs) of xs so that a unique ray from xs to x exists,

lying entirely within Ω(xs), for each x ∈ Ω(xs) (eg. Lemma 10.2,

Milnor 1973).
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(vii) ⇒ traveltime is well-defined function τ of x ∈ Ω(xs), via

τ(x(t),xs) = t

also p(t) = ∇xτ(x,xs), whence τ satisfies the eikonal equation

|∇xτ(xs,x)| =
1

v(x)
. (2)

with the point source initial condition

limx→xs
τ(x,xs)

‖x− xs‖
= s(xs), τ ≥ 0. (3)

(eg. Courant & Hilbert, 1962).
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Paraxial Traveltimes

Point source problem for eikonal appears to be BVP. In some
applications a distinguished direction of propagation exists - in-
terested energy/information propagating in this direction, which
should solve IVP.

Examples:

• reflection seismology (Gray & May 1994, WWS) - cf. Lam-
baré talk

• axisymmetric models of laser/plasma interation (Benamou
et al., Solliec thesis 2002)
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The 2D case: write x = (x, z),p = (p, q) and xs = (xs, zs),

distinguished direction = z.

Interested in rays oriented in z direction. Along such rays, ∂τ/∂z >

0, so solve (2) for z-derv.:

∂τ

∂z
=

√
s2 −

(
∂τ

∂x

)2

and treat as evolution equation in z.

Big Trouble: This problem is not well-posed - RHS not even

well-defined for arbitrary smooth τ . Also - what initial data?
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Q: can one transform the stationary eikonal (2) into a well-posed
evolution problem in the distinguished direction?

A: Yes! Features of paraxial eikonal:

• produces paraxial traveltime = actual traveltime at well-
defined and computable subset of Ω, viscosity solution be-
yond Ω

• use standard ENO/WENO technology (also in applied lit:
many interesting ad-hoc schemes)

• post-sweeping modification gives solution of original point-
source problem, optimal complexity (O(N))

• extensions to other GO quantities (eg. amplitudes), anisotrop-
ic elasticity, non-viscosity solutions
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Seek H-J problem for traveltime along rays oriented in the posi-

tive z direction, making an angle ≤ θmax <
π
2 with vertical:

∂τ

∂z
≥ s cos θmax > 0, (4)

Claim: such times solve paraxial eikonal (Gray & May, 1994):

∂τ

∂z
= H

(
∂τ

∂x

)
=

√√√√φ(s2 −
(
∂τ

∂x

)2
, s2 cos2 θmax

)
, (5)

where φ suff. smooth, > 0, and

φ(x, a) = x, x ≥ a

9



Example: quintic spline φ ∈ C3 for a > 0:

φ(x, a) =



1

2
a if x < 0,

1

2
a+ 2

x4

a3
(1−

4

5

x

a
) if 0 ≤ x <

a

2
,

x+ 2
(x− a)4

a3
(1 +

4

5

x− a
a

) if
a

2
≤ x < a,

x if x ≥ a,

(use with difference schemes of up to 3rd order accuracy)
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Theorem: There exist δ > 0, zp > zs+δ, and smooth τ
p
0(x, xs, zs)

so that the smooth solution τp(x, z, xs, zs) of (5) with initial data

τp(x, zs + δ, xs, zs) = τ
p
0(x, xs, zs) in

Ωp(xs, zs) = Ω(xs, zs)
⋂
{(x, z) : zs + δ ≤ z ≤ zp}

satisfies:

(i) Suppose that unique ray from (xs, zs) to (x, z) ∈ Ωp(xs, zs)

makes an angle ≤ θmax < π
2 with the vertical at every point.

Then τ(x, z, xs, zs) = τp(x, z, xs, zs).

(ii) (x, z) ∈ Ωp(xs, zs), characteristic = paraxial ray for (5) with

initial cond. τ
p
0(x, xs, zs) through (x, z) makes an angle ≤ θmax

with vertical throughout ⇒ it is a ray from xs, zs to x, z.

11



Proof: Step 1, construction of initial data

Parametrize rays satisfying (4) by z rather than t, also takeoff

angle θ0 (ps = s(xs, zs) sin θ0 etc.). Then hor. coord. x(z, θ0),

angle w. vertical θ(x, θ0) satisfy

dx

dz
= tan θ (6)

dθ

dz
=

1

s

(
∂s

∂z
−
∂s

∂x
sin θ

)
(7)

with initial conditions

x(zs, θ0) = xs, (8)

θ(zs, θ0) = θ0 (9)
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To understand behaviour at z = zs, suppose w.l.o.g. xs = 0, zs =

0 and examine scaled trajectory

xδ(z, θ0) =
1

δ
x(δz, θ0), θδ(z, θ0) = θ(δz, θ0)

Calculation: scaled trajectory satisfies (7) w. s(x, z) replaced by

scaled slowness sδ(x, z) = s(δx, δz), same initial conditions.

As δ → 0, sδ → s(0,0) in Ck, any k ≤ K, sim. for RHS of (7).

So scaled trajectory converges to const. slowness trajectory

xc(z, θ0) = z tan θ0, θc(z, θ0) = θ0

uniformly in compact sets of parameters.
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Note that xc(1, θ0) is monotone as a function of θ0. Define

θ1
max =

π

4
+
θmax

2

For sufficiently small δ, xδ(1, θ0) is monotone in θ0 ∈ [−θ1
max, θ

1
max].

Fix such δ, and set

x− = δxδ(1,−θmax)

x+ = δxδ(1, θmax)

x1
− = δxδ(1,−θ1

max)

x1
+ = δxδ(1, θ1

max)

It follows that

θ0 7→ x(δ, θ0) is monotone on [−θ1
max, θ

1
max] (10)
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Reintroduce general xs, zs

Choose ψ ∈ C∞(R) with (1) ψ(x) = 1, x− ≤ x ≤ x+, (2) ψ(x) =

0, x ≤ x1
− or x ≥ x1

+, and (3) ψ′(x) ≤ 0, x+ ≤ x ≤ x1
+ and ψ′(x) ≥

0, x1
− ≤ x ≤ x−.

Choose positive A > sup(x,z)∈Ωs(x, z) and set

τ
p
0(x, xs, zs) = ψ(x, xs)τ(x, zs + δ, xs, zs) +A(1− ψ(x, xs))|x− xs|

(11)

Check that∣∣∣∣∣∂τ
p
0(x, xs, zs)

∂x

∣∣∣∣∣ > s(x, zs + δ) sin θmax if x > x+ or x < x− (12)
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Define τp = solution of (5) with initial data τ
p
0 on {(x, z) : z =

zs + δ}
⋂

Ω(xs, zs).

For some zp > zs + δ, method of characteristics gives smooth
solution of IVP (5), (11) in Ωp(xs, zs) ≡ Ω(xs, zs)

⋂
{(x, z) : zs+δ ≤

z ≤ zp}.

Step 2, identification of rays

(i) (x, z) on ray through (xs, zs), angle < θmax w. vertical ⇒
|θ0| ≤ θmax, so (10) implies that ray crosses z = zs + δ at x = xc
with x− < xc < x+ and is also paraxial ray. Data on z = zs + δ

same as for traveltime field near xc ⇒ meth. of char. gives
τp(x, z, xs, zs) = τ(x, z, xs, zs).

Proof of (ii) similar. Q. E. D.
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Remarks

1. Consequence of (ii): since direction of characteristic is com-

puted, can monitor (4) during solution of (5) hence approx. Ωp.

2. Practical definition of initial data: specify tolerance ε, use

constant solution locally near source,

τ
p
0(x, xs, zs) = ψ(x, xs)τc(x, zs + δ, xs, zs) +A(1− ψ(x, xs))|x− xs|

(13)

where τc(x, z, xs, zs) = s(xs, zs)
√

(x− xs)2 + (z − zs)2 and choose

δ so that

|τ(x, zs + δ, xs, zs)− τc(x, zs + δ, xs, zs)| ≤ ε, x1
− ≤ x ≤ x1

+ (14)

M. of C. ⇒ consequent error in Ω(xs, zs) is O(ε).
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Numerical Aspects

Issue of scheme order:

• local truncation error in scheme of order p is

O(δp+1max|α|=p+1|∇ατ |)

• τ ∼ s(xs)|x| near x = xs,

• so |∇ατ(x,xs)| = O(|x− xs|−|α|+1)

• Upshot: at distance O(δ) to source, truncation error is O(δ2)

independent of scheme order, and error propagates⇒ al-

l schemes are effectively first order!
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Way out: take results about paraxial eikonal seriously, adapt grid.

• a priori estimate for δ based on ‖ log s‖C1 - use to determine

initial data surface z = zs + δ, “practical” init. data.

• use standard adaptive heuristics based on pair of schemes, a

posteriori local error estimation as in production RK codes.

Our choice: 2nd/3rd order WENO.

• Nested grids: adjust ∆z by factors of two. Use fixed global

CFL ratio to det. ∆x from ∆z.

• Output times on user specified fixed grid via interpolation of

approp. order - user never sees comp. grid!

Details J.-L. Qian and WWS, Geophysics 2002.
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Basic example: s = const, so τ = τc in unit square, xs = 0, zs = 0

midpoint of top, treated as IVP for (5).

Fixed grid 3rd order WENO, IC p0(x) = A|x| on z = 0:

∆x abserr flops
1.00× 10−2 1.23× 10−3 2.6× 105

1.25× 10−3 2.19× 10−4 1.7× 107

Adaptive Grid 2nd/3rd order WENO, paraxial IC (13):

ε abserr flops
2.5× 10−5 1.04× 10−3 4.0× 104

1.7× 10−6 1.60× 10−4 9.3× 105
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Isocontours, Fixed grid computation of ∂τ/∂x, ∆x = 0.005.

Note wiggles in contours: they don’t go away.
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Isocontours, Adaptive grid computation of ∂τ/∂x,

ε = 1.0× 10−5 - much cheaper!
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Auxiliary quantities needed in geometric optics computations: all
computable from takeoff angle φ(x, z) = θ0, for x = x(z, θ0), and
its derivatives.

Transport equation for φ:

∇τ · ∇φ = 0

(this is obvious!!!)

Numerics: use WENO 2nd order piggyback scheme, using grid
of τ computation. Accuracy is limited by accuracy of computed
τ .

Display: x derivative of φ, key quantity in geometric optics ampli-
tude, also bandlimited impulse response of asymptotic inversion
operator, which uses extensive GO computations.
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Solid = exact, stars = computed: Fixed grid computation of

takeoff angle x-derivative ∂φ/∂x, 200× 200 grid - not

convergent as ∆x,∆z → 0!
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Solid = exact, stars = computed: Adaptive grid computation

of takeoff angle x-derivative ∂φ/∂x - error is O(ε).
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Extensions

1. Elastic Anisotropy (Qian & S., Geophysics 2002)

Paraxial construction applies to any stationary H-J system with
convex Hamiltonian. Example: qP Hamiltonian H(x,p) = largest
eigenvalue of Christoffel Matrix

1

ρ(x)

∑
i,l

Cijkl(x)pipl

Largest eigenvalue is simple ⇒ H is convex in p. qP Slowness
surface = {p : λmax(p) = 1}.

Computation of paraxial eikonal, construction of Godunov and
ENO/WENO numerical Hamiltonians requires determination of
sonic points = points where qP slowness surface is tangent to
coordinate hyperplanes.
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2. Solution of point source problem by “post-sweeping”

Idea: since paraxial eikonal computes times along ray segments
propagating principally in one direction, could pick up times along
ray segments propagating in other directions by solving paraxial
eikonal in all coord directions successively (+z,+x,−x,−z).

Introduced by Schneider et al, Geophysics 1992. Makes essential
use of variational characterization of times: at each step, replace
computed paraxial time by previously computed time from dif-
ferent direction if latter is smaller.

Kim and Cook, Geophysics 1992: 3D. Qian et al, SEG Abstract,
2001: anisotropy. Bounds on number of sweeps.

Upshot: method for point source problem with complexity O(N).
Claim (Kim, 2001): “faster than fast marching”!
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3. Multivalued traveltimes - non-viscosity solutions
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sin10: rays with takeoff angles in range 0.942478 to 2.19911

x,xs separated by suff. distance and v(x) suff. heterogeneous ⇒
connected by > 1 rays.
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Lions, 1982: viscosity solution = selection of least traveltime
(“first arrival”). Insufficient For applications to wave propa-
gation! Later arrivals can carry considerably more energy, and
therefore can be more important physically.

Lagrangian method, ie. solution of ray equations (1), computes
all arrival times. Difficult to control sampling of domain - res-
olution via dynamic addition/removal of rays as computation
proceeds = “wavefront construction method”, cf. Lambaré this
PM.

Eulerian methods (since early ’90s): Big Rays, explicit caustic
construction (Benamou), kinetic methods for multibranch en-
tropy solutions (Brennier-Corrias, Gosse, rel. work by Engquist-
Runborg), codim. 2 level set evolution (Osher et al.), dynamic
surface extension (Steinhoff), Liouville equations for escape pa-
rameters (Sethian-Fomel),...
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Slowness matching: Huyghen’s principle to find all arrivals.

Paraxial version (WWS, 1996): compute only times along parax-

ial rays that propagate in +z dir, making angle < θmax with z

axis.

For each z, there is Zd(z) > z so that times along such rays from

(x, z) to (X,Zd(z)) are single-valued.

Idea: any paraxial ray can be broken into segments in depth

intervals {zi, Zd(zi) = zi+1}, and time is sum of times along

segments. Each segment time can be computed by local Eulerian

solves of paraxial eikonal, and times to be summed identified by

matching slownesses = x derivatives of local traveltime fields

along surfaces z = zi.
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Algorithm:

(i) identify (by a priori estimate, adaptive method, or guess)

usable layer thickness Zl, Zd(z) = z + Zl, pick ∆x for traveltime

output. Inizialize z0 = zs, use adaptive 2nd/3rd order WENO

scheme to compute paraxial traveltimes for each xm = x0+m∆x.

(ii) for n = 1, ...: compute paraxial times for sources on z = zi,

estimate takeoff slowness by divided difference in x, use linear

interpolation to identify matches to arrival slowness from z =

zi−1 already recorded in data structure, append matches included

incremented traveltimes.
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Accuracy of adaptive parax. solver ⇒ 2nd ord. accuracy of lin.

interpolation preserved in computed times.

Re-use of local traveltimes ⇒ economical when times are needed

for dense grid of source points on z = zs.

Details: Qian & WWS, J. Sci. Comp, in press.
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Left: ray trace times (circles) vs. viscosity solution (lower curve)

vs. slowness match solution with ∆x = 0.05.

Right: ray trace times (circles) vs. slowness match solution with

∆x = 0.025. Note apparent 2nd order convergence.
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Slowness match times (solid) vs. raytrace times (stars, thanks L.

Klimes) for Marmousi test set (see Benamou’s traveltimes site).
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Conclusions

• Paraxial eikonal permits accurate computation of traveltimes

and related GO quantities at computable point set, provided

initial condition, numerical issues properly addressed

• Post-sweeping extension removes paraxial limitation

• Anisotropic qP wave times also computable paraxially

• Slowness matching for multiple traveltimes - one of many

Eulerian approaches for non-viscosity solutions.
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