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Statement of the problem
Present day imaging algorithms are based on linear
relationships between data and scattering potential.

Single scattering

Thereby, they neglect scattering processes of the form

Surface multiples Internal multiples

Multiple reflections show up as artifacts in the images.
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Statement of the problem, example
How to turn this

Courtesy of Shell Geoscience Services
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Statement of the problem, example

into this?

Courtesy of Shell Geoscience Services
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Basic assumptions and notation
• Earth is a constant density acoustic medium; wave

propagation described by
(

1

c2(~x)

∂2

∂t2
− ∆

)

G(~x, ~xs, t) = δ(~x− ~xs)δ(t).

where G(~x, ~xs, t) is Green’s function, the response of
the medium at location ~x due to an instantaneous point
source at location ~xs.

This equation needs to be supplied with additional
initial/boundary/radiation conditions to determine the
solution uniquely.
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Basic assumptions and notation, continued
• The temporal Fourier transform of G will be denoted by
Ĝ(~x, ~xs, ω).

• The data are obtained from the Green’s function by
convolving with a (generally unknown) wavelet:

d̂(~x, ~xs, ω) = ŵ(ω)Ĝ(~x, ~xs, ω)
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Surface multiples, derivation integral equation

Let Gmf and G be two solutions for the acoustic wave
equation in the region z > 0 satisfying the conditions

G(~x, ~xs, t)|z=0 = 0,

Gmf (~x, ~xs, t) ∈ O(| ~x− ~xs|
−1) for |~x− ~xs| → ∞

(radiation condition)

The condition for G means vanishing pressure at z = 0, as
is the case at an air/water interface. G is therefore a
wavefield that has reflections against z = 0 in it.

Gmf on the other hand, is the desired multiple-free solution.
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Derivation integral equation, continued

Assume that zs, zr ≥ ε > 0. Consider the domain V
bounded by the plane z = ε and the half sphere
x2 + y2 + (z − ε)2 < R2, z > ε, which encloses both ~xs and
~xr.

Using reciprocity, G(~x, ~y, t) = G(~y, ~x, t), we find that for all ~x
inside V

∇ ·
(

Ĝ(~x, ~xr, ω)∇Ĝmf (~xs, ~x, ω) − Ĝmf (~xs, ~x, ω)∇Ĝ(~x, ~xr, ω)
)

= Ĝ(~x, ~xr, ω)∆Ĝmf (~xs, ~x, ω) − Ĝmf (~xs, ~x, ω)∆Ĝ(~x, ~xr, ω)

= −Ĝ(~x, ~xr, ω)δ(~x− ~xs) + Ĝmf (~xs, ~x, ω)δ(~x− ~xr)
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Derivation integral equation, continued

Integrating over V , we find (using Gauss’ theorem)

Ĝmf (~xs, ~xr, ω) − Ĝ(~xs, ~xr, ω) =

=

∫

δV

dS ~n ·
(

Ĝ(~x, ~xr, ω)∇Ĝmf (~xs, ~x, ω)

− Ĝmf (~xs, ~x, ω)∇Ĝ(~x, ~xr, ω)
)

.

Letting R → ∞ and using the radiation condition, we derive

Ĝmf (~xs, ~xr, ω) − Ĝ(~xs, ~xr, ω) =

= −

∫

z=ε

dxdy
(

Ĝ(~x, ~xr, ω)∂zĜ
mf (~xs, ~x, ω)

−Ĝmf (~xs, ~x, ω)∂zĜ(~x, ~xr, ω)
)

.
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Derivation integral equation, continued

Letting ε ↓ 0 and using the vanishing of G at z = 0, this
becomes

Ĝmf (~xs, ~xr, ω)−Ĝ(~xs, ~xr, ω) =

∫

z=0

dxdy Ĝmf (~xs, ~x, ω)∂zĜ(~x, ~xr, ω).

Approximating

∂zĜ(~x, ~xr, ω)
∣

∣

∣

z=0

∼= (∆z)−1 Ĝ(~x, ~xr, ω)
∣

∣

∣

z=∆z
,

Ĝmf (~xs, ~x, ω)
∣

∣

∣

z=0

∼= Ĝmf (~xs, ~x, ω)
∣

∣

∣

z=∆z
,
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Derivation integral equation, continued

we finally obtain the integral equation we are after

Ĝmf (~xs, ~xr, ω) − Ĝ(~xs, ~xr, ω)

∼= (∆z)−1

∫

z=∆z

dxdy Ĝmf (~xs, ~x, ω)Ĝ(~x, ~xr, ω).

Using the (unknown) wavelet, we can rewrite the integral
equation as

d̂mf (~xs, ~xr, ω) − d̂(~xs, ~xr, ω)

∼= (ŵ(ω)∆z)−1

∫

z=∆z

dxdy d̂mf (~xs, ~x, ω)d̂(~x, ~xr, ω).

Since the data is non-singular at ~x = ~xr or ~x = ~xs we can
and will assume from now on that ∆z = zr = zs ≡ zacq.
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Power series solution

Define the linear integral operator
(

M · d̂mf
)

(~xs, ~xr, ω)

:= (ŵ(ω)zacq)
−1

∫

z=zacq

d~x d̂mf (~xs, ~x, ω)d̂(~x, ~xr, ω).

Then the integral equation can be rewritten as

(1 −M) · d̂mf = d̂.

The formal solution expressing the multiple free data in the
measured data is

d̂mf = d̂+M · d̂+M 2 · d̂+ · · · .
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Power series solution, first order term

xs xrx

M · d̂ ∼

∫

z=zacq

d~x d̂(~xs, ~x, ω)d̂(~x, ~xr, ω)

The integral over ~x is stationary when Snell’s law is obeyed
in the picture above. Note that no velocity information is
required to calculate the multiples.
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Power series solution, second order term

xs xrx1 x2

M2 · d̂ ∼

∫

z1=z2=zacq

d~x1d~x2 d̂(~xs, ~x1, ω)d̂(~x1, ~x2, ω)d̂(~x2, ~xr, ω)

The integrals over ~x1 and ~x2 are stationary when Snell’s
law is obeyed in the picture above. Again, no velocity
information is required.
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Practical implementation

To attenuate e.g. the first order surface multiple, one first
predicts the kinematics by evaluating the first order term

(ŵ(ω)zacq)
−1

∫

z=zacq

d~x d̂(~xs, ~x, ω)d̂(~x, ~xr, ω).

Since we do not know the wavelet, we cannot directly add
this to the data. Instead, we use an ad hoc energy
minimization criterion to attenuate the first order multiple:

minf̂

∫

dω

∣

∣

∣

∣

∣

d̂(~xs, ~xr, ω) + f̂(ω)

∫

z=zacq

d~x d̂(~xs, ~x, ω)d̂(~x, ~xr, ω)

∣

∣

∣

∣

∣

2

.
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Solution by deconvolution, principle

The integral equation relating multiple free data and
measured data can also be solved by multi-dimensional
deconvolution. To this end, rewrite the integral equation in
the form

(1 +D) · d̂ = d̂mf ,

where D is defined as the integral operator

(

D · d̂
)

(~xs, ~xr, ω) := (zacq)
−1

∫

d~x Ĝmf (~xs, ~x, ω)d̂(~x, ~xr, ω)

=

∫

dω eiωt
∫

d~xdτ F (~xs, ~x, τ)d(~x, ~xr, t− τ),

with
F (~xs, ~x, t) := (zacq)

−1Gmf (~xs, ~x, t).
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Solution by deconvolution, principle

We now try to find a multi dimensional deconvolution filter
F (~xs, ~x, t) which minimizes the energy in (1 +D) · d̂,

∫

d~xsd~xrdt

∣

∣

∣

∣

∣

d(~xs, ~xr, t) +

∫

d~x

∫ Tmax

Tgap

dτ F (~xs, ~x, τ)d(~x, ~xr, t− τ)

∣

∣

∣

∣

∣

2

.

The time Tgap is introduced to avoid the trivial solution
F (~xs, ~x, t) = −δ(~xs − ~x)δ(t) for which the energy would be
zero.
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Solution by deconvolution, example

Left: input stack, right: stack after 2D deconvolution
(Courtesy of Shell Geoscience Services)
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Forward scattering

Let c0(~x) be a smooth approximation of the true velocity
model c(~x), G0 the surface multiple free Green’s function
associated to the model c0, G the surface multiple free
Green’s function for the true velocity model.

Thus, G0 and G are determined by
(

1

c20(~x)

∂2

∂t2
− ∆

)

G0(~x, ~xs, t) = δ(~x− ~xs)δ(t),

(

1

c2(~x)

∂2

∂t2
− ∆

)

G(~x, ~xs, t) = δ(~x− ~xs)δ(t),

plus radiation conditions for |~x| → ∞.
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Forward scattering, continued

Subtracting these two equations, we get
(

1

c20(~x)

∂2

∂t2
− ∆

)

[

G(~x, ~xs, t) −G0(~x, ~xs, t)
]

=

(

c−2
0 (~x) − c−2(~x)

) ∂2G

∂t2
.

This can be solved as

G(~xs, ~xr, t) −G0(~xs, ~xr, t) =
∫

d~xdτG0(~xs, ~x, τ)V (~x)
∂2

∂t2
G(~x, ~xr, t− τ),

where we have introduced the scattering potential

V (~x) := c−2
0 (~x) − c−2(~x).
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Forward scattering, continued

This is called the Lipmann-Schwinger equation. In the
frequency domain it reads

Ĝ(~xs, ~xr, ω)−Ĝ0(~xs, ~xr, ω) = −ω2

∫

d~xĜ0(~xs, ~x, ω)V (~x)Ĝ(~x, ~xr, ω).

Introducing the integral operator

(

C · Ĝ
)

(~xs, ~xr, ω) := −ω2

∫

d~xĜ0(~xs, ~x, ω)V (~x)Ĝ(~x, ~xr, ω),

we rewrite this as

(1 − C) · Ĝ = Ĝ0.
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Forward scattering, continued

Formally inverting, we obtain the forward scattering series

Ĝ(~xs, ~xr, ω) =
∑

k≥0

(

Ck · Ĝ0

)

(~xs, ~xr, ω)

= −ω2

∫

d~xĜ0(~xs, ~x, ω)V (~x)Ĝ0(~x, ~xr, ω)

+ ω4

∫

d~x1d~x2Ĝ0(~xs, ~x1, ω)V (~x1)Ĝ0(~x1, ~x2, ω)

V (~x2)Ĝ0(~x2, ~xr, ω)

− ω6

∫

d~x1d~x2d~x3 Ĝ0(~xs, ~x1, ω)V (~x1)Ĝ0(~x1, ~x2, ω)V (~x2)

Ĝ0(~x2, ~x3, ω)V (~x3)Ĝ0(~x3, ~xr, ω)

+ · · ·

Wave equation techniques for attenuating multiple reflections – p.24/41



• • • • • • • • • •

•

•

•

•

•

1st order term, Born modelling and inversion

Assuming that Ĝ0 vanishes at the acquisition level (i.e. that
the background medium is reflection free), and neglecting
all terms after the first one, we find the Born approximation
for the scattered field

Ĝ(~xs, ~xr, ω) ∼= −ω2

∫

d~xĜ0(~xs, ~x, ω)V (~x)Ĝ0(~x, ~xr, ω).

This is a linear relation between deconvolved data Ĝ and
the scattering potential V . To invert it, we use high
frequency asymptotics

Ĝ0(~x, ~y, ω) ∼ A(~x, ~y)eiωφ(~x,~y),

where A is an amplitude and φ(~x, ~y) is the traveltime for a
ray from ~x to ~y in the velocity model c0(~x).
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Born modelling and inversion, continued
Inserting this, the Born approximation becomes

Ĝ(~xs, ~xr, ω) ∼ −ω2

∫

d~xA(~xs, ~x)A(~x, ~xr)V (~x)eiω(φ(~xs,~x)+φ(~x,~xr)).

xr

x

xs

G0(xs , x , t) G0(x , xr , t)

Because of the high frequency approximation this is a
relation between singularities in V and singularities in Ĝ.
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Born modelling and inversion, continued

Now fix the shot coordinates xs and ys, i.e., consider only
the data from a single shot. In order to invert the resulting
forward operator F (~xs), one requires ideal illumination and
the absence of caustics. The result is

V (~x) ∼

∫

zr=0

dxrdyrW (~xs, ~x, ~xr)G(~xs, ~xr, t = φ(~xs, ~x)+φ(~x, ~xr)).

Here W is a weight, which we will not specify further. This
formula is usually referred to as common shot migration.

Note that the left hand side does not depend on the shot
coordinate. In other words: the image of the earth does not
depend on the shot used. For this to be true, c0(~x) needs
to be a good approximation of c(~x).
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3rd order term: internal multiples
The third order term,

ω6

∫

d~x1d~x2d~x3 Ĝ0(~xs, ~x1, ω)V (~x1)Ĝ0(~x1, ~x2, ω)V (~x2)

Ĝ0(~x2, ~x3, ω)V (~x3)Ĝ0(~x3, ~xr, ω),

contains contributions, which can easily be identified as
internal multiples. This is explained in the following figure.

x1

x2

xs

x3

xr

G0 (xs , x1 , ω)

G0 (x1, x2 , ω)
G0 (x2, x3 , ω)

G0 (x3 , xr , ω)
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3rd order term, other contributions

The third order term also gets contributions of the form

x1

x2

xs

x3

xr

G0 (xs , x1 , ω)

G0 (x1, x2 , ω)

G0 (x2, x3 , ω)

G0 (x3 , xr , ω)

z1 > z2 > z3

x1

x2

xs

x3

xr

G0 (xs , x1 , ω)

G0 (x1, x2 , ω) G0 (x2, x3 , ω)

G0 (x3 , xr , ω)

z2 > z1, z2 > z3

To avoid these, we restrict the integration domain to
z1 > z2, z3 > z2.
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Internal multiples, velocity dependent prediction

The resulting formula,

d̂IM(~xs, ~xr, ω) = ŵ(ω)ω6

∫

z1>z2
z3>z2

d~x1d~x2d~x3 Ĝ0(~xs, ~x1, ω)V (~x1)

Ĝ0(~x1, ~x2, ω)V (~x2)Ĝ0(~x2, ~x3, ω)V (~x3)Ĝ0(~x3, ~xr, ω),

models interbed multiples, but the prediction clearly
requires the velocity model c0(~x).
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Kinematics can be predicted independent of velocity

Proposition 1 Under suitable assumptions, the velocity
dependent formula is asymptotically equivalent to

d̂IM(~xs, ~xr, ω) = ŵ(ω)−2

∫

t1>t2
t3>t2

d~r1d~r2dt1dt2dt3Bd̃(~xs, ~xr1 , t1)

d̃(~xr1 , ~xr2 , t2)d(~xr2 , ~xr, t3)e
iω(t1−t2+t3).

Here

d̃(~xs, ~xr, t) :=
1

8π3

∫

d~yrd~krdt
′dω

√

ω2/c(~xr)2 − k2
r

d(~xs, ~yr, t
′)e−i

~kr·(~xr−~yr)−iω(t−t′)

and B = B[c0] is a velocity dependent amplitude, which
reduces to 1 for a constant velocity background medium.
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Velocity free prediction, assumptions

Assumption 1 (Conormality assumption)
The reflectivity of the earth is conormal, i.e., there is a
smooth map ~x 7→ ~n(~x) from R

3 to the unit sphere such that
the function V (~x) is singular in the direction ~n(~x) only.

conormal reflectivity
distribution

non-conormal reflectivity
distribution

Wave equation techniques for attenuating multiple reflections – p.32/41



• • • • • • • • • •

•

•

•

•

•

Velocity free prediction, assumptions

Assumption 2 (Traveltime Monotonicity Condition)
Let τ(~xs;α, z) be the traveltime of a ray taking off at a
source location ~xs at angle α with the normal, reflecting at
depth z according to Snell’s law with respect to the local
normal and travelling back to the surface. Then ∀~xs, α

τ(~xs;α, z1) > τ(~xs;α, z2) ⇐⇒ z1 > z2

 x s

low velocity region high velocity regionα

z=z1

z=z2

Possible violation
of Assumption 2
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Sketch of the proof
Replacing the scattering potentials occurring in the velocity
dependent formula by common shot migrated data, we get

d̂IM(~xs, ~xr, ω) = ŵ(ω)−2

∫

z1>z2
z3>z2

dt1dt2dt3d~r1d~r2

(

d~r3d~x1d~x2d~x3

dω1dω2dω3

)

Bd(~xs, ~xr1 , t1)d(~xr1 , ~xr2 , t2)d(~xr2 , ~xr3 , t3)e
iψ,

where ~ri = (xri , yri), B is a product of forward amplitudes A
and migration weights W and the phase ψ is given by

ψ := ω [φ(~xs, ~x1) + φ(~x1, ~x2) + φ(~x2, ~x3) + φ(~x3, ~xr)]

−ω1 [φ(~xs, ~x1) + φ(~x1, ~xr1) − t1]

−ω2 [φ(~xr1 , ~x2) + φ(~x2, ~xr2) − t2]

−ω3 [φ(~xr2 , ~x3) + φ(~x3, ~xr3) − t3]
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Sketch of the proof, continued

Step 1: Integration with respect to (~x1, ω1). Relative part ψ:
ω [φ(~xs, ~x1) + φ(~x1, ~x2)] − ω1 [φ(~xs, ~x1) + φ(~x1, ~xr1) − t1]

x
2

x
1

r
1

s

The result of this integration is

1. ~x1 is on the ray connecting ~x2 and ~r1,

2. φ(~xs, ~x1) + φ(~x1, ~xr1) = t1.
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Sketch of the proof, continued

Step 2: Integration with respect to (~x2, ω2). Relative part ψ:
ω [−φ(~xr1 , ~x2) + φ(~x2, ~x3)] − ω2 [φ(~xr1 , ~x2) + φ(~x2, ~xr2) − t2]

x
2

x
1

r
2

r
1

x
3

s

The result of this integration is

1. ~x2 must be on the ray connecting ~r2 and ~x3,

2. φ(~xr1 , ~x2) + φ(~x2, ~xr2) = t2.
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Sketch of the proof, continued

Step 3: Integration with respect to (~x3, ω3, ~r3). Relative part
ψ: ω [φ(~xr2 , ~x3) + φ(~x3, ~xr)] − ω3 [φ(~xr2 , ~x3) + φ(~x3, ~xr3) − t3]

x
2

x
1

r
2

r
1

x
3

s r3 = r

The result of this integration is

1. ~r3 = ~r,

2. φ(~xr2 , ~x3) + φ(~x3, ~xr3) = t3.
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Velocity model

Velocity model used in synthetic interbed multiple study
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Images

Image of the data with (left) and without (right) interbed
multiples
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Predictions

Image of predicted multiples (black) on top of image of the
data (color)
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Cleaned images

Image of the data (right) vs image of the data after
adaptive multiple subtraction (right)
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