Wave equation techniques for attenuating multiple reflections

Fons ten Kroode

a.tenkroode@shell.com

Shell Research, Rijswijk, The Netherlands

Wave equation techniques for attenuating multiple reflections – p.1/41

Contents

- 1. Statement of the problem
- 2. Basic assumptions and notation
 - 3. Surface multiples
 - Integral equation
 - Power series solution
 - Solution by deconvolution
 - 4. Internal multiples (a la Weglein)
 - Forward scattering
 - 1st order term: Born modelling and inversion
 - 3rd order term: internal multiples

Statement of the problem

- •
- Present day imaging algorithms are based on *linear*
- relationships between data and scattering potential.

Single scattering

Thereby, they neglect scattering processes of the form

Surface multiples

Internal multiples

Multiple reflections show up as artifacts in the images.

Statement of the problem, example

• How to turn this

- •

Courtesy of Shell Geoscience Services

Statement of the problem, example

- into this?
- •

Courtesy of Shell Geoscience Services

Basic assumptions and notation

- Earth is a constant density acoustic medium; wave propagation described by
 - $\left(\frac{1}{c^2(\vec{x})}\frac{\partial^2}{\partial t^2} \Delta\right)G(\vec{x}, \vec{x}_s, t) = \delta(\vec{x} \vec{x_s})\delta(t).$

where $G(\vec{x}, \vec{x}_s, t)$ is Green's function, the response of the medium at location \vec{x} due to an instantaneous point source at location \vec{x}_s .

This equation needs to be supplied with additional initial/boundary/radiation conditions to determine the solution uniquely.

Basic assumptions and notation, continued

- The temporal Fourier transform of G will be denoted by $\hat{\sigma}(\vec{r}, \vec{r}, \vec{r})$
- $\hat{G}(ec{x},ec{x}_s,\omega)$.
 - The data are obtained from the Green's function by convolving with a (generally unknown) wavelet:

$$\hat{d}(\vec{x}, \vec{x}_s, \omega) = \hat{w}(\omega)\hat{G}(\vec{x}, \vec{x}_s, \omega)$$

Surface multiples, derivation integral equation

Let G^{mf} and G be two solutions for the acoustic wave equation in the region z > 0 satisfying the conditions

 $G(\vec{x}, \vec{x}_s, t)|_{z=0} = 0,$ $G^{mf}(\vec{x}, \vec{x}_s, t) \in O(|\vec{x} - \vec{x}_s|^{-1}) \text{ for } |\vec{x} - \vec{x}_s| \to \infty$ (radiation condition)

The condition for *G* means vanishing pressure at z = 0, as is the case at an air/water interface. *G* is therefore a wavefield that has reflections against z = 0 in it.

 G^{mf} on the other hand, is the desired multiple-free solution.

- •
- Assume that $z_s, z_r \ge \epsilon > 0$. Consider the domain V
- bounded by the plane $z = \epsilon$ and the half sphere
- * $x^2 + y^2 + (z \epsilon)^2 < R^2, z > \epsilon$, which encloses both \vec{x}_s and \vec{x}_r .

Using reciprocity, $G(\vec{x}, \vec{y}, t) = G(\vec{y}, \vec{x}, t)$, we find that for all \vec{x} inside V

$$\nabla \cdot \left(\hat{G}(\vec{x}, \vec{x}_r, \omega) \nabla \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) - \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \nabla \hat{G}(\vec{x}, \vec{x}_r, \omega) \right)$$

= $\hat{G}(\vec{x}, \vec{x}_r, \omega) \Delta \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) - \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \Delta \hat{G}(\vec{x}, \vec{x}_r, \omega)$
= $-\hat{G}(\vec{x}, \vec{x}_r, \omega) \delta(\vec{x} - \vec{x}_s) + \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \delta(\vec{x} - \vec{x}_r)$

Integrating over V, we find (using Gauss' theorem) $\hat{G}^{mf}(\vec{x}_s, \vec{x}_r, \omega) - \hat{G}(\vec{x}_s, \vec{x}_r, \omega) =$ $= \int_{\delta V} dS \, \vec{n} \cdot \left(\hat{G}(\vec{x}, \vec{x}_r, \omega) \nabla \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) - \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \nabla \hat{G}(\vec{x}, \vec{x}_r, \omega) \right).$

Letting $R \to \infty$ and using the radiation condition, we derive

$$\hat{G}^{mf}(\vec{x}_s, \vec{x}_r, \omega) - \hat{G}(\vec{x}_s, \vec{x}_r, \omega) = = -\int_{z=\epsilon} dx dy \left(\hat{G}(\vec{x}, \vec{x}_r, \omega) \partial_z \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) - \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \partial_z \hat{G}(\vec{x}, \vec{x}_r, \omega) \right).$$

•

- •
- Letting $\epsilon \downarrow 0$ and using the vanishing of G at z = 0, this
- becomes
 - $\hat{G}^{mf}(\vec{x}_s, \vec{x}_r, \omega) \hat{G}(\vec{x}_s, \vec{x}_r, \omega) = \int_{z=0} dx dy \, \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \partial_z \hat{G}(\vec{x}, \vec{x}_r, \omega).$
 - Approximating

$$\left. \begin{array}{ll} \partial_z \hat{G}(\vec{x}, \vec{x}_r, \omega) \right|_{z=0} &\cong \left. (\Delta z)^{-1} \left. \hat{G}(\vec{x}, \vec{x}_r, \omega) \right|_{z=\Delta z}, \\ \left. \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \right|_{z=0} &\cong \left. \left. \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \right|_{z=\Delta z}, \end{array} \right.$$

we finally obtain the integral equation we are after

•
$$\hat{G}^{mf}(\vec{x}_s, \vec{x}_r, \omega) - \hat{G}(\vec{x}_s, \vec{x}_r, \omega)$$

 $\cong (\Delta z)^{-1} \int_{z=\Delta z} dx dy \, \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \hat{G}(\vec{x}, \vec{x}_r, \omega).$

Using the (unknown) wavelet, we can rewrite the integral equation as

$$\hat{d}^{mf}(\vec{x}_s, \vec{x}_r, \omega) - \hat{d}(\vec{x}_s, \vec{x}_r, \omega)$$
$$\cong (\hat{w}(\omega)\Delta z)^{-1} \int_{z=\Delta z} dx dy \, \hat{d}^{mf}(\vec{x}_s, \vec{x}, \omega) \hat{d}(\vec{x}, \vec{x}_r, \omega).$$

Since the data is non-singular at $\vec{x} = \vec{x}_r$ or $\vec{x} = \vec{x}_s$ we can and will assume from now on that $\Delta z = z_r = z_s \equiv z_{acq}$.

Power series solution

Define the linear integral operator

$$\begin{pmatrix} M \cdot \hat{d}^{mf} \end{pmatrix} (\vec{x}_s, \vec{x}_r, \omega) := (\hat{w}(\omega) z_{acq})^{-1} \int_{z=z_{acq}} d\vec{x} \, \hat{d}^{mf} (\vec{x}_s, \vec{x}, \omega) \hat{d} (\vec{x}, \vec{x}_r, \omega).$$

Then the integral equation can be rewritten as

 $(1-M)\cdot\hat{d}^{mf}=\hat{d}.$

The formal solution expressing the multiple free data in the measured data is

$$\hat{d}^{mf} = \hat{d} + M \cdot \hat{d} + M^2 \cdot \hat{d} + \cdots$$

Power series solution, first order term

The integral over \vec{x} is *stationary* when Snell's law is obeyed in the picture above. Note that no velocity information is required to calculate the multiples.

Power series solution, second order term

$$M^{2} \cdot \hat{d} \sim \int_{z_{1}=z_{2}=z_{acq}} d\vec{x}_{1} d\vec{x}_{2} \, \hat{d}(\vec{x}_{s}, \vec{x}_{1}, \omega) \hat{d}(\vec{x}_{1}, \vec{x}_{2}, \omega) \hat{d}(\vec{x}_{2}, \vec{x}_{r}, \omega)$$

The integrals over \vec{x}_1 and \vec{x}_2 are stationary when Snell's law is obeyed in the picture above. Again, no velocity information is required.

Practical implementation

- •
- To attenuate e.g. the first order surface multiple, one first
- predicts the kinematics by evaluating the first order term

$$(\hat{w}(\omega)z_{acq})^{-1}\int_{z=z_{acq}} d\vec{x}\,\hat{d}(\vec{x}_s,\vec{x},\omega)\hat{d}(\vec{x},\vec{x}_r,\omega).$$

Since we do not know the wavelet, we cannot directly add this to the data. Instead, we use an ad hoc energy minimization criterion to attenuate the first order multiple:

$$\min_{\hat{f}} \int d\omega \left| \hat{d}(\vec{x}_s, \vec{x}_r, \omega) + \hat{f}(\omega) \int_{z=z_{acq}} d\vec{x} \, \hat{d}(\vec{x}_s, \vec{x}, \omega) \hat{d}(\vec{x}, \vec{x}_r, \omega) \right|^2$$

Solution by deconvolution, principle

- •
- The integral equation relating multiple free data and
- measured data can also be solved by multi-dimensional
- deconvolution. To this end, rewrite the integral equation in the form

$$(1+D)\cdot\hat{d}=\hat{d}^{mf},$$

where D is defined as the integral operator

$$\begin{pmatrix} D \cdot \hat{d} \end{pmatrix} (\vec{x}_s, \vec{x}_r, \omega) := (z_{acq})^{-1} \int d\vec{x} \, \hat{G}^{mf}(\vec{x}_s, \vec{x}, \omega) \hat{d}(\vec{x}, \vec{x}_r, \omega)$$
$$= \int d\omega \, e^{i\omega t} \int d\vec{x} d\tau \, F(\vec{x}_s, \vec{x}, \tau) d(\vec{x}, \vec{x}_r, t - \tau),$$

with

$$F(\vec{x}_s, \vec{x}, t) := (z_{acq})^{-1} G^{mf}(\vec{x}_s, \vec{x}, t).$$

Solution by deconvolution, principle

- We now try to find a multi dimensional deconvolution filter
- $F(\vec{x}_s, \vec{x}, t)$ which minimizes the energy in $(1 + D) \cdot \hat{d}$,

$$\int d\vec{x}_s d\vec{x}_r dt \left| d(\vec{x}_s, \vec{x}_r, t) + \int d\vec{x} \int_{T_{gap}}^{T_{max}} d\tau F(\vec{x}_s, \vec{x}, \tau) d(\vec{x}, \vec{x}_r, t - \tau) \right|^2$$

The time T_{gap} is introduced to avoid the trivial solution $F(\vec{x}_s, \vec{x}, t) = -\delta(\vec{x}_s - \vec{x})\delta(t)$ for which the energy would be zero.

Solution by deconvolution, example

Left: input stack, right: stack after 2D deconvolution (Courtesy of Shell Geoscience Services)

Contents

- - 1. Statement of the problem
- •
- 2. Basic assumptions and notation
 - 3. Surface multiples
 - Integral equation
 - Power series solution
 - Solution by deconvolution
 - 4. Internal multiples (a la Weglein)
 - Forward scattering
 - 1st order term: Born modelling and inversion
 - 3rd order term: internal multiples

Forward scattering

- •
- Let $c_0(\vec{x})$ be a smooth approximation of the true velocity
- model $c(\vec{x})$, G_0 the surface multiple free Green's function
- associated to the model c_0 , G the surface multiple free Green's function for the true velocity model.

Thus, G_0 and G are determined by

$$\begin{pmatrix} \frac{1}{c_0^2(\vec{x})} \frac{\partial^2}{\partial t^2} - \Delta \end{pmatrix} G_0(\vec{x}, \vec{x}_s, t) = \delta(\vec{x} - \vec{x}_s)\delta(t), \\ \left(\frac{1}{c^2(\vec{x})} \frac{\partial^2}{\partial t^2} - \Delta \right) G(\vec{x}, \vec{x}_s, t) = \delta(\vec{x} - \vec{x}_s)\delta(t),$$

plus radiation conditions for $|\vec{x}| \rightarrow \infty$.

Forward scattering, continued

• Subtracting these two equations, we get

$$\left(\frac{1}{c_0^2(\vec{x})}\frac{\partial^2}{\partial t^2} - \Delta\right) \left[G(\vec{x}, \vec{x}_s, t) - G_0(\vec{x}, \vec{x}_s, t)\right] = \left(c_0^{-2}(\vec{x}) - c^{-2}(\vec{x})\right) \frac{\partial^2 G}{\partial t^2}.$$

This can be solved as

$$G(\vec{x}_s, \vec{x}_r, t) - G_0(\vec{x}_s, \vec{x}_r, t) = \int d\vec{x} d\tau G_0(\vec{x}_s, \vec{x}, \tau) V(\vec{x}) \frac{\partial^2}{\partial t^2} G(\vec{x}, \vec{x}_r, t - \tau),$$

where we have introduced the scattering potential

$$V(\vec{x}) := c_0^{-2}(\vec{x}) - c^{-2}(\vec{x}).$$

Forward scattering, continued

- •
- This is called the *Lipmann-Schwinger equation*. In the
- frequency domain it reads

$$\hat{G}(\vec{x}_s, \vec{x}_r, \omega) - \hat{G}_0(\vec{x}_s, \vec{x}_r, \omega) = -\omega^2 \int d\vec{x} \hat{G}_0(\vec{x}_s, \vec{x}, \omega) V(\vec{x}) \hat{G}(\vec{x}, \vec{x}_r, \omega).$$

Introducing the integral operator

$$\left(C\cdot\hat{G}\right)(\vec{x}_s,\vec{x}_r,\omega):=-\omega^2\int d\vec{x}\hat{G}_0(\vec{x}_s,\vec{x},\omega)V(\vec{x})\hat{G}(\vec{x},\vec{x}_r,\omega),$$

we rewrite this as

$$(1-C)\cdot\hat{G}=\hat{G}_0.$$

Forward scattering, continued

Formally inverting, we obtain the forward scattering series $\hat{G}(\vec{x}_s, \vec{x}_r, \omega) = \sum \left(C^k \cdot \hat{G}_0 \right) \left(\vec{x}_s, \vec{x}_r, \omega \right)$ $= -\omega^2 \int d\vec{x} \hat{G}_0(\vec{x}_s, \vec{x}, \omega) V(\vec{x}) \hat{G}_0(\vec{x}, \vec{x}_r, \omega)$ $+ \omega^4 \int d\vec{x}_1 d\vec{x}_2 \hat{G}_0(\vec{x}_s, \vec{x}_1, \omega) V(\vec{x}_1) \hat{G}_0(\vec{x}_1, \vec{x}_2, \omega)$ $V(\vec{x}_2)\hat{G}_0(\vec{x}_2,\vec{x}_r,\omega)$ $-\omega^{6} \int d\vec{x}_{1} d\vec{x}_{2} d\vec{x}_{3} \,\hat{G}_{0}(\vec{x}_{s}, \vec{x}_{1}, \omega) V(\vec{x}_{1}) \hat{G}_{0}(\vec{x}_{1}, \vec{x}_{2}, \omega) V(\vec{x}_{2})$ $\hat{G}_0(\vec{x}_2, \vec{x}_3, \omega) V(\vec{x}_3) \hat{G}_0(\vec{x}_3, \vec{x}_r, \omega)$

1st order term, Born modelling and inversion

•

Assuming that \hat{G}_0 vanishes at the acquisition level (i.e. that

- the background medium is reflection free), and neglecting
- all terms after the first one, we find the Born approximation for the scattered field

$$\hat{G}(\vec{x}_s, \vec{x}_r, \omega) \cong -\omega^2 \int d\vec{x} \hat{G}_0(\vec{x}_s, \vec{x}, \omega) V(\vec{x}) \hat{G}_0(\vec{x}, \vec{x}_r, \omega).$$

This is a linear relation between deconvolved data \hat{G} and the scattering potential V. To invert it, we use high frequency asymptotics

$$\hat{G}_0(\vec{x}, \vec{y}, \omega) \sim A(\vec{x}, \vec{y}) e^{i\omega\phi(\vec{x}, \vec{y})},$$

where A is an amplitude and $\phi(\vec{x}, \vec{y})$ is the traveltime for a ray from \vec{x} to \vec{y} in the velocity model $c_0(\vec{x})$.

Born modelling and inversion, continued

- Inserting this, the Born approximation becomes
- $\hat{G}(\vec{x}_s, \vec{x}_r, \omega) \sim -\omega^2 \int d\vec{x} A(\vec{x}_s, \vec{x}) A(\vec{x}, \vec{x}_r) V(\vec{x}) e^{i\omega(\phi(\vec{x}_s, \vec{x}) + \phi(\vec{x}, \vec{x}_r))}.$

Because of the high frequency approximation this is a relation between singularities in V and singularities in \hat{G} .

Born modelling and inversion, continued

•

Now fix the shot coordinates x_s and y_s , i.e., consider only

- the data from a single shot. In order to invert the resulting
- forward operator $F(\vec{x}_s)$, one requires ideal illumination and the absence of caustics. The result is

 $V(\vec{x}) \sim \int_{z_r=0} dx_r dy_r W(\vec{x}_s, \vec{x}, \vec{x}_r) G(\vec{x}_s, \vec{x}_r, t = \phi(\vec{x}_s, \vec{x}) + \phi(\vec{x}, \vec{x}_r)).$

Here W is a weight, which we will not specify further. This formula is usually referred to as *common shot migration*.

Note that the left hand side does not depend on the shot coordinate. In other words: the image of the earth does not depend on the shot used. For this to be true, $c_0(\vec{x})$ needs to be a good approximation of $c(\vec{x})$.

3rd order term: internal multiples

• The third order term,

 $\omega^{6} \int d\vec{x}_{1} d\vec{x}_{2} d\vec{x}_{3} \,\hat{G}_{0}(\vec{x}_{s}, \vec{x}_{1}, \omega) V(\vec{x}_{1}) \hat{G}_{0}(\vec{x}_{1}, \vec{x}_{2}, \omega) V(\vec{x}_{2})$ $\hat{G}_{0}(\vec{x}_{2}, \vec{x}_{3}, \omega) V(\vec{x}_{3}) \hat{G}_{0}(\vec{x}_{3}, \vec{x}_{r}, \omega),$

contains contributions, which can easily be identified as internal multiples. This is explained in the following figure.

3rd order term, other contributions

 $z_1 > z_2 > z_3$

 $z_2 > z_1, z_2 > z_3$

To avoid these, we restrict the integration domain to $z_1 > z_2, z_3 > z_2$.

Internal multiples, velocity dependent prediction

The resulting formula,

 $\begin{aligned} \hat{d}^{IM}(\vec{x}_s, \vec{x}_r, \omega) &= \hat{w}(\omega) \omega^6 \int_{\substack{z_1 > z_2 \\ z_3 > z_2}} d\vec{x}_1 d\vec{x}_2 d\vec{x}_3 \, \hat{G}_0(\vec{x}_s, \vec{x}_1, \omega) V(\vec{x}_1) \\ \hat{G}_0(\vec{x}_1, \vec{x}_2, \omega) V(\vec{x}_2) \hat{G}_0(\vec{x}_2, \vec{x}_3, \omega) V(\vec{x}_3) \hat{G}_0(\vec{x}_3, \vec{x}_r, \omega), \end{aligned}$

models interbed multiples, but the prediction clearly requires the velocity model $c_0(\vec{x})$.

Kinematics can be predicted independent of velocity

- **Proposition 1** Under suitable assumptions, the velocity
- dependent formula is asymptotically equivalent to

$$\hat{d}^{IM}(\vec{x}_s, \vec{x}_r, \omega) = \hat{w}(\omega)^{-2} \int_{\substack{t_1 > t_2 \\ t_3 > t_2}} d\vec{r}_1 d\vec{r}_2 dt_1 dt_2 dt_3 B\tilde{d}(\vec{x}_s, \vec{x}_{r_1}, t_1) \\ \tilde{d}(\vec{x}_{r_1}, \vec{x}_{r_2}, t_2) d(\vec{x}_{r_2}, \vec{x}_r, t_3) e^{i\omega(t_1 - t_2 + t_3)}.$$

Here

$$\tilde{d}(\vec{x}_s, \vec{x}_r, t) := \frac{1}{8\pi^3} \int d\vec{y}_r d\vec{k}_r dt' d\omega \sqrt{\omega^2 / c(\vec{x}_r)^2 - k_r^2} d(\vec{x}_s, \vec{y}_r, t') e^{-i\vec{k}_r \cdot (\vec{x}_r - \vec{y}_r) - i\omega(t - t')}$$

and $B = B[c_0]$ is a velocity dependent amplitude, which reduces to 1 for a constant velocity background medium.

Velocity free prediction, assumptions

- •
- **Assumption 1** (Conormality assumption)
- The reflectivity of the earth is *conormal*, i.e., there is a
- smooth map $\vec{x} \mapsto \vec{n}(\vec{x})$ from \mathbf{R}^3 to the unit sphere such that the function $V(\vec{x})$ is singular in the direction $\vec{n}(\vec{x})$ only.

Wave equation techniques for attenuating multiple reflections - p.32/41

Velocity free prediction, assumptions

- •
- **Assumption 2** (Traveltime Monotonicity Condition)
- Let $\tau(\vec{x}_s; \alpha, z)$ be the traveltime of a ray taking off at a source location \vec{x}_s at angle α with the normal, reflecting at depth z according to Snell's law with respect to the local normal and travelling back to the surface. Then $\forall \vec{x}_s, \alpha$

$$\tau(\vec{x}_s; \alpha, z_1) > \tau(\vec{x}_s; \alpha, z_2) \iff z_1 > z_2$$

Sketch of the proof

- •
- Replacing the scattering potentials occurring in the velocity
- dependent formula by common shot migrated data, we get

$$\hat{d}^{IM}(\vec{x}_s, \vec{x}_r, \omega) = \hat{w}(\omega)^{-2} \int_{\substack{z_1 > z_2 \\ z_3 > z_2}} dt_1 dt_2 dt_3 d\vec{r}_1 d\vec{r}_2 \left(d\vec{r}_3 d\vec{x}_1 d\vec{x}_2 d\vec{x}_3 d\vec{x}_1 d$$

where $\vec{r_i} = (x_{r_i}, y_{r_i})$, B is a product of forward amplitudes A and migration weights W and the phase ψ is given by

$$\psi := \omega \left[\phi(\vec{x}_s, \vec{x}_1) + \phi(\vec{x}_1, \vec{x}_2) + \phi(\vec{x}_2, \vec{x}_3) + \phi(\vec{x}_3, \vec{x}_r) \right] - \omega_1 \left[\phi(\vec{x}_s, \vec{x}_1) + \phi(\vec{x}_1, \vec{x}_{r_1}) - t_1 \right] - \omega_2 \left[\phi(\vec{x}_{r_1}, \vec{x}_2) + \phi(\vec{x}_2, \vec{x}_{r_2}) - t_2 \right] - \omega_3 \left[\phi(\vec{x}_{r_2}, \vec{x}_3) + \phi(\vec{x}_3, \vec{x}_{r_3}) - t_3 \right]$$

Sketch of the proof, continued

- •
- Step 1: Integration with respect to (\vec{x}_1, ω_1) . Relative part ψ :
- $\omega \left[\phi(\vec{x}_s, \vec{x}_1) + \phi(\vec{x}_1, \vec{x}_2)\right] \omega_1 \left[\phi(\vec{x}_s, \vec{x}_1) + \phi(\vec{x}_1, \vec{x}_{r_1}) t_1\right]$

The result of this integration is

- 1. \vec{x}_1 is on the ray connecting \vec{x}_2 and \vec{r}_1 ,
- **2.** $\phi(\vec{x}_s, \vec{x}_1) + \phi(\vec{x}_1, \vec{x}_{r_1}) = t_1$.

Sketch of the proof, continued

- Step 2: Integration with respect to (\vec{x}_2, ω_2) . Relative part ψ :
- $\omega \left[-\phi(\vec{x}_{r_1}, \vec{x}_2) + \phi(\vec{x}_2, \vec{x}_3)\right] \omega_2 \left[\phi(\vec{x}_{r_1}, \vec{x}_2) + \phi(\vec{x}_2, \vec{x}_{r_2}) t_2\right]$

The result of this integration is

- 1. \vec{x}_2 must be on the ray connecting \vec{r}_2 and \vec{x}_3 ,
- **2.** $\phi(\vec{x}_{r_1}, \vec{x}_2) + \phi(\vec{x}_2, \vec{x}_{r_2}) = t_2$.

Sketch of the proof, continued

- •
- Step 3: Integration with respect to $(\vec{x}_3, \omega_3, \vec{r}_3)$. Relative part
- $\psi: \omega \left[\phi(\vec{x}_{r_2}, \vec{x}_3) + \phi(\vec{x}_3, \vec{x}_r)\right] \omega_3 \left[\phi(\vec{x}_{r_2}, \vec{x}_3) + \phi(\vec{x}_3, \vec{x}_{r_3}) t_3\right]$

The result of this integration is

- **1.** $\vec{r}_3 = \vec{r}$,
- **2.** $\phi(\vec{x}_{r_2}, \vec{x}_3) + \phi(\vec{x}_3, \vec{x}_{r_3}) = t_3$.

Velocity model

Velocity model used in synthetic interbed multiple study

Images

Image of the data with (left) and without (right) interbed multiples

Predictions

Image of predicted multiples (black) on top of image of the data (color)

Cleaned images

Image of the data (right) vs image of the data after adaptive multiple subtraction (right)