Seismic Inverse Scattering

Bill Symes and Fons ten Kroode

MGSS
Stanford
August 2002

www.trip.caam.rice.edu

How do you turn lots of this... (field seismogram from the Gulf of Mexico - thanks: Exxon.)

into this (a fair rendition of subsurface structure)?

Some other questions, inspired by Claerbout and Biondi:

- Why all the emphasis on linear operators? Isn't the seismic inverse problem nonlinear?
- Why are adjoints so important (usually adjoint $+\$ 3.95=$ coffee at Starbuck's)
- What are really the connections between NMO, stacking, migration, velocity analysis? Why does the exploding reflector model work?
- Do downward continuation and Kirchhoff migration do the same thing?
- How is 2D different from 3D?

A mathematical view of reflection seismic processing:

- an inverse problem, based on a model of seismic wave propagation
- contemporary practice relies on partial linearization and highfrequency asymptotics
- recent progress in understanding capabilities, limitations of methods based on linearization/asymptotics in presence of strong refraction: applications of microlocal analysis with implications for practice
- limitations of linearization lead to many open problems

Agenda

1. Seismic inverse problem in the acoustic model: linearization, reflectors and reflections, naive geometric optics, Kirchhoff modeling and migration, why adjoints are so important (WWS)
2. Beylkin inversion, two versions of wave equation migration. Towards multipathing: Rakesh's construction (WWS)
3. Not-so-naive geometric optics, migration and asymptotic inversion w/ caustics and multipathing (FtK)
4. Beyond linearization, part I: suppressing multiple reflections (FtK)
5. Beyond linearization, part II: velocity analysis, the artifact issue, and prestack migration a la Claerbout (WWS)
1.1 The Acoustic Model

Marine reflection seismology apparatus:

- source (airgun array, explosives,...)
- receivers (hydrophone streamer, ocean bottom cable,...)
- recording and onboard processing

Land acquisition similar, but acquisition and processing are more complex. Vast bulk ($90 \%+$) of data acquired each year is marine.

Data parameters: time t, source location \mathbf{x}_{s}, and receiver location \mathbf{x}_{r} or half offset $\mathbf{h}=\frac{\mathbf{x}_{r}-\mathbf{x}_{s}}{2}, h=|\mathbf{h}|$.

Idealized marine "streamer" geometry: \mathbf{x}_{s} and \mathbf{x}_{r} lie roughly on constant depth plane, source-receiver lines are parallel $\rightarrow 3$ spatial degrees of freedom (eg. \mathbf{x}_{s}, h): codimension 1. [Other geometries are interesting, eg. ocean bottom cables, but streamer surveys still prevalent.]

How much data? Contemporary surveys may feature

- Simultaneous recording by multiple streamers (up to 12!)
- Many (roughly) parallel ship tracks ("lines"), areal coverage
- single line ("2D") ~ Gbyte; multiple lines ("3D") ~ Tbyte

Main characteristic of data: wave nature, presence of reflections $=$ amplitude coherence along trajectories in space-time.

Seismogram extracted from survey, Gulf of Mexico (thanks: Exxon)

Lightly processed version of data displayed in previous slide bandpass filtered (in t), truncated ("muted").

Blocked logs from well in North Sea (thanks: Mobil R \& D). Solid: p-wave velocity (m / s), dashed: s-wave velocity (m / s), dash-dot: density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$. "Blocked" means "averaged" (over 30 m windows). Original sample rate of log tool $<1 \mathrm{~m}$. Reflectors $=$ jumps in velocities, density, velocity trends.

The Modeling Task: any model of the reflection seismogram must

- predict wave motion
- produce reflections from reflectors
- accomodate significant variation of wave velocity, material density,...

A really good model will also accomodate

- multiple wave modes, speeds
- material anisotropy
- attenuation, frequency dispersion of waves
- complex source, receiver characteristics

Acoustic Model (only compressional waves)
Not really good, but good enough for today and basis of most contemporary processing.

Relates $\rho(\mathrm{x})=$ material density, $\lambda(\mathrm{x})=$ bulk modulus, $p(\mathrm{x}, t)=$ pressure, $\mathbf{v}(\mathbf{x}, t)=$ particle velocity, $\mathbf{f}(\mathrm{x}, t)=$ force density (sound source):

$$
\begin{gathered}
\rho \frac{\partial \mathbf{v}}{\partial t}=-\nabla p+\mathbf{f}, \\
\frac{\partial p}{\partial t}=-\lambda \nabla \cdot \mathbf{v}(+ \text { i.c.'s, b.c.'s })
\end{gathered}
$$

(compressional) wave speed $c=\sqrt{\frac{\lambda}{\rho}}$
acoustic field potential $u(\mathrm{x}, t)=\int_{-\infty}^{t} d s p(\mathrm{x}, s)$:

$$
p=\frac{\partial u}{\partial t}, \mathbf{v}=\frac{1}{\rho} \nabla u
$$

Equivalent form: second order wave equation for potential

$$
\frac{1}{\rho c^{2}} \frac{\partial^{2} u}{\partial t^{2}}-\nabla \cdot \frac{1}{\rho} \nabla u=\int_{-\infty}^{t} d t \nabla \cdot\left(\frac{\mathbf{f}}{\rho}\right) \equiv \frac{f}{\rho}
$$

plus initial, boundary conditions.

Weak solution of Dirichlet problem in $\Omega \subset \mathbf{R}^{3}$ (similar treatment for other b. c.'s):

$$
u \in C^{1}\left([0, T] ; L^{2}(\Omega)\right) \cap C^{0}\left([0, T] ; H_{0}^{1}(\Omega)\right)
$$

satisfying for any $\phi \in C_{0}^{\infty}((0, T) \times \Omega)$,

$$
\int_{0}^{T} \int_{\Omega} d t d x\left\{\frac{1}{\rho c^{2}} \frac{\partial u}{\partial t} \frac{\partial \phi}{\partial t}-\frac{1}{\rho} \nabla u \cdot \nabla \phi+\frac{1}{\rho} f \phi\right\}=0
$$

Theorem (Lions, 1972) Suppose that $\log \rho, \log c \in L^{\infty}(\Omega), f \in$ $L^{2}(\Omega \times \mathbf{R})$. Then weak solutions of Dirichlet problem exist; initial data

$$
u(\cdot, 0) \in H_{0}^{1}(\Omega), \frac{\partial u}{\partial t}(\cdot, 0) \in L^{2}(\Omega)
$$

uniquely determine them.

Further idealizations: (i) density is constant, (ii) source force density is isotropic point radiator with known time dependence ("source pulse" $w(t)$)

$$
f\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=w(t) \delta\left(\mathbf{x}-\mathbf{x}_{s}\right)
$$

\Rightarrow acoustic potential, pressure depends on \mathbf{x}_{s} also.

Forward map $S=$ time history of pressure for each \mathbf{x}_{s} at receiver locations \mathbf{x}_{r} (predicted seismic data), depends on velocity field $c(\mathrm{x})$:

$$
S[c]=\left\{p\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)\right\}
$$

Reflection seismic inverse problem: given observed seismic data $S^{\text {obs }}$, find c so that

$$
S[c] \simeq S^{\mathrm{obs}}
$$

This inverse problem is

- large scale - up to Tbytes, Pflops
- nonlinear

Almost all useful technology to date relies on partial linearization: write $c=v(1+r)$ and treat r as relative first order perturbation about v, resulting in perturbation of presure field $\delta p=\frac{\partial \delta u}{\partial t}=0, t \leq 0$, where

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \delta u=\frac{2 r}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

Define linearized forward map F by

$$
F[v] r=\left\{\delta p\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)\right\}
$$

Claim: $F[v]$ is the main actor in the Claerbout, Biondi lectures.

Critical question: If there is any justice $F[v] r=$ derivative $D S[v][v r]$ of S - but in what sense? Physical intuition, numerical simulation, and not nearly enough mathematics: linearization error

$$
S[v(1+r)]-(S[v]+F[v] r)
$$

- small when v smooth, r rough or oscillatory on wavelength scale - well-separated scales
- large when v not smooth and/or r not oscillatory - poorly separated scales

2D finite difference simulation: shot gathers with typical marine seismic geometry. Smooth $v(z)$, oscillatory $r(z)$ ("layered medium") extracted from "Marmousi" synthetic data set (Grau \& Versteeg, 1994)

Velocity $v\left(x_{1}\right)$ (function of depth only) used in numerical linearization study.

Reflectivity function $r\left(x_{1}\right)$ (function of depth only) used in numerical linearization study.

Source pulse $w(t)$ used in numerical linearization study.

> (a) $S[v(1+r)]$, (b) $S[v]+F[v] r$, (c) $S[v(1+r)]-S[v]-F[v] r$, (d) $S[v(1+r)+0.02 v]-S[v(1+\dot{r})]+F[v(1+r)](0.02 v)$

Implications:

- Some geologies have well-separated scales - cf. sonic logs -linearization-based methods work well there. Other geologies do not - expect trouble!
- v smooth, r oscillatory $\Rightarrow F[v] r$ approximates primary reflection $=$ result of wave interacting with material heterogeneity only once (single scattering); error consists of multiple reflections, which are "not too large" if r is "not too big", and sometimes can be suppressed (lecture 4).
- v nonsmooth, r smooth \Rightarrow error consists of time shifts in waves which are very large perturbations as waves are oscillatory.

No mathematical results are known which justify/explain these observations in any rigorous way.

Partially linearized inverse problem = velocity analysis problem: given $S^{\text {obs }}$ find v, r so that

$$
S[v]+F[v] r \simeq S^{\mathrm{obs}}
$$

Linear subproblem $=$ imaging problem: given $S^{\text {obs }}$ and v, find r so that

$$
F[v] r \simeq S^{\mathrm{obs}}-S[v]
$$

Last 20 years:

- much progress on imaging problem
- much less on velocity analysis problem.

1.2 Reflectors and Reflections

Importance of high frequency asymptotics: when linearization is accurate, properties of $F[v]$ dominated by those of $F_{\delta}[v]$ (= $F[v]$ with $w=\delta$). Implicit in migration concept (eg. Hagedoorn, 1954); explicit use: Cohen \& Bleistein, SIAM JAM 1977.

Key idea: reflectors (rapid changes in r) emulate singularities; reflections (rapidly oscillating features in data) also emulate singularities.

NB: "everybody's favorite reflector": the smooth interface across which r jumps. But this is an oversimplification - reflectors in the Earth may be complex zones of rapid change, pehaps in all directions (cf Claerbout). More flexible notion needed!!

Paley-Wiener characterization of smoothness: $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ is smooth at $\mathrm{x}_{0} \Leftrightarrow$ for some nbhd X of x_{0}, any $\phi \in \mathcal{E}(X)$ and N, there is $C_{N} \geq 0$ so that for any $\xi \neq 0$,

$$
|\mathcal{F}(\phi u)(\tau \xi)| \leq C_{N}(\tau|\xi|)^{-N}
$$

Harmonic analysis of singularities, après Hörmander: the wave front set $W F(u) \subset \mathbf{R}^{n} \times \mathbf{R}^{n}-0$ of $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ - captures orientation as well as position of singularities.
$\left(\mathrm{x}_{0}, \xi_{0}\right) \notin W F(u) \Leftrightarrow$, there is some open nbhd $X \times \equiv \subset \mathbf{R}^{n} \times \mathbf{R}^{n}-0$ of (x_{0}, ξ_{0}) so that for any $\phi \in \mathcal{E}(X), N$, there is $C_{N} \geq 0$ so that for all $\xi \in$ 三,

$$
|\mathcal{F}(\phi u)(\tau \xi)| \leq C_{N}(\tau|\xi|)^{-N}
$$

Housekeeping chores:
(i) note that the nbhds इ may naturally be taken to be cones
(ii) $W F(u)$ is invariant under chg. of coords if it is regarded as a subset of the cotangent bundle $T^{*}\left(\mathbf{R}^{n}\right)$ (i.e. the ξ components transform as covectors).
[Good refs: Duistermaat, 1996; Taylor, 1981; Hörmander, 1983]

The standard example: if u jumps across the interface $f(\mathrm{x})=$ 0 , otherwise smooth, then $W F(u) \subset \mathcal{N}_{f}=\{(\mathrm{x}, \xi): f(\mathrm{x})=$ $0, \xi \| \nabla f(\mathrm{x})\}$ (normal bundle of $f=0$).

$$
\begin{aligned}
& \phi<0 \\
& W F(H(f))=\{(\mathrm{x}, \xi): f(x)=0, \xi \| \nabla f(x)\}
\end{aligned}
$$

Fact ("microlocal property of differential operators"):

Suppose $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right),\left(\mathrm{x}_{0}, \xi_{0}\right) \notin W F(u)$, and $P(\mathrm{x}, D)$ is a partial differential operator:

$$
\begin{gathered}
P(\mathrm{x}, D)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} \\
D=\left(D_{1}, \ldots, D_{n}\right), D_{i}=-i \frac{\partial}{\partial x_{i}} \\
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right),|\alpha|=\sum_{i} \alpha_{i}, \\
D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}
\end{gathered}
$$

Then $\left(\mathrm{x}_{0}, \xi_{0}\right) \notin W F(P(\mathrm{x}, D) u)$ [i.e.: $W F(P u) \subset W F(u)$].

Proof: Choose $X \times \equiv$ as in the definition, $\phi \in \mathcal{D}(X)$ form the required Fourier transform

$$
\int d x e^{i \mathbf{x} \cdot(\tau \xi)} \phi(\mathrm{x}) P(\mathbf{x}, D) u(\mathbf{x})
$$

and start integrating by parts: eventually

$$
=\sum_{|\alpha| \leq m} \tau^{|\alpha|} \xi^{\alpha} \int d x e^{i \mathbf{x} \cdot(\tau \xi)} \phi_{\alpha}(\mathbf{x}) u(\mathbf{x})
$$

where $\phi_{\alpha} \in \mathcal{D}(X)$ is a linear combination of derivatives of ϕ and the a_{α} s. Since each integral is rapidly decreasing as $\tau \rightarrow \infty$ for $\xi \in \equiv$, it remains rapidly decreasing after multiplication by $\tau^{|\alpha|}$, and so does the sum. Q. E. D.

Key idea, restated: reflectors (or "reflecting elements") will be points in $W F(r)$. Reflections will be points in $W F(d)$.

These ideas lead to a usable definition of image: a reflectivity model \tilde{r} is an image of r if $W F(\tilde{r}) \subset W F(r)$ (the closer to equality, the better the image).

Idealized migration problem: given d (hence $W F(d)$) deduce somehow a function which has the right reflectors, i.e. a function \tilde{r} with $W F(\tilde{r}) \simeq W F(r)$.

NB: you're going to need v ! ("It all depends on $v(x, y, z)$ " - J. Claerbout)
1.3 Kirchhoff Migration

With $w=\delta$, acoustic potential u is same as Causal Green's function $G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=$ retarded fundamental solution:

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\delta(t) \delta\left(\mathbf{x}-b x_{s}\right)
$$

and $G \equiv 0, t<0$. Then $(w=\delta!) p=\frac{\partial G}{\partial t}, \delta p=\frac{\partial \delta G}{\partial t}$, and

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \delta G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\frac{2}{v^{2}(\mathbf{x})} \frac{\partial^{2} G}{\partial t^{2}}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) r(\mathbf{x})
$$

Simplification: from now on, define $F[v] r=\left.\delta G\right|_{\mathrm{x}=\mathrm{x}_{r}}$ - i.e. Iose a t-derivative. Duhamel's principle \Rightarrow

$$
\delta G\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)=\int d x \frac{2 r(\mathbf{x})}{v(\mathbf{x})^{2}} \int d s G\left(\mathbf{x}_{r}, t-s ; \mathbf{x}\right) \frac{\partial^{2} G}{\partial t^{2}}\left(\mathbf{x}, s ; \mathbf{x}_{s}\right)
$$

Digression: where the exploding reflector model comes from
For zero-offset data $\left(\mathbf{x}_{s}=\mathbf{x}_{r}\right)$, distribution kernel of $F[v]$ is

$$
K\left(\mathbf{x}_{s}, t, \mathbf{x}_{s} ; \mathbf{x}\right)=\frac{\partial^{2}}{\partial t^{2}} \int d s \frac{2}{v^{2}(\mathbf{x})} G\left(\mathbf{x}_{s}, t-s ; \mathbf{x}\right) G\left(\mathbf{x}, s ; \mathbf{x}_{s}\right)
$$

Under some circumstances (explained below), K ($=G$ timeconvolved with itself) is "similar" (also explained) to $\widetilde{G}=$ Green's function for $v / 2$. Then

$$
\delta G\left(\mathbf{x}_{s}, t ; \mathbf{x}_{s}\right) \sim \frac{\partial^{2}}{\partial t^{2}} \int d x \widetilde{G}\left(\mathbf{x}_{s}, t, \mathbf{x}\right) \frac{2 r(\mathbf{x})}{v^{2}(\mathbf{x})}
$$

\sim solution w of

$$
\left(\frac{4}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) w=\delta(t) \frac{2 r}{v^{2}}
$$

Will have to say what "similar" means...

Geometric optics approximation of G should be good, as v is smooth. Local version: if x "not too far" from x_{s}, then

$$
G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=a\left(\mathbf{x} ; \mathbf{x}_{s}\right) \delta\left(t-\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)\right)+R\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)
$$

where the traveltime $\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)$ solves the eikonal equation

$$
\begin{gathered}
v|\nabla \tau|=1 \\
\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right) \sim \frac{\left|\mathbf{x}-\mathbf{x}_{s}\right|}{v\left(\mathbf{x}_{s}\right)}, \mathrm{x} \rightarrow \mathbf{x}_{s}
\end{gathered}
$$

and the amplitude $a\left(\mathbf{x} ; \mathbf{x}_{s}\right)$ solves the transport equation

$$
\nabla \cdot\left(a^{2} \nabla \tau\right)=0
$$

All of this is meaningful only if the remainder R is small in a suitable sense: energy estimate (Exercise!) \Rightarrow

$$
\int d x \int_{0}^{T} d t\left|R\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)\right|^{2} \leq C\|v\|_{C^{4}}
$$

Numerical solution of eikonal, transport: ray tracing (Lagrangian), various sorts of upwind finite difference (Eulerian) methods. See Sethian lectures, WWS 1999 MGSS notes (online) for details.
"Not too far" means: there should be one and only one ray of geometric optics connecting each \mathbf{x}_{s} or \mathbf{x}_{r} to each $\mathbf{x} \in \operatorname{suppr}$.

For "random but smooth" $v(\mathbf{x})$ with variance σ, more than one connecting ray occurs as soon as the distance is $O\left(\sigma^{-2 / 3}\right)$. Such multipathing is invariably accompanied by the formation of a caustic (White, 1982).

Upon caustic formation, the simple geometric optics field description above is no longer correct (Ludwig, 1966).

2D Example of strong refraction: Sinusoidal velocity field $v(x, z)=$ $1+0.2 \sin \frac{\pi z}{2} \sin 3 \pi x$

Rays in sinusoidal velocity field, source point $=$ origin. Note formation of caustic, multiple rays to source point in lower center.

Assume: suppr contained in simple geometric optics domain (each point reached by unique ray from any source point \mathbf{x}_{s}).

Then distribution kernel K of $F[v]$ is

$$
\begin{gathered}
K\left(\mathbf{x}_{r}, t, \mathbf{x}_{s} ; \mathbf{x}\right)=\int d s G\left(\mathbf{x}_{r}, t-s ; \mathbf{x}\right) \frac{\partial^{2} G}{\partial t^{2}}\left(\mathbf{x}, s ; \mathbf{x}_{s}\right) \frac{2}{v^{2}(\mathbf{x})} \\
\simeq \int d s \frac{2 a\left(\mathbf{x}_{r}, \mathbf{x}\right) a\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathbf{x})} \delta^{\prime}\left(t-s-\tau\left(\mathbf{x}_{r}, \mathbf{x}\right)\right) \delta^{\prime \prime}\left(s-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right) \\
=\frac{2 a\left(\mathbf{x}, \mathbf{x}_{r}\right) a\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathbf{x})} \delta^{\prime \prime}\left(t-\tau\left(\mathbf{x}, \mathbf{x}_{r}\right)-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
\end{gathered}
$$

provided that $\nabla_{\mathbf{x}} \tau\left(\mathbf{x}, \mathbf{x}_{r}\right)+\nabla_{\mathbf{x}} \tau\left(\mathbf{x}, \mathbf{x}_{s}\right) \neq 0 \Leftrightarrow$ velocity at \mathbf{x} of ray from \mathbf{x}_{s} not negative of velocity of ray from $\mathbf{x}_{r} \Leftrightarrow$ no forward scattering. [Gel'fand and Shilov, 1958 - when is pullback of distribution again a distribution].

Q: What does \simeq mean?

A: It means "differs by something smoother".

In theory, can complete the geometric optics approximation of the Green's function so that the difference is C^{∞} - then the two sides have the same singularities, ie. the same wavefront set.

In practice, it's sufficient to make the difference just a bit smoother, so the first term of the geometric optics approximation (displayed above) suffices (can formalize this with modification of wavefront set defn).

These lectures will ignore the distinction.

So: for r supported in simple geometric optics domain, no forward scattering \Rightarrow

$$
\begin{gathered}
\delta G\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right) \simeq \\
\frac{\partial^{2}}{\partial t^{2}} \int d x \frac{2 r(\mathbf{x})}{v^{2}(\mathbf{x})} a\left(\mathbf{x}, \mathbf{x}_{r}\right) a\left(\mathbf{x}, \mathbf{x}_{s}\right) \delta\left(t-\tau\left(\mathbf{x}, \mathbf{x}_{r}\right)-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
\end{gathered}
$$

You've seen this before (except that this is 3D): pressure perturbation is sum (integral) of r over reflection isochron $\{\mathrm{x}: t=$ $\left.\tau\left(\mathbf{x}, \mathbf{x}_{r}\right)+\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right\}, \mathrm{w}$. weighting, filtering. Note: if $v=$ const. then isochron is ellipsoid, as $\tau\left(\mathbf{x}_{s}, \mathbf{x}\right)=\left|\mathbf{x}_{s}-\mathbf{x}\right| / v$!

Now can explain: when the exploding reflector model "works", i.e. when G time-convolved with itself is "similar" to $\widetilde{G}=$ Green's function for $v / 2$. If supp r lies in simple geometry domain, then

$$
\begin{gathered}
K\left(\mathbf{x}_{s}, t, \mathbf{x}_{s} ; \mathbf{x}\right)=\int d s \frac{2 a^{2}\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathbf{x})} \delta\left(t-s-\tau\left(\mathbf{x}_{s}, \mathrm{x}\right)\right) \delta^{\prime \prime}\left(s-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right) \\
=\frac{2 a^{2}\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathrm{x})} \delta^{\prime \prime}\left(t-2 \tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
\end{gathered}
$$

whereas the Green's function \tilde{G} for $v / 2$ is

$$
\tilde{G}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\tilde{a}\left(\mathbf{x}, \mathbf{x}_{s}\right) \delta\left(t-2 \tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
$$

(half velocity $=$ double traveltime, same rays!).

Difference between effects of K, \widetilde{G} : for each \mathbf{x}_{s} scale r by smooth fcn - preserves $W F(r)$ hence $W F(F[v] r)$ and relation between them. Also: adjoints have same effect on $W F$ sets.

Upshot: from imaging point of view (i.e. apart from amplitude, derivative (filter)), kernel of $F[v]$ restricted to zero offset is same as Green's function for $v / 2$, provided that simple geometry hypothesis holds: only one ray connects each source point to each scattering point, ie. no multipathing.

See Claerbout, BEI, for examples which demonstrate that multipathing really does invalidate exploding reflector model.

Inspirational interlude: the sort-of-layered theory $=$ "Standard Processing"

Suppose were v, r functions of $z=x_{3}$ only, all sources and receivers at $z=0$. Then the entire system is translation-invariant in $x_{1}, x_{2} \Rightarrow$ Green's function G its perturbation δG, and the idealized data $\left.\delta G\right|_{z=0}$ are really only functions of t and half-offset $h=\left|\mathrm{x}_{s}-\mathrm{x}_{r}\right| / 2$. There would be only one seismic experiment, equivalent to any common midpoint gather ("CMP").

This isn't really true - look at the data!!! However it is approximately correct in many places in the world: CMPs change very slowly with midpoint $\mathrm{x}_{m}=\left(\mathrm{x}_{r}+\mathrm{x}_{s}\right) / 2$.

Standard processing: treat each CMP as if it were the result of an experiment performed over a layered medium, but permit the layers to vary with midpoint.

Thus $v=v(z), r=r(z)$ for purposes of analysis, but at the end $v=v\left(\mathbf{x}_{m}, z\right), r=r\left(\mathbf{x}_{m}, z\right)$.

$$
\begin{gathered}
F[v] r\left(\mathrm{x}_{r}, t ; \mathrm{x}_{s}\right) \\
\simeq \int d x \frac{2 r(z)}{v^{2}(z)} a\left(\mathrm{x}, x_{r}\right) a\left(\mathrm{x}, x_{s}\right) \delta^{\prime \prime}\left(t-\tau\left(\mathrm{x}, x_{r}\right)-\tau\left(\mathrm{x}, x_{s}\right)\right) \\
=\int d z \frac{2 r(z)}{v^{2}(z)} \int d \omega \int d x \omega^{2} a\left(\mathrm{x}, x_{r}\right) a\left(\mathrm{x}, x_{s}\right) e^{i \omega\left(t-\tau\left(\mathrm{x}, x_{r}\right)-\tau\left(\mathrm{x}, x_{s}\right)\right)}
\end{gathered}
$$

Since we have already thrown away smoother (lower frequency) terms, do it again using stationary phase. Upshot (see 2000 MGSS notes for details): up to smoother (lower frequency) error,

$$
F[v] r(h, t) \simeq A(z(h, t), h) R(z(h, t))
$$

Here $z(h, t)$ is the inverse of the 2-way traveltime

$$
t(h, z)=2 \tau((h, 0, z),(0,0,0))
$$

i.e. $z\left(t\left(h, z^{\prime}\right), h\right)=z^{\prime} . R$ is (yet another version of) "reflectivity"

$$
R(z)=\frac{1}{2} \frac{d r}{d z}(z)
$$

That is, $F[v]$ is a a derivative followed by a change of variable followed by multiplication by a smooth function. Substitute t_{0} (vertical travel time) for z (depth) and you get "Inverse NMO" $\left(t_{0} \rightarrow(t, h)\right)$. Will be sloppy and call $z \rightarrow(t, h)$ INMO.

Anatomy of an adjoint:

$$
\begin{aligned}
& \int d t \int d h d(t, h) F[v] r(t, h)=\int d t \int d h d(t, h) A(z(t, h), h) R(z(t, h)) \\
& =\int d z R(z) \int d h \frac{\partial t}{\partial z}(z, h) A(z, h) d(t(z, h), h)=\int d z r(z)\left(F[v]^{*} d\right)(z) \\
& \text { so } F[v]^{*}=-\frac{\partial}{\partial z} S M[v] N[v]
\end{aligned}
$$

$N[v]=$ NMO operator $N[v] d(z, h)=d(t(z, h), h)$
$M[v]=$ multiplication by $\frac{\partial t}{\partial z} A$
$S=$ stacking operator

$$
S f(z)=\int d h f(z, h)
$$

So

$$
F[v]^{*} F[v] r(z)=-\frac{\partial}{\partial z}\left[\int d h \frac{d t}{d z}(z, h) A^{2}(z, h)\right] \frac{\partial}{\partial z} r(z)
$$

Microlocal property of PDOs $\Rightarrow W F\left(F[v]^{*} F[v] r\right) \subset W F(r)$ i.e. $F[v]^{*}$ is an imaging operator.

If you leave out the amplitude factor ($M[v]$) and the derivatives, as is commonly done, then you get essentially the same expression - so (NMO, stack) is an imaging operator!

It's even easy to get an inverse out of this - exercise for the reader.

Now make everything dependent on \mathbf{x}_{m} and you've got standard processing. (end of layered interlude).

Rehabilitation of the adjoint: if $d=F[v] r$, then

$$
F[v]^{*} d=F[v]^{*} F[v] r
$$

In the layered case, $F[v]^{*} F[v]$ is an operator which preserves wave front sets. Whenever $F[v]^{*} F[v]$ preserves wave front sets, $F[v]^{*}$ is an imaging operator.

Beylkin, JMP 1985: for r supported in simple geometric optics domain,

- WF $\left(F_{\delta}[v]^{*} F_{\delta}[v] r\right) \subset W F(r)$
- if $S^{\mathrm{obs}}=S[v]+F_{\delta}[v] r$ (data consistent with linearized model), then $F_{\delta}[v]^{*}\left(S^{\text {obs }}-S[v]\right)$ is an image of r
- an operator $F_{\delta}[v]^{\dagger}$ exists for which $F_{\delta}[v]^{\dagger}\left(S^{\mathrm{obs}}-S[v]\right)-r$ is smoother than r, under some constraints on r - an inverse modulo smoothing operators or parametrix.

Outline of proof: (i) express $F[v]^{*} F[v]$ as "Kirchhoff modeling" followed by "Kirchhoff migration"; (ii) introduce Fourier transform; (iii) approximate for large wavenumbers using stationary phase, leads to representation of $F[v]^{*} F[v]$ modulo smoothing error as pseudodifferential operator (" $\Psi \mathrm{DO} "$):

$$
F[v]^{*} F[v] r(\mathrm{x}) \simeq p(\mathrm{x}, D) r(\mathrm{x}) \equiv \int d \xi p(\mathrm{x}, \xi) e^{i \mathrm{x} \cdot \xi_{\widehat{r}}(\xi)}
$$

in which $p \in C^{\infty}$, and for some m (the order of p), all multiindices α, β, and all compact $K \subset \mathbf{R}^{n}$, there exist constants $C_{\alpha, \beta, K} \geq 0$ for which

$$
\left|D_{\mathrm{x}}^{\alpha} D_{\xi}^{\beta} p(\mathrm{x}, \xi)\right| \leq C_{\alpha, \beta, K}(1+|\xi|)^{m-|\beta|}, \mathrm{x} \in K
$$

Explicit computation of symbol p - for details, see 1998 MGSS notes.

Imaging property of Kirchhoff migration follows from microlocal property of Ψ DOs:
if $p(x, D)$ is a $\Psi D O, u \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$ then $W F(p(x, D) u) \subset$ $W F(u)$.

Will prove this. First, a few other properties:

- differential operators are $\Psi D O s$ (easy - exercise)
- Ψ DOs of order m form a module over $C^{\infty}\left(\mathbf{R}^{n}\right)$ (also easy)
- product of $\Psi \mathrm{DO}$ order $m, \Psi \mathrm{DO}$ order $l=\Psi \mathrm{DO}$ order $\leq m+l$; adjoint of $\Psi D O$ order m is $\Psi D O$ order m (much harder)

Complete accounts of theory, many apps: books of Duistermaat, Taylor, Nirenberg, Treves, Hörmander.

Proof of microlocal property: suppose (x_{0}, ξ_{0}) $\notin W F(u)$, choose neighborhoods X, \equiv as in defn, with \equiv conic. Need to choose analogous nbhds for $P(x, D) u$. Pick $\delta>0$ so that $B_{3 \delta}\left(\mathrm{x}_{0}\right) \subset X$, set $X^{\prime}=B_{\delta}\left(\mathrm{x}_{0}\right)$.

Similarly pick $0<\epsilon<1 / 3$ so that $B_{3 \epsilon}\left(\xi_{0} /\left|\xi_{0}\right|\right) \subset \equiv$, and chose $\equiv^{\prime}=\left\{\tau \xi: \xi \in B_{\epsilon}\left(\xi_{0} /\left|\xi_{0}\right|\right), \tau>0\right\}$.

Need to choose $\phi \in \mathcal{E}^{\prime}\left(X^{\prime}\right)$, estimate $\mathcal{F}(\phi P(\mathrm{x}, D) u)$. Choose $\psi \in \mathcal{E}(X)$ so that $\psi \equiv 1$ on $B_{2 \delta}\left(\mathrm{x}_{0}\right)$.

NB: this implies that if $\mathrm{x} \in X^{\prime}, \psi(\mathrm{y}) \neq 1$ then $|\mathrm{x}-\mathrm{y}| \geq \delta$.

Write $u=(1-\psi) u+\psi u$. Claim: $\phi P(\mathrm{x}, D)((1-\psi) u)$ is smooth.

$$
\begin{gathered}
\phi(\mathbf{x}) P(\mathbf{x}, D)((1-\psi) u))(\mathbf{x}) \\
=\phi(\mathbf{x}) \int d \xi P(\mathbf{x}, \xi) e^{i \mathbf{x} \cdot \xi} \int d y(1-\psi(\mathrm{y})) u(\mathbf{y}) e^{-i \mathbf{y} \cdot \xi} \\
=\int d \xi \int d y P(\mathbf{x}, \xi) \phi(\mathrm{x})(1-\psi(\mathrm{y})) e^{i(\mathrm{x}-\mathrm{y}) \cdot \xi} u(\mathrm{y}) \\
=\int d \xi \int d y\left(-\nabla_{\xi}^{2}\right)^{M} P(\mathrm{x}, \xi) \phi(\mathrm{x})(1-\psi(\mathbf{y}))|\mathbf{x}-\mathbf{y}|^{-2 M} e^{i(\mathrm{x}-\mathrm{y}) \cdot \xi} u(\mathrm{y})
\end{gathered}
$$

using the identity

$$
e^{i(\mathrm{x}-\mathrm{y}) \cdot \xi}=|\mathbf{x}-\mathbf{y}|^{-2}\left[-\nabla_{\xi}^{2} e^{i(\mathrm{x}-\mathrm{y}) \cdot \xi}\right]
$$

and integrating by parts $2 M$ times in ξ. This is permissible because $\phi(\mathrm{x})(1-\psi(\mathrm{y})) \neq 0 \Rightarrow|\mathrm{x}-\mathrm{y}|>\delta$.

According to the definition of $\Psi D O$,

$$
\left|\left(-\nabla_{\xi}^{2}\right)^{M} P(\mathrm{x}, \xi)\right| \leq C|\xi|^{m-2 M}
$$

For any K, the integral thus becomes absolutely convergent after K differentiations of the integrand, provided M is chosen large enough. Q.E.D. Claim.

This leaves us with $\phi P(\mathrm{x}, D)(\psi u)$. Pick $\eta \in \bar{\Xi}^{\prime}$ and w.l.o.g. scale $|\eta|=1$. Fourier transform:

$$
\mathcal{F}(\phi P(\mathbf{x}, D)(\psi u))(\tau \eta)=\int d x \int d \xi P(\mathbf{x}, \xi) \phi(\mathbf{x}) \widehat{\psi}(\xi) e^{i \mathbf{x} \cdot(\xi-\tau \eta)}
$$

Introduce $\tau \theta=\xi$, and rewrite this as

$$
=\tau^{n} \int d x \int d \theta P(\mathbf{x}, \tau \theta) \phi(\mathbf{x}) \hat{\psi} u(\tau \theta) e^{i \tau \mathbf{x} \cdot(\theta-\eta)}
$$

Divide the domain of the inner integral into $\{\theta:|\theta-\eta|>\epsilon\}$ and its complement. Use

$$
-\nabla_{x}^{2} e^{i \tau \mathbf{x} \cdot(\theta-\eta)}=\tau^{2}|\theta-\eta|^{2} e^{i \tau \mathbf{x} \cdot(\theta-\eta)}
$$

and integration by parts $2 M$ times to estimate the first integral:

$$
\begin{gathered}
\tau^{n-2 M} \mid \int d x \int_{|\theta-\eta|>\epsilon} d \theta\left(-\nabla_{x}^{2}\right)^{M}[P(\mathbf{x}, \tau \theta) \phi(\mathbf{x})] \hat{\psi u}(\tau \theta) \\
\times|\theta-\eta|^{-2 M} e^{i \tau \mathbf{x} \cdot(\theta-\eta)} \mid \\
\leq C \tau^{n+m-2 M}
\end{gathered}
$$

m being the order of P. Thus the first integral is rapidly decreasing in τ.

For the second integral, note that $|\theta-\eta| \leq \epsilon \Rightarrow \theta \in$ 三, per the defn of \equiv^{\prime}. Since $X \times$ is disjoint from the wavefront set of u, for a sequence of constants $C_{N},|\hat{\psi} u(\tau \theta)| \leq C_{N} \tau^{-N}$ uniformly for θ in the (compact) domain of integration, whence the second integral is also rapidly decreasing in τ. Q. E. D.

And that's why Kirchhoff migration works, at least in the simple geometric optics regime.

Key references:
Cohen, J. K. and Bleistein, N.: An inverse method for determining small variations in propagation speed, SIAM J. Appl. Math. 32, 1977, pp. 784-799.

Rakesh: A linearized inverse problem for the wave equation, Comm. PDE 13, 1988, pp. 573-601.

Beylkin, G.: Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys 26, 1985, pp. 99-108.

Ten Kroode, A. P. E., Smit, D. J., and Verdel, A. R.: A microlocal analysis of migration Wave Motion 28, 1998, pp. 149-172.

Grau, G. and Versteeg, R.: The Marmousi Experience: Practical Aspects of Inversion, IFP-Technip, Paris, 1991.

Lions, J. L.: Nonhomogeneous Boundary Value Problems and Applications, Springer Verlag, Berlin, 1972.

Operto, S., Xu, S. and Lambaré, G.: Can we image quantitatively complex models with rays?, Geophysics 65, 2001, pp. 1223-1238.

Nolan, C. J. and Symes, W. W.: Global solution of a linearized inverse problem for the wave equation, Comm. PDE 22, 1997, pp. 919-952.

Stolk, C.: Microlocal analysis of a seismic linearized inverse problem, Wave Motion 32, 2000, pp. 267-290.

Stolk, C. and deHoop, M.: Seismic inverse scattering in the wave equation approach, MSRI preprint, 2001.

Hagedoorn, F.: A process of seismic reflection interpretation, Geophysical Prospecting, 1954, pp. 85-127.

Duistermaat, J.: Fourier Integral Operators, Birkhauser, NY, 1996.

Taylor, M.: Pseudodifferential Operators, Princeton University Press, 1981.

Hörmander, L.: The Analysis of Linear Partial Differential Operators, vols. I-IV, Springer Verlag, 1983.

Nirenberg, L.: Lectures on Partial Differential Equations, CMBS Lecture Notes, AMS, 1972.

Treves, F.: Introduction To Pseudodifferential Operators And Fourier Integral Operators, Plenum, 1980.

Claerbout, J.: Basic Earth Imaging ("BEI") and Imaging the Earth's Interior ("IEI"), available through SEP web site, sepwww.stanford

Miller, D., Oristaglio,, M. and Beylkin, G.: A new slant on seismic imaging, Geophysics 52, pp. 943-964, 1987.

Bleistein, N., Cohen, J. and Stockwell, J.: The Mathematics of Seismic Imaging, Migration, and Inversion, Springer, 2000.

