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Partially linearized seismic inverse problem (“velocity anal-

ysis”): given observed seismic data Sobs, find smooth velocity

v ∈ E(X), X ⊂ R3 oscillatory reflectivity r ∈ E ′(X) so that

F [v]r ' Sobs

Acoustic partially linearized model: acoustic potential field u and

its perturbation δu solve(
1

v2

∂2

∂t2
−∇2

)
u = δ(t)δ(x− xs),

(
1

v2

∂2

∂t2
−∇2

)
δu = 2r∇2u

plus suitable bdry and initial conditions.

F [v]r =
∂δu

∂t

∣∣∣∣
Y

data acquisition manifold Y = {(xr, t; xs)} ⊂ R7, dimn Y ≤ 5

(many idealizations here!).

2



F [v] : E ′(X) → D′(Y ) is a linear map (FIO of order 1), but
dependence on v is quite nonlinear, so this inverse problem is
nonlinear.

Agenda:

• reformulation of inverse problem via extensions

• “standard processing” extension and standard VA

• the surface oriented extension and standard MVA

• the ΨDO property and why it’s important

• global failure of the ΨDO property for the SOE

• Claerbout’s depth oriented extension has the ΨDO property
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Extension of F [v]: manifold X̄ and maps χ : E ′(X) → E ′(X̄),

F̄ [v] : E ′(X̄)→ D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes.

Invertible extension: F̄ [v] has a right parametrix Ḡ[v], i.e. I −
F̄ [v]Ḡ[v] is smoothing. [The trivial extension - X̄ = X, F̄ = F -

is virtually never invertible.] Also χ has a left inverse η.

Reformulation of inverse problem: given Sobs, find v so that

Ḡ[v]Sobs ∈ R(χ) (implicitly determines r also!).
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Example 1: Standard VA extension. Treat each CMP as
if it were the result of an experiment performed over a layered
medium, but permit the layers to vary with midpoint.

Thus v = v(z), r = r(z) for purposes of analysis, but at the end
v = v(xm, z), r = r(xm, z).

F [v]R(xm, h, t) ' A(xm, h, z(xm, h, t))R(xm, z(xm, h, t))

Here z(xm, h, t) is the inverse of the 2-way traveltime

t(xm, h, z) = 2τ(xm + (h,0, z),xm)v=v(xm,z)

computed with the layered velocity v(xm, z), i.e.
z(xm, h, t(xm, h, z′)) = z′.

R is (yet another version of) “reflectivity”

R(xm, z) =
1

2

dr

dz
(xm, z)
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That is, F [v] is a change of variable followed by multiplication

by a smooth function. NB: industry standard practice is to use

vertical traveltime t0 instead of z for depth variable.

Can write this as F [v] = F̄ S∗, where F̄ [v] = N [v]−1M [v] has right

parametrix Ḡ[v] = M [v]N [v]:

N [v] = NMO operator N [v]d(xm, h, z) = d(xm, h, t(xm, h, z))

M [v] = multiplication by A

S = stacking operator

Sf(xm, z) =
∫
dh f(xm, h, z), S∗r(xm, h, z) = r(x, z)
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Identify as extension: F̄ [v], Ḡ[v] as above, X = {xm, z}, H =

{h}, X̄ = X×H,χ = S∗, η = S - the invertible extension properties

are clear.

Standard names for the Standard VA extension objects: F̄ [v]

= “inverse NMO”, Ḡ[v] = “NMO” [often the multiplication op

M [v] is neglected]; η = “stack”, χ = “spread”

How this is used for velocity analysis: Look for v that makes

Ḡ[v]d ∈ R(χ)

So what is R(χ)? χ[r](xm, z, h) = r(xm, z) Anything in range of

χ is independent of h. Practical issues ⇒ replace “independent

of” with “smooth in”.
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Inverse problem reduced to: adjust v to make Ḡ[v]dobs smooth

in h, i.e. flat in z, h display for each xm (NMO-corrected CMP).

Same as “feeling for hyperbolas” (Claerbout lectures), layered

medium VA in 8.1 of Biondi notes.

Replace z with t0, v with vRMS em localizes computation: re-

flection through xm, t0,0 flattened by adjusting vRMS(xm, t0) ⇒
1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra,

etc.

See Claerbout:BEI, also WWS MGSS 2000 notes for details.
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Left: part of survey (Sobs) from North Sea (thanks: Shell Re-
search), lightly preprocessed.
Right: restriction of Ḡ[v]Sobs to xm = const (function of depth,
offset): shows rel. sm’ness in h (offset) for properly chosen v.
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This only works where Earth is “nearly layered”. Where this
fails, go to Example 2: Surface oriented or standard MVA
extension.

Shot version: Σs = set of shot locations, X̄ = X×Σs, χ[r](x,xs) =
r(x).

F̄ [v]r̄(xr, t,xs) =
∂2

∂t2

∫
dx r̄(x,xs)

∫
dsG(xr, t− s; x)G(xs, s; x)

Offset version (preferred because it minimizes truncation arti-
facts): Σh = set of half-offsets in data, X̄ = X×Σh, χ[r](x,h) =
r(x).

F̄ [v]r̄(xs, t,h) =
∂2

∂t2

∫
dx r̄(x,h)

∫
dsG(xs + h, t− s; x)G(xs, s; x)

[Parametrize data with source location xs, time t, offset h.] NB:
note that both versions are “block diagonal” - family of operators
(FIOs - tenKroode lectures) parametrized by xs or h.
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Properties of surface oriented extension (Beylkin (1985), Rakesh

(1988)): if ‖v‖C2(X) “not too big”, then

• F̄ has the ΨDO property: F̄ F̄ ∗ is ΨDO

• singularities of F̄ F̄ ∗d ⊂ singularities of d

• straightforward construction of right parametrix Ḡ = F̄ ∗Q,

Q = ΨDO, also as generalized Radon Transform - explicitly

computable.

Range of χ (offset version): r̄(x,h) independent of h ⇒ “sem-

blance principle”: find v so that Ḡ[v]dobs is independent of h.

Practical limitations ⇒ replace “independent of h” by “smooth

in h”.
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Application of these ideas = industrial practice of migration ve-

locity analysis.

Idea: twiddle v until Ḡ[v]dobs is smooth in h.

Since it is hard to inspect Ḡ[v]dobs(x, y, z, h), pull out subset for

constant x, y = common image gather (“CIG”): display func-

tion of z, h for fixed x, y. These play same role as NMO corrected

CMP gathers in layered case.

Try to adjust v so that selected CIGs are flat - just as in Standard

VA. This is much harder, as there is no RMS velocity trick to

localize the computation - each CIG depends globally on v.

See Biondi notes for many examples.
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Nolan (1997): big trouble! In general, standard extension does

not have the ΨDO property. Geometric optics analysis: for

‖v‖C2(X) “large”, multiple rays connect source, receiver to re-

flecting points in X; block diagonal structure of F̄ [v] ⇒ info

necessary to distinguish multiple rays is projected out.
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Example (Stolk & WWS, 2001): Gaussian lens over flat reflector

at depth z (r(x) = δ(x1 − z), x1 = depth).
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Left: Const. h slice of Ḡdobs: several refl. points corresponding

to same singularity in dobs.

Right: CIG (const. x, y slice) of Ḡdobs: not smooth in h!
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Standard MVA extension only works when Earth has simple ray

geometry. When this fails, go to

Example 3: Claerbout’s depth oriented extension.

Σd = somewhat arbitrary set of vectors near 0 (“offsets”), X̄ =

X ×Σd, χ[r](x,h) = r(x)δ(h), η[r̄](x) = r̄(x,0)

F̄ [v]r̄(xs, t,xr) =
∂2

∂t2

∫
dx

∫
Σd

dh r̄(x,h)
∫
dsG(xs, t−s; x+2h)G(xr, s; x)

=
∂2

∂t2

∫
dx

∫
x+2Σd

dy r̄(x,y − x)
∫
dsG(xs, t− s; y)G(xr, s; x)

NB: in this formulation, there appears to be too many model

parameters.
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Computationally economical: for each xs solve

F̄ [v]r̄(xr, t; xs) = u(x, t; xs)|x=xr

where(
1

v(x)2

∂2

∂t2
−∇2

x

)
u(x, t; xs) =

∫
x+2Σd

dy r̄(x,y)G(y, t; xs)

(
1

v(y)2

∂2

∂t2
−∇2

y

)
G(y, t; xs) = δ(t)δ(xs − y)

Finite difference scheme: form RHS for eqn 1, step u forward in

t, step G forward in t.
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Computing Ḡ[v]: instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint field as in

standard reverse time prestack migration:(
1

v(x)2

∂2

∂t2
−∇2

x

)
w(x, t; xs) =

∫
dxr d(xr, t; xs)δ(x− xr)

with w(x, t; xs) = 0, t >> 0.

Then

F̄ [v]d(x,h) =
∫
dxs

∫
dtG(x + 2h, t; xs)w(x, t; xs)

i.e. exactly the same computation as for reverse time prestack,

except that crosscorrelation occurs at an offset 2h.
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Stolk and deHoop, 2001: Claerbout extension has the ΨDO

property, at least when restricted to r̄ of the form r̄(x,h) =

R(x, h1, h2)δ(h3), and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivity of wavefront or canonical rela-

tion CF̄ ⊂ T
∗(X̄)− {0} × T ∗(Y )− {0} which describes singularity

mapping properties of F̄ :

(x,h, ξ, ν,y, η) ∈ CFδ[v] ⇔

for someu ∈ E ′(X̄), (x,h, ξ, ν) ∈WF (u), and (y, η) ∈WF (F̄ u)
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Characterization of CF̄ :

((x,h, ξ, ν), (xs, t,xr, ξs, τ, ξr)) ∈ CF̄ [v] ⊂ T ∗(X̄)−{0}×T ∗(Y )−{0}

⇔ there are rays of geometric optics (Xs,Ξs), (Xr,Ξr) and times

ts, tr so that

Π(Xs(0), t,Xr(0),Ξs(0), τ,Ξr(0)) = (xs, t,xr, ξs, τ, ξr),

Xs(ts) = x,Xr(tr) = x + 2h, ts + tr = t,

Ξs(ts) + Ξr(tr)||ξ,Ξs(ts)− Ξr(tr)||ν
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Proof: uses wave equations for u,G and

• Gabor calculus: computes wave front sets of products, pull-

backs, integrals, etc. See Duistermaat, Ch. 1.

• Propagation of Singularities Theorem

and that’s all! [No integral representations, phase functions,...]
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Note intrinsic ambiguity: if you have a ray pair, move times

ts, tr resp. t′s, t
′
r, for which ts + tr = t′s + t′r = t then you can

construct two points (x,h, ξ, ν), (x′,h′, ξ′, ν′) which are candidates

for membership in WF (r̄) and which satisfy the above relations

with the same point in the cotangent bundle of T ∗(Y ).

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

• DSR assumption: all rays carrying significant reflected energy

(source or receiver) are upcoming.

• Restrict F̄ to the domain Z ⊂ E ′(X̄)

r̄ ∈ Z ⇔ r̄(x,h) = R(x, h1, h2)δ(h3)
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If r̄ ∈ Z, then (x,h, ξ, ν) ∈ WF (r̄) ⇒ h3 = 0. So source and

receiver rays in CF̄ must terminate at same depth, to hit such a

point.

Because of DSR assumption, this fixes the traveltimes ts, tr.

Restricted to Z, CF̄ is injective.

⇒ CF̄ ∗F̄ = I

⇒ F̄ ∗F̄ is ΨDO when restricted to Z.
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Quantifying the semblance principle: devise operator W for which

kerW ' Rχ,

then minimize a suitable norm of

WḠdobs.

Converts inverse problem to optimization problem. With proper

choice of W , ΨDO property ⇒ objective is smooth ⇒ can use

Newton and relatives.

Upshot: Claerbout’s depth oriented extension appears to of-

fer basis for efficient new algorithms to solve velocity analysis

problem - research currently under way in several groups.

25



Summary:

• quite a bit is known about the imaging problem under “s-

tandard hypotheses”: mathematics of multipathing imag-

ing (asymptotic inversion, invertible extensions) clarified over

last 10 years.

• many imaging situations (eg. near salt - cf. Biondi) violate

“standard hypotheses” grossly - need much better theory

• extension of imaging via multiple suppression - some progress,

many open questions re non-surface multiples

• velocity analysis - some progress, but still in primitive state

mathematically

• almost no progress on underlying nonlinear inverse problem
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