tenKroode, Symes talks: in pdf on
www.trip.caam.rice.edu

Partially linearized seismic inverse problem ("velocity analysis"): given observed seismic data $S^{\text {obs }}$, find smooth velocity $v \in \mathcal{E}(X), X \subset \mathbf{R}^{3}$ oscillatory reflectivity $r \in \mathcal{E}^{\prime}(X)$ so that

$$
F[v] r \simeq S^{\mathrm{obs}}
$$

Acoustic partially linearized model: acoustic potential field u and its perturbation δu solve

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) u=\delta(t) \delta\left(\mathrm{x}-\mathrm{x}_{s}\right),\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \delta u=2 r \nabla^{2} u
$$

plus suitable bdry and initial conditions.

$$
F[v] r=\left.\frac{\partial \delta u}{\partial t}\right|_{Y}
$$

data acquisition manifold $Y=\left\{\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)\right\} \subset \mathbf{R}^{7}, \operatorname{dimn} Y \leq 5$ (many idealizations here!).
$F[v]: \mathcal{E}^{\prime}(X) \rightarrow \mathcal{D}^{\prime}(Y)$ is a linear map (FIO of order 1), but dependence on v is quite nonlinear, so this inverse problem is nonlinear.

Agenda:

- reformulation of inverse problem via extensions
- "standard processing" extension and standard VA
- the surface oriented extension and standard MVA
- the $\Psi D O$ property and why it's important
- global failure of the Ψ DO property for the SOE
- Claerbout's depth oriented extension has the $\Psi D O$ property

Extension of $F[v]$: manifold \bar{X} and maps $\chi: \mathcal{E}^{\prime}(X) \rightarrow \mathcal{E}^{\prime}(\bar{X})$, $\bar{F}[v]: \mathcal{E}^{\prime}(\bar{X}) \rightarrow \mathcal{D}^{\prime}(Y)$ so that

commutes.

Invertible extension: $\bar{F}[v]$ has a right parametrix $\bar{G}[v]$, i.e. $I-$ $\bar{F}[v] \bar{G}[v]$ is smoothing. [The trivial extension $-\bar{X}=X, \bar{F}=F-$ is virtually never invertible.] Also χ has a left inverse η.
 $\bar{G}[v] S^{\mathrm{obs}} \in \mathcal{R}(\chi)$ (implicitly determines r also!).

Example 1: Standard VA extension. Treat each CMP as if it were the result of an experiment performed over a layered medium, but permit the layers to vary with midpoint.

Thus $v=v(z), r=r(z)$ for purposes of analysis, but at the end $v=v\left(\mathrm{x}_{m}, z\right), r=r\left(\mathrm{x}_{m}, z\right)$.

$$
F[v] R\left(\mathbf{x}_{m}, h, t\right) \simeq A\left(\mathbf{x}_{m}, h, z\left(\mathbf{x}_{m}, h, t\right)\right) R\left(\mathbf{x}_{m}, z\left(\mathbf{x}_{m}, h, t\right)\right)
$$

Here $z\left(\mathrm{x}_{m}, h, t\right)$ is the inverse of the 2-way traveltime

$$
t\left(\mathbf{x}_{m}, h, z\right)=2 \tau\left(\mathbf{x}_{m}+(h, 0, z), \mathbf{x}_{m}\right)_{v=v\left(\mathbf{x}_{m}, z\right)}
$$

computed with the layered velocity $v\left(\mathbf{x}_{m}, z\right)$, i.e.
$z\left(\mathbf{x}_{m}, h, t\left(\mathbf{x}_{m}, h, z^{\prime}\right)\right)=z^{\prime}$.
R is (yet another version of) "reflectivity"

$$
R\left(\mathbf{x}_{m}, z\right)=\frac{1}{2} \frac{d r}{d z}\left(\mathbf{x}_{m}, z\right)
$$

That is, $F[v]$ is a change of variable followed by multiplication by a smooth function. NB: industry standard practice is to use vertical traveltime t_{0} instead of z for depth variable.

Can write this as $F[v]=\bar{F} S^{*}$, where $\bar{F}[v]=N[v]^{-1} M[v]$ has right parametrix $\bar{G}[v]=M[v] N[v]$:
$N[v]=\mathbf{N M O}$ operator $N[v] d\left(\mathrm{x}_{m}, h, z\right)=d\left(\mathrm{x}_{m}, h, t\left(\mathrm{x}_{m}, h, z\right)\right)$
$M[v]=$ multiplication by A
$S=$ stacking operator

$$
S f\left(\mathbf{x}_{m}, z\right)=\int d h f\left(\mathbf{x}_{m}, h, z\right), S^{*} r\left(\mathbf{x}_{m}, h, z\right)=r(\mathbf{x}, z)
$$

Identify as extension: $\bar{F}[v], \bar{G}[v]$ as above, $X=\left\{\mathbf{x}_{m}, z\right\}, H=$ $\{h\}, \bar{X}=X \times H, \chi=S^{*}, \eta=S$ - the invertible extension properties are clear.

Standard names for the Standard VA extension objects: $\bar{F}[v]$ $=$ "inverse NMO", $\bar{G}[v]=$ "NMO" [often the multiplication op $M[v]$ is neglected]; $\eta=$ "stack", $\chi=$ "spread"

How this is used for velocity analysis: Look for v that makes $\bar{G}[v] d \in \mathcal{R}(\chi)$

So what is $\mathcal{R}(\chi)$? $\chi[r]\left(\mathrm{x}_{m}, z, h\right)=r\left(\mathrm{x}_{m}, z\right)$ Anything in range of χ is independent of h. Practical issues \Rightarrow replace "independent of" with "smooth in".

Inverse problem reduced to: adjust v to make $\bar{G}[v] d^{\text {obs }}$ smooth in h, i.e. flat in z, h display for each x_{m} (NMO-corrected CMP). Same as "feeling for hyperbolas" (Claerbout lectures), layered medium VA in 8.1 of Biondi notes.

Replace z with t_{0}, v with v_{RMS} em localizes computation: reflection through $\mathbf{x}_{m}, t_{0}, 0$ flattened by adjusting $v_{\mathrm{RMS}}\left(\mathbf{x}_{m}, t_{0}\right) \Rightarrow$ 1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra, etc.

See Claerbout:BEI, also WWS MGSS 2000 notes for details.

Left: part of survey ($S^{\text {obs }}$) from North Sea (thanks: Shell Research), lightly preprocessed.
Right: restriction of $\bar{G}[v] S^{\text {obs }}$ to $\mathbf{x}_{m}=$ const (function of depth, offset): shows rel. sm'ness in h (offset) for properly chosen v.

This only works where Earth is "nearly layered". Where this fails, go to Example 2: Surface oriented or standard MVA extension.

Shot version: $\Sigma_{s}=$ set of shot locations, $\bar{X}=X \times \Sigma_{s}, \chi[r]\left(\mathbf{x}, \mathbf{x}_{s}\right)=$ $r(\mathrm{x})$.

$$
\bar{F}[v] \bar{r}\left(\mathbf{x}_{r}, t, \mathbf{x}_{s}\right)=\frac{\partial^{2}}{\partial t^{2}} \int d x \bar{r}\left(\mathbf{x}, \mathbf{x}_{s}\right) \int d s G\left(\mathbf{x}_{r}, t-s ; \mathbf{x}\right) G\left(\mathbf{x}_{s}, s ; \mathbf{x}\right)
$$

Offset version (preferred because it minimizes truncation artifacts): $\Sigma_{h}=$ set of half-offsets in data, $\bar{X}=X \times \Sigma_{h}, \chi[r](\mathbf{x}, \mathbf{h})=$ $r(\mathrm{x})$.

$$
\bar{F}[v] \bar{r}\left(\mathbf{x}_{s}, t, \mathbf{h}\right)=\frac{\partial^{2}}{\partial t^{2}} \int d x \bar{r}(\mathbf{x}, \mathbf{h}) \int d s G\left(\mathbf{x}_{s}+\mathbf{h}, t-s ; \mathbf{x}\right) G\left(\mathbf{x}_{s}, s ; \mathbf{x}\right)
$$

[Parametrize data with source location x_{s}, time t, offset h .] NB: note that both versions are "block diagonal" - family of operators (FIOs - tenKroode lectures) parametrized by \mathbf{x}_{s} or \mathbf{h}.

Properties of surface oriented extension (Beylkin (1985), Rakesh (1988)): if $\|v\|_{C^{2}(X)}$ "not too big", then

- \bar{F} has the $\Psi D O$ property: $\bar{F} \bar{F}^{*}$ is $\psi D O$
- singularities of $\bar{F} \bar{F}^{*} d \subset$ singularities of d
- straightforward construction of right parametrix $\bar{G}=\bar{F}^{*} Q$, $Q=\Psi \mathrm{DO}$, also as generalized Radon Transform - explicitly computable.

Range of χ (offset version): $\bar{r}(\mathbf{x}, \mathbf{h})$ independent of $\mathbf{h} \Rightarrow$ "semblance principle": find v so that $\bar{G}[v] d^{\text {obs }}$ is independent of \mathbf{h}. Practical limitations \Rightarrow replace "independent of h" by "smooth in h".

Application of these ideas $=$ industrial practice of migration velocity analysis.

Idea: twiddle v until $\bar{G}[v] d^{\mathrm{obs}}$ is smooth in \mathbf{h}.
Since it is hard to inspect $\bar{G}[v] d^{\mathrm{obs}}(x, y, z, h)$, pull out subset for constant $x, y=$ common image gather ("CIG"): display function of z, h for fixed x, y. These play same role as NMO corrected CMP gathers in layered case.

Try to adjust v so that selected CIGs are flat - just as in Standard VA. This is much harder, as there is no RMS velocity trick to localize the computation - each CIG depends globally on v.

See Biondi notes for many examples.

Nolan (1997): big trouble! In general, standard extension does not have the $\Psi D O$ property. Geometric optics analysis: for $\|v\|_{C^{2}(X)}$ "large", multiple rays connect source, receiver to reflecting points in X; block diagonal structure of $\bar{F}[v] \Rightarrow$ info necessary to distinguish multiple rays is projected out.

Example (Stolk \& WWS, 2001): Gaussian lens over flat reflector at depth $\mathrm{z}\left(r(\mathrm{x})=\delta\left(x_{1}-z\right), x_{1}=\right.$ depth $)$.

Left: Const. h slice of $\bar{G} d^{\text {obs }}$: several refl. points corresponding to same singularity in d^{obs}.
Right: CIG (const. x, y slice) of $\bar{G} d^{\text {obs }}$: not smooth in h !

Standard MVA extension only works when Earth has simple ray geometry. When this fails, go to

Example 3: Claerbout's depth oriented extension.
$\Sigma_{d}=$ somewhat arbitrary set of vectors near 0 ("offsets"), $\bar{X}=$ $X \times \Sigma_{d}, \chi[r](\mathbf{x}, \mathbf{h})=r(\mathbf{x}) \delta(\mathbf{h}), \eta[\bar{r}](\mathbf{x})=\bar{r}(\mathbf{x}, 0)$

$$
\begin{aligned}
& \bar{F}[v] \bar{r}\left(\mathbf{x}_{s}, t, \mathbf{x}_{r}\right)=\frac{\partial^{2}}{\partial t^{2}} \int d x \int_{\Sigma_{d}} d h \bar{r}(\mathbf{x}, \mathbf{h}) \int d s G\left(\mathbf{x}_{s}, t-s ; \mathbf{x}+2 \mathbf{h}\right) G\left(\mathbf{x}_{r}, s ; \mathbf{x}\right) \\
& \quad=\frac{\partial^{2}}{\partial t^{2}} \int d x \int_{\mathbf{x}+2 \Sigma_{d}} d y \bar{r}(\mathbf{x}, \mathbf{y}-\mathbf{x}) \int d s G\left(\mathbf{x}_{s}, t-s ; \mathbf{y}\right) G\left(\mathbf{x}_{r}, s ; \mathbf{x}\right)
\end{aligned}
$$

NB: in this formulation, there appears to be too many model parameters.

Computationally economical: for each x_{s} solve

$$
\bar{F}[v] \bar{r}\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)=\left.u\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)\right|_{\mathbf{x}=\mathbf{x}_{r}}
$$

where

$$
\begin{gathered}
\left(\frac{1}{v(\mathrm{x})^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla_{\mathrm{x}}^{2}\right) u\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\int_{\mathrm{x}+2 \Sigma_{d}} d y \bar{r}(\mathrm{x}, \mathbf{y}) G\left(\mathbf{y}, t ; \mathbf{x}_{s}\right) \\
\left(\frac{1}{v(\mathrm{y})^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla_{\mathrm{y}}^{2}\right) G\left(\mathbf{y}, t ; \mathbf{x}_{s}\right)=\delta(t) \delta\left(\mathbf{x}_{s}-\mathbf{y}\right)
\end{gathered}
$$

Finite difference scheme: form RHS for eqn 1, step u forward in t , step G forward in t .

Computing $\bar{G}[v]$: instead of parametrix, be satisfied with adjoint.
Reverse time adjoint computation - specify adjoint field as in standard reverse time prestack migration:

$$
\left(\frac{1}{v(\mathrm{x})^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla_{\mathrm{x}}^{2}\right) w\left(\mathrm{x}, t ; \mathbf{x}_{s}\right)=\int d x_{r} d\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right) \delta\left(\mathrm{x}-\mathrm{x}_{r}\right)
$$

with $w\left(\mathrm{x}, t ; \mathrm{x}_{s}\right)=0, t \gg 0$.
Then

$$
\bar{F}[v] d(\mathbf{x}, \mathbf{h})=\int d x_{s} \int d t G\left(\mathbf{x}+2 \mathbf{h}, t ; \mathbf{x}_{s}\right) w\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)
$$

i.e. exactly the same computation as for reverse time prestack, except that crosscorrelation occurs at an offset $2 h$.

Stolk and deHoop, 2001: Claerbout extension has the Ψ DO property, at least when restricted to \bar{r} of the form $\bar{r}(\mathrm{x}, \mathrm{h})=$ $R\left(\mathrm{x}, h_{1}, h_{2}\right) \delta\left(h_{3}\right)$, and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivity of wavefront or canonical relation $C_{\bar{P}} \subset T^{*}(\bar{X})-\{0\} \times T^{*}(Y)-\{0\}$ which describes singularity mapping properties of \bar{F} :

$$
(\mathrm{x}, \mathbf{h}, \xi, \nu, \mathbf{y}, \eta) \in C_{F_{\delta}[v]} \Leftrightarrow
$$

for some $u \in \mathcal{E}^{\prime}(\bar{X}),(\mathbf{x}, \mathbf{h}, \xi, \nu) \in W F(u)$, and $(\mathbf{y}, \eta) \in W F(\bar{F} u)$

Characterization of $C_{\bar{F}}$:
$\left((\mathbf{x}, \mathbf{h}, \xi, \nu),\left(\mathbf{x}_{s}, t, \mathbf{x}_{r}, \xi_{\mathbf{s}}, \tau, \xi_{\mathbf{r}}\right)\right) \in C_{\bar{F}}[v] \subset T^{*}(\bar{X})-\{0\} \times T^{*}(Y)-\{0\}$
\Leftrightarrow there are rays of geometric optics $\left(\mathbf{X}_{s}, \boldsymbol{\Xi}_{s}\right),\left(\mathbf{X}_{r}, \boldsymbol{\Xi}_{r}\right)$ and times t_{s}, t_{r} so that

$$
\begin{gathered}
\Pi\left(\mathbf{X}_{s}(0), t, \mathbf{X}_{r}(0), \mathbf{\Xi}_{s}(0), \tau, \boldsymbol{\Xi}_{r}(0)\right)=\left(\mathbf{x}_{s}, t, \mathbf{x}_{r}, \xi_{s}, \tau, \xi_{r}\right), \\
\mathbf{X}_{s}\left(t_{s}\right)=\mathbf{x}, \mathbf{X}_{r}\left(t_{r}\right)=\mathbf{x}+2 \mathbf{h}, t_{s}+t_{r}=t \\
\boldsymbol{\Xi}_{s}\left(t_{s}\right)+\mathbf{\Xi}_{r}\left(t_{r}\right)\left\|\xi, \boldsymbol{\Xi}_{s}\left(t_{s}\right)-\mathbf{\Xi}_{r}\left(t_{r}\right)\right\| \nu
\end{gathered}
$$

Proof: uses wave equations for u, G and

- Gabor calculus: computes wave front sets of products, pullbacks, integrals, etc. See Duistermaat, Ch. 1.
- Propagation of Singularities Theorem
and that's all! [No integral representations, phase functions,...]

Note intrinsic ambiguity: if you have a ray pair, move times t_{s}, t_{r} resp. $t_{s}^{\prime}, t_{r}^{\prime}$, for which $t_{s}+t_{r}=t_{s}^{\prime}+t_{r}^{\prime}=t$ then you can construct two points ($\mathbf{x}, \mathbf{h}, \xi, \nu),\left(\mathbf{x}^{\prime}, \mathbf{h}^{\prime}, \xi^{\prime}, \nu^{\prime}\right)$ which are candidates for membership in $W F(\bar{r})$ and which satisfy the above relations with the same point in the cotangent bundle of $T^{*}(Y)$.

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

- DSR assumption: all rays carrying significant reflected energy (source or receiver) are upcoming.
- Restrict \bar{F} to the domain $\mathcal{Z} \subset \mathcal{E}^{\prime}(\bar{X})$

$$
\bar{r} \in \mathcal{Z} \Leftrightarrow \bar{r}(\mathbf{x}, \mathbf{h})=R\left(\mathbf{x}, h_{1}, h_{2}\right) \delta\left(h_{3}\right)
$$

If $\bar{r} \in \mathcal{Z}$, then $(\mathbf{x}, \mathbf{h}, \xi, \nu) \in W F(\bar{r}) \Rightarrow h_{3}=0$. So source and receiver rays in $C_{\bar{F}}$ must terminate at same depth, to hit such a point.

Because of DSR assumption, this fixes the traveltimes t_{s}, t_{r}.

Restricted to $\mathcal{Z}, C_{\bar{F}}$ is injective.
$\Rightarrow C_{\bar{F}^{*} \bar{F}}=I$
$\Rightarrow \bar{F}^{*} \bar{F}$ is Ψ DO when restricted to \mathcal{Z}.

Quantifying the semblance principle: devise operator W for which

$$
\operatorname{ker} W \simeq \mathcal{R} \chi,
$$

then minimize a suitable norm of

$$
W \bar{G} d^{\mathrm{obs}} .
$$

Converts inverse problem to optimization problem. With proper choice of $W, \Psi D O$ property \Rightarrow objective is smooth \Rightarrow can use Newton and relatives.

Upshot: Claerbout's depth oriented extension appears to offer basis for efficient new algorithms to solve velocity analysis problem - research currently under way in several groups.

Summary:

- quite a bit is known about the imaging problem under "standard hypotheses": mathematics of multipathing imaging (asymptotic inversion, invertible extensions) clarified over last 10 years.
- many imaging situations (eg. near salt - cf. Biondi) violate "standard hypotheses" grossly - need much better theory
- extension of imaging via multiple suppression - some progress, many open questions re non-surface multiples
- velocity analysis - some progress, but still in primitive state mathematically
- almost no progress on underlying nonlinear inverse problem

