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Partially linearized seismic inverse problem (‘“velocity anal-
ysis' ): given observed seismic data SObS, find smooth velocity
ve E(X),X c R3 oscillatory reflectivity r € £'(X) so that

Fv]r ~ §°Ps

Acoustic partially linearized model: acoustic potential field v and
its perturbation du solve

2 1 H2
(ia_ — v2> u = 5(t>5(X — XS); ( 0 — v2> ou = QTVQ’U,

v2 Ot2 v29t2
plus suitable bdry and initial conditions.
00
Flv]r = oou
ot ly

data acquisition manifold Y = {(x,t;xs)} ¢ R’, dimn Y < 5
(many idealizations herel!).



Flv] : E&(X) — D'(Y) is a linear map (FIO of order 1), but
dependence on v IS quite nonlinear, so this inverse problem is
nonlinear.

Agenda:
e reformulation of inverse problem via extensions
e ‘‘'standard processing’ extension and standard VA
e the surface oriented extension and standard MVA
e the WDO property and why it's important
e global failure of the WDO property for the SOE

e Claerbout’'s depth oriented extension has the WDO property
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Extension of F[v]: manifold X and maps x : &(X) — &(X),
Flv]: &(X) - D'(Y) so that
F'[v]
(X)) — D)
X T T id
E(X) — DY)
Flv]

commutes.

Invertible extension: F[v] has a right parametrix G[v], i.e. I —
F[v]G[v] is smoothing. [The trivial extension - X = X, F = F -
is virtually never invertible.] Also x has a left inverse n.

Reformulation of inverse problem: given S°PS find v so that
G[v]S°PS € R(x) (implicitly determines r also!).



Example 1: Standard VA extension. Treat each CMP as
if it were the result of an experiment performed over a layered
medium, but permit the layers to vary with midpoint.

Thus v = v(z),r = r(z) for purposes of analysis, but at the end
v=vXm,2),r =1(Xm, 2).

F[U]R(XTYM h? t) =~ A(X’H% h7 Z(Xma h7 t))R(Xm7 Z<Xm7 h7 t))
Here z(xm, h,t) is the inverse of the 2-way traveltime

t(Xm, h, Z) = QT(Xm _I_ (h7 O) Z)) Xm)v:v(xm,z)

computed with the layered velocity v(xm, z), i.e.
2(xXm, h, t(xm, h, 2")) = 2.

R is (yet another version of) “reflectivity”

1dr
R(Xma Z) — Eg(xma Z)



That is, F[v] is a change of variable followed by multiplication
by a smooth function. NB: industry standard practice is to use
vertical traveltime tg instead of z for depth variable.

Can write this as F[v] = FS*, where F[v] = N[v]~1M[v] has right
parametrix G[v] = M[v]N[v]:

N[v] = NMO operator N[v]d(xXm, h,z) = d(xm, h, t(Xm, h, z))
M [v] = multiplication by A

S = stacking operator

Sf(Xm, Z) — / dhf(XW% h7 Z)7 S*T(XWM ha Z) — T(Xa Z)



Identify as extension: F[v],G[v] as above, X = {xm,z},H =
{h},X = XxH,x = S*n= S - the invertible extension properties
are clear.

Standard names for the Standard VA extension objects: F[v]
= “inverse NMQO", G[v] = “NMQO" [often the multiplication op
M|[v] is neglected]; n = “stack”, x = "“spread”

How this is used for velocity analysis: Look for v that makes
Glv]ld € R(x)

So what is R(x)? x[r](xm,z,h) = r(xm,z) Anything in range of
x IS independent of h. Practical issues =- replace “independent
of”" with “smooth in".



Inverse problem reduced to: adjust v to make G[v]d°PS smooth
in h, i.e. flat in z, h display for each x,, (NMO-corrected CMP).
Same as ‘feeling for hyperbolas’ (Claerbout lectures), layered
medium VA in 8.1 of Biondi notes.

Replace z with tg, v with vgpms €m localizes computation: re-
flection through xm,,tg, 0 flattened by adjusting vpms(Xm,tg) =
1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra,
etc.

See Claerbout:BEI, also WWS MGSS 2000 notes for details.
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Left: part of survey (S°PS) from North Sea (thanks: Shell Re-
search), lightly preprocessed.

Right: restriction of G[v]S°PS to x,, = const (function of depth,
offset): shows rel. sm'ness in h (offset) for properly chosen wv.
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This only works where Earth is “nearly layered”. WHhere this

fails, go to Example 2: Surface oriented or standard MVA
extension.

Shot version: X = set of shot locations, X = X x>, x[r](x,xs) =

r(x).

Flo]7(xr, £, X5) = —/ dz 7(x, Xs) / ds G(xr, t — 5. X)G(Xs, 5. X)

Offset version (preferred because it minimizes truncation arti-
facts): ¥, = set of half-offsets in data, X = X x X, x[r](x,h) =
r(x).

_ 92
Flv]7(xs, t, h) = @/ dz 7(x, h) / ds G(xs +h,t — s x)G(xs, s X)

[Parametrize data with source location xg, time t, offset h.] NB:
note that both versions are “block diagonal” - family of operators
(FIOs - tenKroode lectures) parametrized by xs or h.
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Properties of surface oriented extension (Beylkin (1985), Rakesh
(1988)): if [vllg2¢xy “not too big”, then

e [ has the WDO property: FF* is WDO
e singularities of FF*d C singularities of d

e straightforward construction of right parametrix G = F*Q,
Q = WDO, also as generalized Radon Transform - explicitly
computable.

Range of x (offset version): r(x,h) independent of h = ‘“sem-
blance principle”: find v so that G[v]d°PS is independent of h.
Practical limitations = replace “independent of h"” by ‘“smooth
in h'".
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Application of these ideas = industrial practice of migration ve-
locity analysis.

Idea: twiddle v until G[v]d°PS is smooth in h.

Since it is hard to inspect G[v]d°PS(x,y, z, h), pull out subset for
constant z,y = common image gather (“CIG"): display func-
tion of z, h for fixed x,y. These play same role as NMO corrected
CMP gathers in layered case.

Try to adjust v so that selected CIGs are flat - just as in Standard
VA. This is much harder, as there is no RMS velocity trick to
localize the computation - each CIG depends globally on w.

See Biondi notes for many examples.
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Nolan (1997): big trouble! In general, standard extension does
not have the WDO property. Geometric optics analysis: for
lullc2(xy “large”, multiple rays connect source, receiver to re-
flecting points in X; block diagonal structure of Flv] = info
necessary to distinguish multiple rays is projected out.

X1

= .
\

h

R

Example (Stolk & WWS, 2001): Gaussian lens over flat reflector
at depth z (r(x) = 6(x1 — 2), z1 = depth).
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Left: Const. h slice of Gd°PS: several refl. points corresponding
to same singularity in d°Ps.
Right: CIG (const. z,y slice) of Gd°PS: not smooth in h!
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Standard MVA extension only works when Earth has simple ray
geometry. When this fails, go to

Example 3: Claerbout’s depth oriented extension.

>, = somewhat arbitrary set of vectors near 0 (“offsets”), X =
X x g, xlr](x,h) = r(x)é(h), n[r](x) = 7(x,0)

82

F[U]F(Xsatax?“) — a 2

/dw /Zd dh7(x, h) / ds G(xs,t—s; x+2h)G(xr, 5; X)
8752/ dx /X—I—de dy r(x,y — x) / ds G(xs,t — s, y)G(xr, 5; X)

NB: in this formulation, there appears to be too many model
parameters.
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Computationally economical: for each xs solve
F['U]'F(Xr, t, X3> — 'U/(X, t, X8)|X:X7~

where

1 0?2 5 | ) |
<U(X)28t2 — Vx> u(x,t; Xs) = /x+22d dyr(x,y)G(y,t; Xs)

v(y)20t2
Finite difference scheme: form RHS for egn 1, step w forward in
t, step GG forward in t.

2
( Lo V§> G(y,t;xs) = 6()6(xs — y)
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Computing G[v]: instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint field as in
standard reverse time prestack migration:

2
(v(i)Qth B V%) wix, i xs) = / dxy d(Xr,t; Xs)0(X — Xr)

with w(x,t;xs) = 0,t >> 0.
Then

Flvld(x,h) = / das / dt G(x + 2h, t: xs)w(x, £ Xs)

i.e. exactly the same computation as for reverse time prestack,
except that crosscorrelation occurs at an offset 2h.
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Stolk and deHoop, 2001: Claerbout extension has the wWDO
property, at least when restricted to r of the form 7(x,h) =
R(x,h1,hs)0(h3), and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivity of wavefront or canonical rela-
tion Cn C T*(X) — {0} x T*(Y) — {0} which describes singularity
mapping properties of F:

(X7 h7£7V7Y7n> € CF5[U] <~

for someu € £'(X), (x,h,¢,v) € WF(w), and (y,n) € WF(Fu)
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Characterization of CF:

((X7 h7£7 V)7 (X87t7XT75877-7 gr)) S CF[U] C T*(X) o {O} X T*(Y) T {O}

< there are rays of geometric optics (Xg, Es), (X, Er) and times
ts,ty SO that

H(XS(O)a ta XT(O)a ES(O)7 T, ET(O)) — (X87 t) X7, 587 T, 57“)7

Xs(ts) — X, er-(trr) = X —I_ 2h, ts _I_ tr — t,

Es(ts) + Er(tr)]|§, Bs(ts) — Er(tr)||v
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Proof. uses wave equations for u,G and

e Gabor calculus: computes wave front sets of products, pull-
backs, integrals, etc. See Duistermaat, Ch. 1.

e Propagation of Singularities Theorem

and that's all! [No integral representations, phase functions,...]
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Note intrinsic ambiguity: if you have a ray pair, move times
ts,tr resp. t., t., for which ts +t, = t. +t/. = t then you can
construct two points (x, h, &, v), (X', 1, ¢, ") which are candidates
for membership in WF(7) and which satisfy the above relations
with the same point in the cotangent bundle of T*(Y).

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

e DSR assumption: all rays carrying significant reflected energy
(source or receiver) are upcoming.

e Restrict F' to the domain Z C £'(X)
rezZ & F(X, h) = R(X, h1, h2)5(h3)
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If r € Z, then (x,h,&(,v) €¢ WF(r) = hs = 0. So source and

receiver rays in CF must terminate at same depth, to hit such a
point.

Because of DSR assumption, this fixes the traveltimes tg,t,.
Restricted to Z, (5 iIs injective.

= F*F is WDO when restricted to Z.
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Quantifying the semblance principle: devise operator W for which

ker W ~ Ry,
then minimize a suitable norm of
W GdoPs.

Converts inverse problem to optimization problem. With proper
choice of W, WDO property = objective is smooth = can use
Newton and relatives.

Upshot: Claerbout’'s depth oriented extension appears to of-
fer basis for efficient new algorithms to solve velocity analysis
problem - research currently under way in several groups.
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Summary:

e quite a bit is known about the imaging problem under “s-
tandard hypotheses’: mathematics of multipathing imag-
ing (asymptotic inversion, invertible extensions) clarified over
last 10 years.

e many imaging situations (eg. near salt - cf. Biondi) violate
“standard hypotheses’ grossly - need much better theory

e extension of imaging via multiple suppression - some progress,
many open questions re non-surface multiples

e velocity analysis - some progress, but still in primitive state
mathematically

e almost no progress on underlying nonlinear inverse problem
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