tenKroode, Symes talks: in pdf on

www.trip.caam.rice.edu

Partially linearized seismic inverse problem ("velocity analysis"): given observed seismic data S^{obs} , find smooth *velocity* $v \in \mathcal{E}(X), X \subset \mathbb{R}^3$ oscillatory *reflectivity* $r \in \mathcal{E}'(X)$ so that

$$F[v]r \simeq S^{\mathsf{obs}}$$

Acoustic partially linearized model: acoustic potential field u and its perturbation δu solve

$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)u = \delta(t)\delta(\mathbf{x} - \mathbf{x}_s), \ \left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\delta u = 2r\nabla^2 u$$

plus suitable bdry and initial conditions.

$$F[v]r = \frac{\partial \delta u}{\partial t}\Big|_{Y}$$

data acquisition manifold $Y = \{(\mathbf{x}_r, t; \mathbf{x}_s)\} \subset \mathbf{R}^7$, dimn $Y \leq 5$ (many idealizations here!).

 $F[v] : \mathcal{E}'(X) \to \mathcal{D}'(Y)$ is a linear map (FIO of order 1), but dependence on v is quite nonlinear, so this inverse problem is nonlinear.

Agenda:

- reformulation of inverse problem via *extensions*
- "standard processing" extension and standard VA
- the surface oriented extension and standard MVA
- the ΨDO property and why it's important
- global failure of the ΨDO property for the SOE
- \bullet Claerbout's depth oriented extension has the ΨDO property

Extension of F[v]: manifold \overline{X} and maps $\chi : \mathcal{E}'(X) \to \mathcal{E}'(\overline{X})$, $\overline{F}[v] : \mathcal{E}'(\overline{X}) \to \mathcal{D}'(Y)$ so that

$$ar{F}[v] \ \mathcal{E}'(ar{X}) & o & \mathcal{D}'(Y) \ \chi & \uparrow & \uparrow & o \ \mathcal{E}'(X) & o & \mathcal{D}'(Y) \ & \mathcal{F}[v] \end{array}$$
id

commutes.

Invertible extension: $\overline{F}[v]$ has a right parametrix $\overline{G}[v]$, i.e. $I - \overline{F}[v]\overline{G}[v]$ is smoothing. [The trivial extension - $\overline{X} = X, \overline{F} = F$ - is virtually never invertible.] Also χ has a left inverse η .

Reformulation of inverse problem: given S^{obs} , find v so that $\overline{G}[v]S^{\text{obs}} \in \mathcal{R}(\chi)$ (implicitly determines r also!).

Example 1: Standard VA extension. Treat each CMP as *if it were the result of an experiment performed over a layered medium*, but permit the layers to vary with midpoint.

Thus v = v(z), r = r(z) for purposes of analysis, but at the end $v = v(\mathbf{x}_m, z), r = r(\mathbf{x}_m, z)$.

 $F[v]R(\mathbf{x}_m, h, t) \simeq A(\mathbf{x}_m, h, z(\mathbf{x}_m, h, t))R(\mathbf{x}_m, z(\mathbf{x}_m, h, t))$

Here $z(\mathbf{x}_m, h, t)$ is the inverse of the 2-way traveltime

 $t(\mathbf{x}_m, h, z) = 2\tau(\mathbf{x}_m + (h, 0, z), \mathbf{x}_m)_{v=v(\mathbf{x}_m, z)}$ computed with the layered velocity $v(\mathbf{x}_m, z)$, i.e. $z(\mathbf{x}_m, h, t(\mathbf{x}_m, h, z')) = z'.$

R is (yet another version of) "reflectivity"

$$R(\mathbf{x}_m, z) = \frac{1}{2} \frac{dr}{dz} (\mathbf{x}_m, z)$$

That is, F[v] is a change of variable followed by multiplication by a smooth function. NB: industry standard practice is to use vertical traveltime t_0 instead of z for depth variable.

Can write this as $F[v] = \overline{F}S^*$, where $\overline{F}[v] = N[v]^{-1}M[v]$ has right parametrix $\overline{G}[v] = M[v]N[v]$:

 $N[v] = NMO \text{ operator } N[v]d(\mathbf{x}_m, h, z) = d(\mathbf{x}_m, h, t(\mathbf{x}_m, h, z))$

M[v] =multiplication by A

S =stacking operator

$$Sf(\mathbf{x}_m, z) = \int dh f(\mathbf{x}_m, h, z), \ S^*r(\mathbf{x}_m, h, z) = r(\mathbf{x}, z)$$

Identify as extension: $\overline{F}[v], \overline{G}[v]$ as above, $X = \{\mathbf{x}_m, z\}, H = \{h\}, \overline{X} = X \times H, \chi = S^*, \eta = S$ - the invertible extension properties are clear.

Standard names for the Standard VA extension objects: $\overline{F}[v]$ = "inverse NMO", $\overline{G}[v]$ = "NMO" [often the multiplication op M[v] is neglected]; η = "stack", χ = "spread"

How this is used for velocity analysis: Look for v that makes $\bar{G}[v]d \in \mathcal{R}(\chi)$

So what is $\mathcal{R}(\chi)$? $\chi[r](\mathbf{x}_m, z, h) = r(\mathbf{x}_m, z)$ Anything in range of χ is *independent of h*. Practical issues \Rightarrow replace "independent of" with "smooth in".

Inverse problem reduced to: adjust v to make $\overline{G}[v]d^{obs}$ smooth in h, i.e. flat in z, h display for each \mathbf{x}_m (NMO-corrected CMP). Same as "feeling for hyperbolas" (Claerbout lectures), layered medium VA in 8.1 of Biondi notes.

Replace z with t_0 , v with v_{RMS} em localizes computation: reflection through $\mathbf{x}_m, t_0, 0$ flattened by adjusting $v_{RMS}(\mathbf{x}_m, t_0) \Rightarrow$ 1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra, etc.

See Claerbout:BEI, also WWS MGSS 2000 notes for details.

Left: part of survey (S^{obs}) from North Sea (thanks: Shell Research), lightly preprocessed.

,

Right: restriction of $\overline{G}[v]S^{\text{obs}}$ to $\mathbf{x}_m = \text{const}$ (function of depth, offset): shows rel. sm'ness in h (offset) for properly chosen v.

This only works where Earth is "nearly layered". Where this fails, go to **Example 2: Surface oriented or standard MVA** extension.

Shot version: $\Sigma_s = \text{set of shot locations}$, $\overline{X} = X \times \Sigma_s$, $\chi[r](\mathbf{x}, \mathbf{x}_s) = r(\mathbf{x})$.

$$\bar{F}[v]\bar{r}(\mathbf{x}_r, t, \mathbf{x}_s) = \frac{\partial^2}{\partial t^2} \int dx \,\bar{r}(\mathbf{x}, \mathbf{x}_s) \,\int ds \,G(\mathbf{x}_r, t-s; \mathbf{x}) G(\mathbf{x}_s, s; \mathbf{x})$$

Offset version (preferred because it minimizes truncation artifacts): $\Sigma_h = \text{set of half-offsets in data}, \ \bar{X} = X \times \Sigma_h, \ \chi[r](\mathbf{x}, \mathbf{h}) = r(\mathbf{x}).$

$$\bar{F}[v]\bar{r}(\mathbf{x}_s, t, \mathbf{h}) = \frac{\partial^2}{\partial t^2} \int dx \,\bar{r}(\mathbf{x}, \mathbf{h}) \int ds \, G(\mathbf{x}_s + \mathbf{h}, t - s; \mathbf{x}) G(\mathbf{x}_s, s; \mathbf{x})$$

[Parametrize data with source location x_s , time t, offset h.] **NB**: note that both versions are "block diagonal" – family of operators (FIOs – tenKroode lectures) parametrized by x_s or h. Properties of surface oriented extension (Beylkin (1985), Rakesh (1988)): if $||v||_{C^2(X)}$ "not too big", then

- \bar{F} has the Ψ DO property: $\bar{F}\bar{F}^*$ is Ψ DO
- singularities of $\bar{F}\bar{F}^*d\subset$ singularities of d
- straightforward construction of right parametrix $\overline{G} = \overline{F}^*Q$, $Q = \Psi D O$, also as generalized Radon Transform explicitly computable.

Range of χ (offset version): $\bar{r}(\mathbf{x}, \mathbf{h})$ independent of $\mathbf{h} \Rightarrow$ "semblance principle": find v so that $\bar{G}[v]d^{\mathsf{obs}}$ is independent of \mathbf{h} . Practical limitations \Rightarrow replace "independent of \mathbf{h} " by "smooth in \mathbf{h} ". Application of these ideas = industrial practice of migration velocity analysis.

Idea: twiddle v until $\overline{G}[v]d^{obs}$ is smooth in h.

Since it is hard to inspect $\overline{G}[v]d^{obs}(x, y, z, h)$, pull out subset for constant x, y =**common image gather** ("CIG"): display function of z, h for fixed x, y. These play same role as NMO corrected CMP gathers in layered case.

Try to adjust v so that selected CIGs are *flat* – just as in Standard VA. This is much harder, as there is no RMS velocity trick to localize the computation – each CIG depends globally on v.

See Biondi notes for many examples.

Nolan (1997): big trouble! In general, standard extension does **not** have the Ψ DO property. Geometric optics analysis: for $||v||_{C^2(X)}$ "large", multiple rays connect source, receiver to reflecting points in X; block diagonal structure of $\overline{F}[v] \Rightarrow$ info necessary to distinguish multiple rays is *projected out*.

Example (Stolk & WWS, 2001): Gaussian lens over flat reflector at depth z ($r(\mathbf{x}) = \delta(x_1 - z)$, $x_1 = depth$).

Left: Const. *h* slice of $\overline{G}d^{obs}$: several refl. points corresponding to same singularity in d^{obs} . **Right:** CIG (const. *x*, *y* slice) of $\overline{G}d^{obs}$: not smooth in *h*! Standard MVA extension only works when Earth has simple ray geometry. When this fails, go to

Example 3: Claerbout's depth oriented extension.

 Σ_d = somewhat arbitrary set of vectors near 0 ("offsets"), $\overline{X} = X \times \Sigma_d$, $\chi[r](\mathbf{x}, \mathbf{h}) = r(\mathbf{x})\delta(\mathbf{h})$, $\eta[\overline{r}](\mathbf{x}) = \overline{r}(\mathbf{x}, 0)$

$$\bar{F}[v]\bar{r}(\mathbf{x}_s, t, \mathbf{x}_r) = \frac{\partial^2}{\partial t^2} \int dx \int_{\Sigma_d} dh \,\bar{r}(\mathbf{x}, \mathbf{h}) \int ds \, G(\mathbf{x}_s, t-s; \mathbf{x}+2\mathbf{h}) G(\mathbf{x}_r, s; \mathbf{x})$$

$$= \frac{\partial^2}{\partial t^2} \int dx \int_{\mathbf{x}+2\Sigma_d} dy \, \bar{r}(\mathbf{x},\mathbf{y}-\mathbf{x}) \int ds \, G(\mathbf{x}_s,t-s;\mathbf{y}) G(\mathbf{x}_r,s;\mathbf{x})$$

NB: in this formulation, there appears to be too many model parameters.

Computationally economical: for each x_s solve

$$\overline{F}[v]\overline{r}(\mathbf{x}_r,t;\mathbf{x}_s) = u(\mathbf{x},t;\mathbf{x}_s)|_{\mathbf{x}=\mathbf{x}_r}$$

where

$$\left(\frac{1}{v(\mathbf{x})^2}\frac{\partial^2}{\partial t^2} - \nabla_{\mathbf{x}}^2\right) u(\mathbf{x}, t; \mathbf{x}_s) = \int_{\mathbf{x}+2\Sigma_d} dy \, \bar{r}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, t; \mathbf{x}_s)$$
$$\left(\frac{1}{v(\mathbf{y})^2}\frac{\partial^2}{\partial t^2} - \nabla_{\mathbf{y}}^2\right) G(\mathbf{y}, t; \mathbf{x}_s) = \delta(t)\delta(\mathbf{x}_s - \mathbf{y})$$

Finite difference scheme: form RHS for eqn 1, step u forward in t, step G forward in t.

Computing $\overline{G}[v]$: instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint field as in standard reverse time prestack migration:

$$\left(\frac{1}{v(\mathbf{x})^2}\frac{\partial^2}{\partial t^2} - \nabla_{\mathbf{x}}^2\right)w(\mathbf{x}, t; \mathbf{x}_s) = \int dx_r \, d(\mathbf{x}_r, t; \mathbf{x}_s)\delta(\mathbf{x} - \mathbf{x}_r)$$

with $w(\mathbf{x}, t; \mathbf{x}_s) = 0, t >> 0.$

Then

$$\overline{F}[v]d(\mathbf{x},\mathbf{h}) = \int dx_s \int dt G(\mathbf{x}+2\mathbf{h},t;\mathbf{x}_s)w(\mathbf{x},t;\mathbf{x}_s)$$

i.e. exactly the same computation as for reverse time prestack, except that crosscorrelation occurs at an offset 2h.

Stolk and deHoop, 2001: Claerbout extension has the Ψ DO property, at least when restricted to \bar{r} of the form $\bar{r}(\mathbf{x}, \mathbf{h}) = R(\mathbf{x}, h_1, h_2)\delta(h_3)$, and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from *injectivity* of wavefront or *canonical rela*tion $C_{\overline{F}} \subset T^*(\overline{X}) - \{0\} \times T^*(Y) - \{0\}$ which describes singularity mapping properties of \overline{F} :

$$(\mathbf{x}, \mathbf{h}, \xi, \nu, \mathbf{y}, \eta) \in C_{F_{\delta}[v]} \Leftrightarrow$$

for some $u \in \mathcal{E}'(\bar{X})$, $(\mathbf{x}, \mathbf{h}, \xi, \nu) \in WF(u)$, and $(\mathbf{y}, \eta) \in WF(\bar{F}u)$

Characterization of $C_{\overline{F}}$:

 $((\mathbf{x}, \mathbf{h}, \xi, \nu), (\mathbf{x}_s, t, \mathbf{x}_r, \xi_s, \tau, \xi_r)) \in C_{\overline{F}}[v] \subset T^*(\overline{X}) - \{\mathbf{0}\} \times T^*(Y) - \{\mathbf{0}\}$ \Leftrightarrow there are rays of geometric optics $(\mathbf{X}_s, \Xi_s), (\mathbf{X}_r, \Xi_r)$ and times t_s, t_r so that

 $\Pi(\mathbf{X}_{s}(0), t, \mathbf{X}_{r}(0), \Xi_{s}(0), \tau, \Xi_{r}(0)) = (\mathbf{x}_{s}, t, \mathbf{x}_{r}, \xi_{s}, \tau, \xi_{r}),$ $\mathbf{X}_{s}(t_{s}) = \mathbf{x}, \mathbf{X}_{r}(t_{r}) = \mathbf{x} + 2\mathbf{h}, t_{s} + t_{r} = t,$ $\Xi_{s}(t_{s}) + \Xi_{r}(t_{r})||\xi, \Xi_{s}(t_{s}) - \Xi_{r}(t_{r})||\nu$

Proof: uses wave equations for u, G and

- Gabor calculus: computes wave front sets of products, pullbacks, integrals, etc. See Duistermaat, Ch. 1.
- Propagation of Singularities Theorem

and that's all! [No integral representations, phase functions,...]

Note intrinsic ambiguity: if you have a ray pair, move times t_s, t_r resp. t'_s, t'_r , for which $t_s + t_r = t'_s + t'_r = t$ then you can construct two points $(\mathbf{x}, \mathbf{h}, \xi, \nu), (\mathbf{x}', \mathbf{h}', \xi', \nu')$ which are candidates for membership in $WF(\bar{r})$ and which satisfy the above relations with the same point in the cotangent bundle of $T^*(Y)$.

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

- DSR assumption: all rays carrying significant reflected energy (source or receiver) are upcoming.
- Restrict \overline{F} to the domain $\mathcal{Z} \subset \mathcal{E}'(\overline{X})$

$$\bar{r} \in \mathcal{Z} \Leftrightarrow \bar{r}(\mathbf{x}, \mathbf{h}) = R(\mathbf{x}, h_1, h_2) \delta(h_3)$$

If $\bar{r} \in \mathcal{Z}$, then $(\mathbf{x}, \mathbf{h}, \xi, \nu) \in WF(\bar{r}) \Rightarrow h_3 = 0$. So source and receiver rays in $C_{\bar{F}}$ must terminate at same depth, to hit such a point.

Because of DSR assumption, this fixes the traveltimes t_s, t_r .

Restricted to \mathcal{Z} , $C_{\overline{F}}$ is injective.

 $\Rightarrow C_{\bar{F}^*\bar{F}} = I$

 $\Rightarrow \bar{F}^*\bar{F}$ is ΨDO when restricted to \mathcal{Z} .

Quantifying the semblance principle: devise operator W for which

 $\ker W \simeq \mathcal{R}\chi,$

then minimize a suitable norm of

 $W\bar{G}d^{ODS}$.

Converts inverse problem to optimization problem. With proper choice of W, ΨDO property \Rightarrow objective is *smooth* \Rightarrow can use Newton and relatives.

Upshot: Claerbout's depth oriented extension appears to offer basis for efficient new algorithms to solve velocity analysis problem - research currently under way in several groups. Summary:

- quite a bit is known about the imaging problem under "standard hypotheses": mathematics of multipathing imaging (asymptotic inversion, invertible extensions) clarified over last 10 years.
- many imaging situations (eg. near salt cf. Biondi) violate "standard hypotheses" grossly - need much better theory
- extension of imaging via multiple suppression some progress, many open questions re non-surface multiples
- velocity analysis some progress, but still in primitive state mathematically
- almost no progress on underlying nonlinear inverse problem