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A mathematical view

...of reflection seismic imaging, as practiced in the petroi industry:

e an inverse problem, based on a model of seismic wave prapagat

e contemporary practice relies partial linearizationand high-frequency asymp-
totics

e recent progress in understanding capabillities, limitetiof methods based on
linearization/asymptotics in presence stfong refraction applications ofmi-
crolocal analysiswith implications for practice

e limitations of linearization lead to many open problems




Agenda

1. The reflection seismic experiment, nature of data and dhiBaechanical fields,
the acoustic model, linearization and its limitations, wiéfhn of imaging based
on high frequency asymptotics, geometric optics analyidissomodel-data rela-
tionship and the GRT representation, zero-offset mignastandard processing
= layered imaging

2. Analysis of GRT migration, asymptotic inversion, diffiteis due to multipathing,
global theory of imaging, "wave eqguation” imaging;

3. The partially linearized inverse problem (“velocity &ss”), extended models,

Importance of invertibility, geometric optics of extenss) some invertible ex-
tensions, automating the solution of the partially linead inverse problem via

differential semblance.




Marine reflection seismology

e acoustic source (airgun array, explosives,...)
e acoustic receivers (hydrophone streamer, ocean bottola,cgb

e recording and onboard processing

—

hydrophoge streamer ./ :
acoustic source
Xy h Xg (airgun array)

Land acquisition similar, but acquisition and processing more complex. Vast
bulk (90%-+) of data acquired each year is marine.

Data parameters: time source locatiorx,, and receiver locatios, or half offset
h = =% h = |h|.




|Idealized marine “streamer” geometry, andx, lie roughly on constant depth
plane, source-receiver lines are parallel3 spatial degrees of freedom (eg. h):
codimension 1 [Other geometries are interesting, eg. ocean bottom sabld

streamer surveys still prevalent.]

How much data? Contemporary surveys may feature

e Simultaneous recording by multiple streamers (up to 12!)
e Many (roughly) parallel ship tracks (“lines”), areal coage
e single line (“2D”) ~ Gbyte; multiple lines (“3D")~ Thyte

NB: In these lectures, will largely ignore sampling issues aedttdata as contin-
uously sampledrirst of many approximations...




Gathers: distinguished data subsets

Aka “bins”, extracted from data after acquisition.

Characterized by common value of an acquisition parameter

e shot (or common source) gather: traces with same shot docati (previous
expls)

e Offset (or common offset) gather: traces with same halfebffs




Shot gather, Mississippi Canyon

offset (km)
-2

-4 -3

-1

(thanks: Exxon)




Lightly processed...see the waves!

bandpass filter 4-10-25-40 Hz, mute




A key observation

The most striking visual characteristic of seismic reflattlata: presence of wave
events (“reflections”) = coherent space-time structures.

What features in the subsurface structure cause refled¢barccur?

Abrupt (wavelength scale) changes in material mechanicasamternal bound-
aries, causing reflection of waves.

What is the mechanism through which this occurs?




Well logs: a “direct” view of the subsurface

Blocked logs from well in North Sea (thanks: Mobil R & D). Sailip-wave ve-
locity (m/s), dashed: s-wave velocity (m/s), dash-dot:sitgr(kg/m?). “Blocked”
means “averaged” (over 30 m windows). Original sample réategtool < 1 m.
Reflectors= jumps in velocities, densityelocity trends.




The Modeling Task

A useful model of the reflection seismology experiment must

e predict wave motion
e produce reflections from reflectors
e accomodate significant variation of wave velocity, matetemsity,...

A really goodmodel will also accomodate

e multiple wave modes, speeds

e material anisotropy

e attenuation, frequency dispersion of waves
e complex source, receiver characteristics
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The Acoustic Model

Not really good but good enough for this week and basis of most contemporary
processing.

Relatesp(x)= material density)A(x) = bulk modulusp(x, t)= pressurey(x,t) =
particle velocityf(x, t)= force density (sound source):

ov
_ = — f
p@t Vp+1,
% = —AV v (+1c/s,b.c.'s)

(compressional) wave speed- \/%
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acoustic field potentiak(x, t) = [*_ dsp(x, 5):

ou 1
p = T V—qu

Equivalent form: second order wave equation for potential

1 0%u ! f f
Lo glg, - v-(-)==<
pc? Ot P /oo (p) p

plus initial, boundary conditions.
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Theory

Weak solutiorof Dirichlet problem inQ2 ¢ R’ (similar treatment for other b. c.’s):
u € CH([0, T]; L*(92)) N C°([0, T]; Hy (%))
satisfying for anyp € Cg°((0,7T) x ),

g 1 Judgp 1 1
/O /thd:z: {pc2at oy —;vu-v¢+;f¢}_o

Theorem (Lions, 1972) Suppose thate p,logc € L¥(Q), f € L*(Q x R). Then
weak solutions of Dirichlet problem exist, uniquely deterad by initial data

du
ot

u(+,0) € Hy(Q), —-(-,0) € L(Q)

NB: No hint of waves here...
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Further idealizations

e density is constant,

e source force density isotropic point radiator with known time dependence
(“source pulse’w(t))

f(x,t;xs) = w(t)d(x — Xy)

= acoustic potential, pressure dependsxgalso.

Forward map F|c| = time history of pressure for eash at receiver locations,
(predicted seismic data), as function of velocity fie{d):

Fl] = {p(x:, ;%) }

14



Reflection seismic inverse problem

givenobserved seismic datj find ¢ so that

Fle] ~d
This inverse problem is

e large scale - up to Thytes, Pflops
e nonlinear

e yields to no known direct attack
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Partial linearization

Almost all useful technology to date relies on partial lingation: writec = v(1+r)
and treat- as relative first order perturbation abaytresulting in perturbation of
presure fieldp = 2t = 0,¢ < 0, where

1 2 2r 0%u
(—aT -V ) =
Definelinearized forward map F' by
Flolr = {0p(x,,t;x5)}

Analysis ofF'|v] is the main content of contemporary reflection seismic theor
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Linearization error

Critical question: If there is any justicE|v|r = directional derivativeD F |[v||vr]
of F - but in what sense? Physical intuition, numerical simalatand not nearly
enough mathematics: linearization error

Flo(l1+r)] — (Flv] + Flu)r)

e smallwhenv smooth; rough or oscillatory on wavelength scale - well-separated
scales

¢ large whenwv not smooth and/or not oscillatory - poorly separated scales

2D finite difference simulation: shot gathers with typicanne seismic geometry.
Smooth (lineary(x, z), oscillatory (randomj(zx, z) depending only o (“layered
medium”). Source waveleb(t) = bandpass filter.
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x (km)
0 0.5 1.0 15 2.0

2.4

2.2

2.0

1.8

1.6

Left: Total velocityc = v(1 + r) with smooth (linear) backgroundz, =), oscilla-
tory (random)r(zx, z). Std dev ofr = 5%.

Right: Simulated seismic responsg[((1 + r)|), wavelet = bandpass filter 4-10-
30-45 Hz. Simulator is (2,4) finite difference scheme.
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x (km) x (km)
0 0.5 1.0 1.5 2.0

0.2+
0.10
2.4
0.05
2.2
S S 0
-0.05
1.8
-0.10
1.6

Model in previous slide as smooth background (left;, z)) plus rough perturba-
tion (right, r(z, 2)).
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Left: Simulated seismic response of smooth modéh(),
Right: Simulated linearized response, rough perturbaif@mooth model £'|[v]r)
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X (km)

2.4

2.2

2.0

z (km)

1.8

1.6

1.4

Model in previous slide as rough background (lefty, z)) plus smooth 5% pertur-
bation (z, 2)).
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Left: Simulated seismic response of rough mocgh),
Right: Simulated linearized response, smooth perturbatisough model '[v]r)
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X_r (km)

Left: linearization error v (1 +1)] — F|v] — F'|v]r), rough perturbation of smooth

background
Right: linearization error, smooth perturbation of rougitkground (plotted with

same grey scale).
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Summary

e v smooth,r oscillatory=- F'|v]r approximategprimary reflection = result of
wave interacting with material heterogeneity only oncadi scattering); error
consists oimultiple reflections, which are “not too large” if- is “not too big”,
and sometimes can be suppressed.

e v nonsmoothy smooth=- error consists ofime shiftsin waves which are very
large perturbations as waves are oscillatory.

No mathematical results are known which justify/explassthobservations in any
rigorous way, except in 1D.
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Velocity Analysis and Imaging

Velocity analysisproblem = partially linearized inverse problem: givéfnd v, r
SO that

Slv| + Flvlr ~d

Imaging problem = linear subproblem: givehandv, find r so that
Flolr ~d— S[v]

Last 20 years:

e much progress on imaging

e much less on velocity analysis
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Aymptotic assumption

Linearization is accurate> length scale otr >> length scale of- ~ wavelength,
properties ofF’[v] dominated by those aofs[v| (= F|[v] with w = §). Implicit in

migration concept (eg. Hagedoorn, 1954); explicit use: €& Bleistein, SIAM
JAM 1977.

Key idea:reflectors (rapid changes in) emulatesingularities reflections (rapidly
oscillating features in data) also emulate singularities.

NB: “everybody’s favorite reflector’. the smooth interfageross which- jumps.
Butthis is an oversimplification - reflectors in the Earth may beplex zones of
rapid change, pehaps in all directions. More flexible notieaded!!
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Wave Front Sets

Recall characterization of smoothness via Fourier transfa € D’(R") is smooth
atx, < for some nbhdX of x,, any¢ € £(X) andN, there isCy > 0 so that for

any€ 40,
¢
‘f ((M( \&M < Ovr

Harmonic analysis of singularitiegpresHormander: thevave front setW F'(u) C
R" x R" — {0} of u € D'(R") - captures orientation as well as position of singu-
larities.

(x0,&y) € WF(u) <, thereis some open nbblfdx = C R" x R” {0} of (xq, &)
so that for anyy € £(X), N, there isCy > 0 so that for all¢ € =,

Flow ()| = v
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Housekeeping chores

(1) note that the nbhds may naturally be taken to m®nes
(i) u is smooth atk, < (x¢,&,) ¢ WF(u) forall§, € R" — {0};

(i) W F(u) is invariant under chg. of coords if it is regarded as a subt#te
cotangent bundl&™(R") (i.e. the¢ components transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 198191ishander, 1983]

The standard example: 4fjumps across the interfagéx) = 0, otherwise smooth,
thenW EF(u) C Ny ={(x,€): f(x) =0, &||Vf(x)} (normal bundleof f = 0).
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Wavefront set of a jump discontinuity

<0 ¢=0

¢>0
WF(H(¢)) ={(x,€) : ¢(x) = 0, &[|[Vo(x)}
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Microlocal property of differential operators

Supposen € D'(R"), (x0,&,) ¢ WF(u), and P(x, D) is a partial differential
operator:

P(x,D) =Y au(x)D"

la|<m

D® = D™ ... D%
Then(xg, &) € WE(P(x, D)u) [i.e.. WEF(Pu) C WF(u)].
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Proof

ChooseX x = as in the definitiony € D(X) form the required Fourier transform

/ dz e (%) P(x, D)u(x)

and start integrating by parts: eventually

=) e / di ™, (x)u(x)
o] <m
where¢, € D(X) is a linear combination of derivatives gfand thea,s. Since
each integral is rapidly decreasing@as- oo for ¢ € =, it remains rapidly decreas-
ing after multiplication byr'®!, and so does the sur@. E. D.
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Formalizing the reflector concept

Key idea, restated: reflectors (or “reflecting elements’) ke points inWW F(r).
Reflections will be points i/ F'(d).

These ideas lead to a usable definitionnoége a reflectivity model is an image
of rif WE(r) C WFE(r) (the closer to equality, the better the image).

|dealizedmigration problem: givend (hencelV F'(d)) deduce somehow a function
which hashe right reflectorsi.e. a functior with W F' (7)) ~ W F'(r).

NB: you're going to need! (“It all depends on v(x,y,z)” - J. Claerbout)
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Integral representation of linearized operator

With w = §, acoustic potential is same as Causal Green’s functiGix, ¢; x,) =
retarded fundamental solution:

1 0* )
292 V7 G(x,t;xs) = 0(t)0(x — bxy)

andG = 0,¢ < 0. Then v = d!) p = &, §p = LE and

1 82 5 2 62G
(_— — v ) (5G<X, t, XS> = ’(}2<X> atZ <X7 t? XS>T(X)

Simplification: from now on, defing”[v|r = éG|,_, - i.e. lose at-derivative.
Duhamel’s principle=-

L 2r(x) - 0°G |
5G<X¢,t7Xs>—/dQZ o(x)? /dsG(Xr,t—s,X)W(x,s,xs)
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Add geometric optics...

Geometric optics approximation 6f should be good, asis smooth. Summary: if
x “not too far” fromx,, then

G(x, %) = a(X;X,)0(t — T(X:X;)) + R(X, 15 Xs)
where the traveltime(x; x;) solves the eikonal equation

X — X
U(X8>

and the amplitude(x; x) solves the transport equation

VT =1, 7(x;x4) ~ ;X — X

V- (a*VT) =0, ...

Refs: Courant & Hilbert, Friedland&ound PulsesNWS Foundationsand many
refs cited there...
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Simple Geometric Optics

“Not too far” means: there should be one and only one ray ofrgenc optics
connecting eacla, or x, to eachx € suppr.

Will call this thesimple geometric opticsassumption.

Within region satisfying simple geometric optics assumpti- is smooth & # x,)
solution of eikonal equation. Effective methods for nuroarisolution of eikonal,
transport equations: ray tracing (Lagrangian), variousssaf upwind finite differ-
ence (Eulerian) methods. See eg. Sethian book, WWS 1999 MiGtS (online)
for details.
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Caution - caustics!

For “random but smooth®(x) with variances, more than one connecting ray oc-
curs as soon as the distanceigr—2/3). Suchmultipathingis invariably accompa-
nied by the formation of aaustic= envelope of rays (White, 1982).

Upon caustic formation, the simple geometric optics fieldodigtion above is no
longer correct.

Failure of GO at caustic understood in 19th century. Gerzatadn of GO to re-
gions containing caustics accomplished by Ludwig and kK@yt1966-7, elabo-
rated by Maslov, Brmander, Duistermaat, many others.
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A caustic example (1)

sinl: velocity field

0

0.2

0.4

0.6

0.8

1

12

14

16

18

2
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

2D Example of strong refraction: Sinusoidal velocity field:, z) = 14-0.2sin % sin 3w
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A caustic example (2)

sinl: rays with takeoff angles in range 1.41372 to 1.72788
T T T T T T

Rays in sinusoidal velocity field, source point = origin. Blédrmation of caustic,
multiple rays to source point in lower center.

38



An oft-forgotten detall

All of this is meaningful only if the remainddk is small in a suitable sense: energy
estimate Exercisel) =

/dx/ dt |R(x.t:x)[2 < vl

(this Iis an easy, suboptimal estimate - with more work cataogp4 with 2)

If v € C°°, can complete the geometric optics approximation of theessefunc-
tion so that the difference 5*° - then the two sides have the same singularities, ie.
the same wavefront set.
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Finally, a wave!

The geometric optics approximation to the Green’s function
G(x,t;x,) >~ a(x;X,)0(t — 7(X; X))

describes a (singular) quasi-spherical waves [spherital, = const., for then
T(X,Xs) = |x — X,|/].

Geometric optics is the the best currently available exatenm for waves in het-
erogeneous medidote the inadequacy! must besmooth but the compressional
velocity distribution in the Earth varies on all scales!
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The linearized operator as Generalized Radon
Transform

Assume:supp r contained in simple geometric optics domain (each poirnthred
by unique ray from any source or receiver point).

Then distribution kernek’ of F'[v] is

2
K(x,,t, X4 %) = / ds G(x,,t — s;x)%—g(x, S;XS)%
v

- / s 2a<X7~, X)CL(X, XS)5/(t e 7_(er X))(S”(S B T(X, Xs>)

v (%)
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~2a(x,xp)a(X,Xs) oy r(x.%.) — 7(X. X
_ v2(x) 0t — 7%, %) = 7(x, %))

provided that

VT (x,%X,) + Vi (X, X5) # 0

< velocity atx of ray fromx, not negative of velocity of ray fronx,. < no forward
scattering [Gel'fand and Shilov, 1958 - when is pullback of distrimrtiagain a
distribution].
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GRT = “Kirchhoff” modeling

So: forr supported in simple geometric optics domain, no forwardteoag =-
0G(x,,1;X;) >

6’_2 I 2r(x)
ot? v?(x)
That is: pressure perturbation is sum (integral) aver reflection isochron{x
t = 7(x,%x,) + 7(x, %) }, W. weighting, filtering. Note: ifv =const. then isochron

Is ellipsoid, asr(x;, x) = |xs — x|/v!

a(x, X, )a(x,x5)0(t — 7(x, X,.) — 7(X, X))

ET X
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Zero Offset data and the Exploding Reflector

Zero offset datax, = x,) is seldom actually measured (contrast radar, sonar!), but
routinelyapproximatedhroughNMO-stack(to be explained later).

Extracting image from zero offset data, rather than from(EHNO’s) of offsets, is

tremendougdata reduction- when approximation is accurate, leads to excellent
Images.

Imaging basis: thexploding reflectomodel (Claerbout, 1970’s).
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For zero-offset data, distribution kernel Bfv] is

0* 2
K (xs,1,%4;X) = @/ ds 02(X)G(Xs,t — 5:x)G(x, 8;%;)

Under some circumstances (explained beld), = G time-convolved with itself)
is “similar” (also explained) t@* = Green’s function fow /2. Then

0? - 2r(x
0G(Xs, ;X)) ~ ﬁ/ dIG(Xs,t,X>%

~ solutionw of

Thus reflector “explodes” at time zero, resulting field pggias in “material” with
velocity v /2.
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Explain when the exploding reflector model “works”, i.e. wil& time-convolved
with itself is “similar” to G = Green’s function for /2. If suppr lies in simple
geometry domain, then

Kt xix) = [ as 250 - k)

_ 20°(X, X,)
v*(x)

whereas the Green’s functi@nfor v/2 is

6" (t — 27(x, x,))

~

G(x,t;xs) = a(x,x5)0(t — 27(x, X5))

(half velocity = double traveltime, same rays!).
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Difference between effects @€, G: for eachx, scaler by smooth fcn - preserves
W F(r) henceW F(Fv]r) and relation between them. Also: adjoints have same
effect onW/ F’ sets.

Upshot: from imaging point of view (i.e. apart from ampligydierivative (filter)),
kernel of F'|v] restricted to zero offset is same as Green'’s functiomw f@r provided
that simple geometry hypothesis holdsily one ray connects each source point to
each scattering point, i®o multipathing

See Claerbout, IEI, for examples which demonstrate thatipatihing really does
iInvalidate exploding reflector model.
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Standard Processing

Inspirational interlude: the sort-of-layered theory =i8tlard Processing”

Suppose were,r functions ofz = z3 only, all sources and receivers at= 0.
Then the entire system is translation-invariantcinz, = Green’s function its
perturbationdG, and the idealized dat&~|._ are really only functions of, z, and
half-offseth = |x;—x,|/2. There would b@nly one seismic experimeeguivalent
to anycommon midpoint gathg¢fCMP”).

This isn’t really true -look at the data!!! However it isapproximatelycorrect in
many places in the world: CMPs change very slowly with midgpei,, = (x, +

Xs)/2.
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Standard processing: treat each CEHif it were the result of an experiment per-
formed over a layered mediyrout permit the layers to vary with midpoint.

Thusv = v(z),r = r(z) for purposes of analysis, but at the end- v(x,,, 2),r =
(X, 2).

F[U]T(Xm t; Xs>

- / dmizézga(x7 ZUT>CL(X, x3)5//(t - T(Xv x?“) - T<X’ 333)>

2 .
:/dz T(Z)/dw/dazw%(x, ZC”CL(X, xg)ezw(t—f(x,xr)—T(x,xS))
v¥(2)
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Since we have already thrown away smoother (lower freqalresns, do it again
usingstationary phaseUpshot (see 2000 MGSS notes for details): up to smoother
(lower frequency) error,

Flolr(h,t) ~ A(z(h, 1), h)R(z(h,t))
Herez(h,t) is the inverse of the 2-way traveltime

t(h, ) = 27((h, 0, 2), (0,0,0))
l.e. z(t(h,2"),h) = 2'. Ris (yet another version of) “reflectivity”
Ldr
=5,
That is, F'[v] is a a derivative followed by a change of variable followedntylti-

plication by a smooth functiorSubstitute, (vertical travel time) forz (depth) and
you get “Inverse NMO” {, — (¢, h)). Will be sloppy and calt — (¢, ) INMO.
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Anatomy of an adjoint

/dt/dhd(t,h)F[u]r(t,h):/dt/dhd(t,h)A( (t

h), h)R(=(t, h))

= / dz R(z) / dh%(z h)A(z, h)d(t(z, h), h) = / dzr(z)(Flv]"d)(z)

soF[u]* = —2£SM[v]N[v], where

e N|v] = NMO operator N{v|d(z,h) = d(t(z,h),h)
e M[v] = multiplication by(%A
e S = stacking operator Sf(z) = [ dh f(z, h)
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Normal Op is PDQO= Imaging

FRJ Flolr(z) = — [ / ah (2 ) A%z, )| ()

Microlocal property of PDOs> W F(F[v]*F|v|r) C W F(r) i.e. F[v|* is an imag-
INng operator

If you leave out the amplitude facton{[v]) and the derivatives, as is commonly
done, then you get essentially the same expression - so (MMCK) is an imaging
operator!

It's even easy to get an (asymptotic) inverse out of this r@se for the reader.

Now make everything dependent &p, and you've got standard processing. (end
of layered interlude).
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But the Earth is not layered!

In general,
Is F[v]* an imaging operator?
What sort of thing is'[v]* F'|v]??

Stay tuned!
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