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Review: Normal Operators and imaging

If d = F [v]r, then

F [v]∗d = F [v]∗F [v]r

Recall: In the layered case,F [v]∗F [v] is an operator which preserves wave front
sets.

WheneverF [v]∗F [v] preserves wave front sets,F [v]∗ is an imaging operator.
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Review: Generalized Radon Representation

Assume (1)r (oscillatory) supported in simple geometric optics domainfor v (smooth),
(2) no forward scattering. Then

F [v]r(xr, t;xs) ≃

∫
dx

2r(x)

v2(x)
a(x,xr)a(x,xs)δ

′′(t− τ (x,xr) − τ (x,xs))

Similar representation of adjoint follows:

F [v]∗d(x) =

∫ ∫ ∫
dxr dxs dt a(x,xr)a(x,xs)δ

′′(t−τ (x;xs)−τ (x;xr))d(xr, t;xs)
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Beylkin, J. Math. Phys.1985

For r supported in simple geometric optics domain,

•WF (F [v]∗F [v]r) ⊂WF (r)

• if d = F [v]+F [v]r (data consistent with linearized model), thenF [v]∗(d−F [v])

is an image ofr

• an operatorF [v]† exists for whichF [v]†(d−F [v])− r is smootherthanr, under
some constraints onr - an inverse modulo smoothing operatorsor parametrix.
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Outline of proof

ExpressF [v]∗F [v] as “Kirchhoff modeling” followed by “Kirchhoff migration”;
(ii) introduce Fourier transform; (iii) approximate for large wavenumbers using
stationary phase, leads to representation ofF [v]∗F [v] modulo smoothing error as
pseudodifferential operator(“ΨDO”):

F [v]∗F [v]r(x) ≃ p(x, D)r(x) ≡

∫
dξ p(x, ξ)eix·ξr̂(ξ)

in which p ∈ C∞, and for somem (theorder of p), all multiindicesα, β, and all
compactK ⊂ Rn, there exist constantsCα,β,K ≥ 0 for which

|Dα
xD

β

ξ
p(x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|β|, x ∈ K

Explicit computation ofsymbol p - for details, see Notes on Math Foundations.
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Microlocal PropertyofΨDOs

:

if p(x,D) is aΨDO, u ∈ E ′(Rn) thenWF (p(x,D)u) ⊂ WF (u).

Will prove this, from which imaging property of prestack Kirchhoff migration fol-
lows. First, a few other properties:

• differential operators areΨDOs (easy - exercise)

• ΨDOs of orderm form a module overC∞(Rn) (also easy)

• product ofΨDO orderm, ΨDO orderl = ΨDO order≤ m + l; adjoint ofΨDO
orderm is ΨDO orderm (harder)

Complete accounts of theory, many apps: books of Duistermaat, Taylor, Nirenberg,
Treves, Ḧormander.
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Proof of Microlocal Property

Suppose(x0, ξ0) /∈ WF (u), choose neighborhoodsX, Ξ as in defn, withΞ conic.
Need to choose analogous nbhds forP (x,D)u. Pick δ > 0 so thatB3δ(x0) ⊂ X,
setX ′ = Bδ(x0).

Similarly pick 0 < ǫ < 1/3 so thatB3ǫ(ξ0/|ξ0|) ⊂ Ξ, and choseΞ′ = {τξ : ξ ∈

Bǫ(ξ0/|ξ0|), τ > 0}.

Need to chooseφ ∈ E ′(X ′), estimateF(φP (x, D)u). Chooseψ ∈ E(X) so that
ψ ≡ 1 onB2δ(x0).

NB: this implies that ifx ∈ X ′, ψ(y) 6= 1 then|x − y| ≥ δ.
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Write u = (1 − ψ)u + ψu. Claim: φP (x, D)((1 − ψ)u) is smooth.

φ(x)P (x, D)((1 − ψ)u))(x)

= φ(x)

∫
dξ P (x, ξ)eix·ξ

∫
dy (1 − ψ(y))u(y)e−iy·ξ

=

∫
dξ

∫
dy P (x, ξ)φ(x)(1 − ψ(y))ei(x−y)·ξu(y)

=

∫
dξ

∫
dy (−∇2

ξ)
MP (x, ξ)φ(x)(1 − ψ(y))|x − y|−2Mei(x−y)·ξu(y)
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using the identity

ei(x−y)·ξ = |x − y|−2
[
−∇2

ξe
i(x−y)·ξ

]

and integrating by parts2M times in ξ. This is permissible becauseφ(x)(1 −

ψ(y)) 6= 0 ⇒ |x − y| > δ.

According to the definition ofΨDO,

|(−∇2
ξ)
MP (x, ξ)| ≤ C|ξ|m−2M

For anyK, the integral thus becomes absolutely convergent afterK differentiations
of the integrand, providedM is chosen large enough. Q.E.D. Claim.

This leaves us withφP (x, D)(ψu). Pickη ∈ Ξ′ and w.l.o.g. scale|η| = 1.
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Fourier transform:

F(φP (x, D)(ψu))(τη) =

∫
dx

∫
dξ P (x, ξ)φ(x)ψ̂u(ξ)eix·(ξ−τη)

Introduceτθ = ξ, and rewrite this as

= τn
∫

dx

∫
dθ P (x, τθ)φ(x)ψ̂u(τθ)eiτx·(θ−η)

Divide the domain of the inner integral into{θ : |θ − η| > ǫ} and its complement.
Use

−∇2
xe
iτx·(θ−η) = τ 2|θ − η|2eiτx·(θ−η)
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Integrate by parts2M times to estimate the first integral:

τn−2M

∣∣∣∣
∫

dx

∫

|θ−η|>ǫ

dθ (−∇2
x)
M [P (x, τθ)φ(x)]ψ̂u(τθ)

× |θ − η|−2Meiτx·(θ−η)
∣∣∣

≤ Cτn+m−2M

m being the order ofP . Thus the first integral is rapidly decreasing inτ .
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For the second integral, note that|θ − η| ≤ ǫ ⇒ θ ∈ Ξ, per the defn ofΞ′. Since
X × Ξ is disjoint from the wavefront set ofu, for a sequence of constantsCN ,
|ψ̂u(τθ)| ≤ CNτ

−N uniformly for θ in the (compact) domain of integration, whence
the second integral is also rapidly decreasing inτ . Q. E. D.

And that’s why Kirchhoff migration works, at least in the simple geometric optics
regime.
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Inversion aperture

Γ[v] ⊂ R3 × R3 − 0:

if WF (r) ⊂ Γ[v], thenWF (F [v]∗F [v]r) = WF (r) andF [v]∗F [v] “acts invertible”.
[construction ofΓ[v] - later!]

Beylkin: with proper choice of amplitudeb(xr, t;xs), the modified Kirchhoff mi-
gration operator

F [v]†d(x) =

∫ ∫ ∫
dxr dxs dt b(xr, t;xs)δ(t− τ (x; xs) − τ (x;xr))d(xr, t;xs)

yieldsF [v]†F [v]r ≃ r if WF (r) ⊂ Γ[v]
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For details of Beylkin construction: Beylkin, 1985; Milleret al 1989; Bleistein,
Cohen, and Stockwell 2000; WWS Math Foundations, MGSS notes1998. All
components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, Ray-Born inversion, migra-
tion/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop, Lambaŕe,...

Apparent limitation: construction relies on simple geometric optics (no multipathing)
- is this really necessary?
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Example of GRT Inversion (application ofF [v]†): K. Araya (1995), “2.5D” in-
version of marine streamer data from Gulf of Mexico: 500 source positions, 120
receiver channels, 750 Mb.
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Why Beylkin isn’t enough

The theory developed by Beylkin and others cannot be the end of the story:

• The “single ray” hypotheses generally fails in the presenceof strong refraction.

• B. White, “The Stochastic Caustic” (1982): For “random but smooth”v(x) with
varianceσ, points at distanceO(σ−2/3) from source have more than one ray
connecting to source, with probability 1 -multipathingassociated with formation
of caustics= ray envelopes.

• Formation of caustics invalidates asymptotic analysis on which Beylkin result is
based.
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Why it matters

• Strong refraction leading to multipathing and caustic formation typical of salt
(4-5 km/s) intrusion into sedimentary rock (2-3 km/s) (eg. Gulf of Mexico),
also chalk tectonics in North Sea and elsewhere - some of the most promising
petroleum provinces!
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Escape from simplicity - the Canonical Relation

How do we get away from “simple geometric optics”, SSR, DSR,... - all violated
in sufficiently complex (and realistic) models? RakeshComm. PDE1988, Nolan
Comm. PDE1997: global description ofFδ[v] as mapping reflectors7→ reflections.

Y = {xs, t,xr} (time × set of source-receiver pairs) submfd ofR7 of dim. ≤ 5,
Π : T ∗(R7) → T ∗Y the natural projection

supp r ⊂ X ⊂ R3

Canonical relationCFδ[v] ⊂ T ∗(X) − {0} × T ∗(Y ) − {0} describes singularity
mapping properties ofF :

(x, ξ,y, η) ∈ CFδ[v] ⇔

for someu ∈ E ′(X), (x, ξ) ∈WF (u), and (y, η) ∈WF (Fu)
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Rays Construction of the Relation

Rays of geometric optics: solutions of Hamiltonian system

dX

dt
= ∇ΞH(X,Ξ),

dΞ

dt
= −∇XH(X,Ξ)

with H(X,Ξ) = 1
2
[1 − v2(X)|Ξ|2] = 0 (null bicharacteristics).

Characterization of CF :

((x, ξ), (xs, t,xr, ξs, τ, ξr)) ∈ CFδ[v] ⊂ T ∗(X) − {0} × T ∗(Y ) − {0}

⇔ there arerays of geometric optics(Xs,Ξs), (Xr,Ξr) and timests, tr so that

Π(Xs(0), t,Xr(t),Ξs(0), τ,Ξr(t)) = (xs, t,xr, ξs, τ, ξr),

Xs(ts) = Xr(t− tr) = x, ts + tr = t, Ξs(ts) − Ξr(t− tr)||ξ
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SinceΞs(ts), −Ξr(t − tr) have same length, sum = bisector⇒ velocity vectors of
incident ray from source and reflected ray from receiver (traced backwards in time)
make equal angles with reflector atx with normalξ.

Upshot: canonical relation ofFδ[v] simply enforces the equal-angles law of reflec-
tion.

Further,rays carry high-frequency energy, in exactly the fashion that seismologists
imagine.

Finally,Rakesh’s characterization ofCF is global: no assumptions about ray geom-
etry, other than no forward scattering and no grazing incidence on the acquisition
surfaceY , are needed.
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Proof: Plan of attack

Recall that

F [v]r(xr, t;xs) =
∂δu

∂t
(xr, t;xs)

where

1

v2

∂2δu

∂t2
−∇2δu =

1

v2

∂2u

∂t2
r

1

v2

∂2u

∂t2
−∇2u = δ(t)δ(x − xs)

andu, δu ≡ 0, t < 0.

Need to understand (1)WF (u), (2) relationWF (r) ↔ WF (ru), (3)WF of soln
of WE in terms ofWF of RHS (this also gives (1)!).
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Singularities of the Acoustic Potential Field

Main tool: Propagation of Singularities theorem of Ḧormander (1970).

Given symbolp(x, ξ), order m, with asymptotic expansion, definenull bicharater-
istics(= rays) as solutions(x(t), ξ(t)) of Hamiltonian system

dx

dt
=
∂p

∂ξ
(x, ξ),

dξ

dt
= −

∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Supposep(x, D)u = f , and suppose that fort0 ≤ t ≤ t1, (x(t), ξ(t)) /∈

WF (f). Then either{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ WF (u) or {(x(t), ξ(t)) : t0 ≤

t ≤ t1} ⊂ T ∗(Rn) −WF (u).
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Source to Field

RHS of wave equation foru = δ function inx, t. WF set ={(x, t, ξ, τ ) : x = xs, t =

0} - i.e. no restriction on covector part.

⇒ (x, t, ξ, τ ) ∈ WF (u) iff a ray starting at(xs, 0) passes over(x, t) - i.e. (x, t)

lies on the “light cone” with vertex at(xx, 0). Symbol for wave op isp(x, t, ξ, τ ) =
1
2
(τ 2 − v2(x)|ξ|2), so Hamilton’s equations for null bicharacteristics are

dX

dt
= −v2(X)Ξ,

dΞ

dt
= ∇ log v(X)

Thusξ is proportional to velocity vector of ray.

[(ξ, τ ) normal to light cone.]
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Singularities of Products

To computeWF (ru) fromWF (r) andWF (u), useGabor calculus(Duistermaat,
Ch. 1)

Herer is really (r ◦ π)u, whereπ(x, t) = x. Choose bump functionφ localized
near(x, t)

̂φ(r ◦ π)u(ξ, τ ) =

∫
dξ′ dτ ′φ̂r(ξ′)δ(τ ′)û(ξ − ξ′, τ − τ ′)

=

∫
dξ′φ̂r(ξ′)û(ξ − ξ′, τ )
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This will decay rapidly as|(ξ, τ )| → ∞ unless (i) you can find(x′, ξ′) ∈ WF (r)

so thatx,x′ ∈ π(suppφ), ξ − ξ′ ∈ WF (u), i.e. (ξ, τ ) ∈ WF (r ◦ π) + WF (u), or
(ii) ξ ∈ WF (r) or (ξ, τ ) ∈ WF (u).

Possibility (ii) will not contribute, so effectively

WF ((r ◦ π)u) = {(x, ts, ξ + Ξs(ts), ·) : (x, ξ) ∈WF (r), x = Xs(ts)

for a ray(Xs,Ξs) with Xs(0) = xs, someτ .
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Wavefront set of Scattered Field

Once again use propagation of singularities:(xr, t, ξr, τr) ∈ WF (δu) ⇔ on ray
(Xr,Ξr) passing throughWF (ru). Can argue that time of intersection ist− tr < t.

That is,

Xr(t) = xr,Xr(t− tr) = Xs(ts) = x,

t = tr + ts, and

Ξr(ts) = ξ + Ξs(ts)

for someξ ∈ WF (r). Q. E. D.
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Rakesh’s Thesis

Rakesh also showed thatF [v] is aFourier Integral Operator= class of oscillatory
integral operators, introduced by Hörmander and others in the ’70s to describe the
solutions of nonelliptic PDEs.

Phases and amplitudes of FIOs satisfy certain restrictive conditions. Canonical
relations have geometric description similar to that ofF [v]. Adjoint of FIO is FIO
with inverse canonical relation.

ΨDOs are special FIOs, as are GRTs.

Composition of FIOs doesnot yield an FIO in general. Beylkin had shown that
F [v]∗F [v] is FIO (ΨDO, actually) under simple ray geometry hypothesis - but this
is only sufficient. Rakesh noted that this follows from general results of Ḧormander:
simple ray geometry⇔ canonical relation is graph of ext. deriv. of phase function.
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The Shell Guys and TIC

Smit, tenKroode and Verdel (1998): provided that

• source, receiver positions(xs,xr) form anopen4D manifold (“complete cover-
age” - all source, receiver positions at least locally), and

• theTraveltime Injectivity Condition(“TIC”) holds: C−1
F [v] ⊂ T ∗Y −{0}×T ∗X−

{0} is afunction- that is, initial data for source and receiver rays and totaltravel
time together determine reflector uniquely.

thenF [v]∗F [v] is ΨDO ⇒ application ofF [v]∗ produces image, andF [v]∗F [v] has
microlocal parametrix (“asymptotic inversion”).
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TIC is a nontrivial constraint!

x x

x xs r

Symmetric waveguide: time (xs → x̄ → xr) same as time (xs → x → xr), so TIC
fails.
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Stolk’s Thesis

Stolk (2000): under “complete coverage” hypothesis,v for which F [v]∗F [v] is =
[ΨDO + rel. smoothing op] form open, dense set (without assuming TIC!).

NB: application ofF [v]∗ involves accounting forall rays connecting source and
receiver with reflectors. Standard practice still attemptsimaging with single choice
of ray pair (shortest time, max energy,...). Operto et al (2000) give nice illustration
that all rays must be included.
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Nolan’s Thesis

Limitation of Smit-tenKroode-Verdel: most idealized dataacquisition geometries
violate “complete coverage”: for example, idealized marine streamer geometry
(src-recvr submfd is 3D)

Nolan (1997): result remains true without “complete coverage” condition: requires
only TIC plus addl condition so that projectionCF [v] → T ∗Y is embedding - but
examples violating TIC are much easier to construct when source-receiver submfd
has positive codim.

Sinister Implication: When data is just a single gather - common shot, common
offset - image may containartifacts, i.e. spurious reflectors not present in model.
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Horrible Example I

Synthetic 2D Example (Stolk and WWS, 2001 -Geophysics2004)

Strongly refracting acoustic lens (v) over horizontal reflector (r), d = F [v]r.

(i) for open source-receiver set,F [v]∗d = good image of reflector - within limits of
finite frequency implied by numerical method,F [v]∗F [v] acts likeΨDO;

(ii) for common offsetsubmfd (codim 1), TIC is violated andWF (F [v]∗d) is larger
thanWF (r).
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Gaussian lens velocity model, flat reflector at depth 2 km, overlain with rays and
wavefronts (Stolk & S. 2002 SEG).
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Typical shot gather - lots of arrivals
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Offset common image gather (slice ofF̃ [v]∗d), with kinematically predicted reflec-
tor images overlain.

35



Horrible Example II

Stolk and Symes,Geophysics2004: “Marmouflat” model = smoothed Marmousi
(Versteeg & Grau 1991) with two flat reflectors.
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Typical shot gather: much evidence of multipathing, caustic formation.
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Typical common scattering angle image gather: note nonflat event in box - results
from data event migrating alongwrong ray pair.
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Blue rays = energy path producing data event. Black rays: energy path for migra-
tion, resulting in displaced, angle-dependent image artifact.
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What it all means

Note that a gather scheme makes the scattering operator block-diagonal: for exam-
ple with data sorted into common offset gathersh = (xr − xs)/2,

F [v] = [Fh1[v], ..., FhN [v]]T , d = [dh1, ..., dhN ]T

ThusF [v]∗d =
∑

i Fhi[v]
∗dhi. Otherwise put: to form image,migrate ith gather

(apply migration operatorFhi[v]
∗, then stack individual migrated images (hence

prestack migration).

Horrible Examples show that individual migrated images maycontain nonphysical
apparent reflectors (artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds, then these artifacts are not sta-
tionary with respect to the gather parameter, hencestack out(interfere destructively)
in final image.

40


