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Review: Normal Operators and imaging

If d = Flv|r, then
Flol*d = Fu]"Flv|r

Recall: In the layered casé;|v]*F|v] is an operator which preserves wave front
sets.

WhenevelF'[v|* F'[v] preserves wave front set8[v|* is an imaging operator.




Review: Generalized Radon Representation

Assume (1) (oscillatory) supported in simple geometric optics donam (smooth),
(2) no forward scattering. Then

Flolr(x,,t;x;) ~

/ dx f;g;(;a(x, X, )a(x,x,)0" (t — 7(x, %) — 7(x, X))

Similar representation of adjoint follows:

F[U]*d(x):///d.iErd.iESdta(X,XT)a(X,Xs)éﬁ(t—T(X;XS)—T(X;XT»d(XT,t;Xs)




Beylkin, J. Math. Phys1985

Forr supported in simple geometric optics domain,

o WE(F|*Flvlr) c WE(r)

o if d = Flv]+ F|v]r (data consistent with linearized model), thep|*(d — F|v])
IS an image of

e an operatoi’[v]" exists for whichF'[v]'(d — F[v]) — r is smoothethanr, under
some constraints on- aninverse modulo smoothing operatasparametrix




Outline of proof

ExpressF'|v]*F|v] as “Kirchhoff modeling” followed by “Kirchhoff migration;”
(i) introduce Fourier transform; (iii) approximate forr¢gge wavenumbers using
stationary phase, leads to representatio’ef* F'[v] modulo smoothing error as
pseudodifferential operatdf WDO"):

Flo]Flulr(x) = px D)r(x) = [ de plx,e*Er(g
In whichp € C°, and for somen (the order of p), all multiindices«, 5, and all

compactK’ C R", there exist constants, s x > 0 for which

DEDp(x,8)] < Copr(L+1€)" V), x € K

Explicit computation oymbol p - for details, see Notes on Math Foundations.




Microlocal PropertyoftDOs

if p(z, D)isa¥DO,u € &'(R") thenW F(p(z, D)u) C W F(u).

Will prove this, from which imaging property of prestack Bnhoff migration fol-
lows. First, a few other properties:

e differential operators aré DOs (easy - exercise)
e UDOs of ordern form a module ove’>°(R") (also easy)

e product ofUDO orderm, YDO orderl = VDO order< m + [; adjoint of DO
orderm is WDO orderm (harder)

Complete accounts of theory, many apps: books of Duistdarnhaglor, Nirenberg,
Treves, Hhrmander.




Proof of Microlocal Property

Supposex, &,) ¢ W F(u), choose neighborhoods, = as in defn, with= conic.
Need to choose analogous nbhds fre, D)u. Pickd > 0 so thatBss(xg) C X,
setX’ = Bs(xp).

Similarly pick 0 < ¢ < 1/3 so thatBs.(&,/|&,|) C =, and chos&’ = {7£ : € €
B.(&y/[&ol), 7 > 0}

Need to choose € £'(X’), estimateF (¢P(x, D)u). Choosey € £(X) so that
’QD =1o0n Bg(g(Xo).

NB: this implies that ifx € X', ¢)(y) # 1 then|x — y| > 6.




Write u = (1 — ¢)u + vu. Claim: ¢ P(x, D)((1 — ¢)u) is smooth.
¢(x)P(x, D)((1 = )u))(x)

— o) [ dePx.&exE [ dy(1 - vy)uly)e S
= [ de [ ayPx. 060 — vy Euty)

= [t [ dy(-9VPex.gox)1 - vly)lx -y Ve Euly)




using the identity
6%’(X—Y)'£ = |x — y\_2 [_vgei(x—.\/)'g}
and integrating by part8M times in&. This is permissible becausgx)(1 —
(y)) #0=[x—y|[>0.
According to the definition o’DO,
(VY P(x, &) < Cle™

For anyK, the integral thus becomes absolutely convergent &aftdifferentiations
of the integrand, provided/ is chosen large enough. Q.E.D. Claim.

This leaves us witlp P(x, D)(yu). Pickn € = and w.l.0.g. scalé;| = 1.




Fourier transform:

FloPtx, D)) = [ do [ d Pix,&)otx)u(e)e €

Introducerf = &, and rewrite this as

:7'”/ dx / df P(x, 79)¢(X)?ﬁu(79)ewx'(9_”)

Divide the domain of the inner integral inf@ : |6 — n| > €} and its complement.
Use

_vieirx-(Q—n) _ 7'2‘6 o n‘QeiTx-(Q—n)




Integrate by part8 M times to estimate the first integral:

et [ [ o (-9 P oo u(eo

x |9 o 77‘—2M6i7'x-(«9—77)

< CTner—QM

m being the order of°. Thus the first integral is rapidly decreasingrin
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For the second integral, note that— n| < ¢ = 6 € =, per the defn oE’. Since

X x =z Is disjoint from the wavefront set af, for a sequence of constanisy,
Wu(fﬁ)l < Cx7 uniformly for # in the (compact) domain of integration, whence
the second integral is also rapidly decreasing.iQ. E. D.

And that’s why Kirchhoff migration works, at least in the $il@a geometric optics
regime.
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Inversion aperture

M) CR?Px R? =0

if WEF(r) C '], thenW F(Fv|*Flv]r) = W F(r)andF|v]*F|v] “acts invertible”.
[construction ofl'[v] - later!]

Beylkin: with proper choice of amplitud&x,, t; x,), the modified Kirchhoff mi-
gration operator

/// dx, dzs dt b(x,,t;Xs)0(t — 7(x; Xs) — T(X;%,) ) d(Xp, T Xs)
yields F[v]' Flv]r ~ r if WF(r) C ['[v]
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For details of Beylkin construction: Beylkin, 1985; Millet al 1989; Bleistein,
Cohen, and Stockwell 2000; WWS Math Foundations, MGSS nb®&s8. All
components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, RaprBinversion, migra-
tion/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, BurridgeHdop, Lambas, ...

Apparent limitation: construction relies on simple geoneaiptics (no multipathing)
- IS this really necessary?
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Example of GRT Inversion (application df[v|): K. Araya (1995), “2.5D" in-
version of marine streamer data from Gulf of Mexico: 500 seypositions, 120

receiver channels, 750 Mb.
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Why Beylkin isn’t enough
The theory developed by Beylkin and others cannot be the £tk story:

e The “single ray” hypotheses generally fails in the presasfc#trong refraction.

e B. White, “The Stochastic Caustic” (1982): For “random buio®th” v(x) with
variancec, points at distanc&(c—2/?) from source have more than one ray
connecting to source, with probability inultipathingassociated with formation
of caustics= ray envelopes.

e Formation of caustics invalidates asymptotic analysis biclwvBeylkin result is
based.
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Why it matters

e Strong refraction leading to multipathing and caustic fation typical of salt
(4-5 km/s) intrusion into sedimentary rock (2-3 km/s) (egulfGf Mexico),
also chalk tectonics in North Sea and elsewhere - some of ds promising
petroleum provinces!
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Escape from simplicity - the Canonical Relation

How do we get away from “simple geometric optics”, SSR, DSR,all violated
In sufficiently complex (and realistic) models? Raké&xmm. PDE1988, Nolan
Comm. PDEL997: global description aF;s|v| as mapping reflectors: reflections.

Y = {x,,t,x,} (time x set of source-receiver pairs) submfdRf of dim. < 5,
I1: T*(R") — T*Y the natural projection

suppr C X C R’

Canonical relationCp,) C T%(X) — {0} x T*(Y) — {0} describes singularity
mapping properties af’":

(Xa ga Y, 77) < OE;[U] A
for someu € £'(X), (x,£) € WF(u), and(y,n) € WF(Fu)
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Rays Construction of the Relation

Rays of geometric optics: solutions of Hamiltonian system

dX d=
T _V=H(X.E), == - _VxHX.E
At vu ( ) )7 At vX ( ) )

with H(X, E) = 1[1 — v*(X)|E[*] = 0 (null bicharacteristic}.

Characterization of Cp:

(%,8), (%, 8, %, &, 7, &) € Cpyp) € T7(X) — {0} x T7(Y) — {0}
& there argays of geometric opticsX;, E;), (X, E,) and timeg,, ¢, so that

[(X(0), 8, X (), Bs(0), 7, B (1)) = (X5, 5%, 5, T5 &1 ),

X,(ts) = Xo(t —t,) =%, ty+ 1, = t, By(ts) — Bt — t,)||€
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SinceZ,(ts), —E,(t — t,) have same length, sum = bisectervelocity vectors of
Incident ray from source and reflected ray from receiverdé@ backwards in time)
make equal angles with reflectoratwith normalg¢.

Upshot: canonical relation dfs[v] simply enforces the equal-angles law of reflec-
tion.

Further,rays carry high-frequency energy exactly the fashion that seismologists
Imagine.

Finally, Rakesh’s characterization 6f is global: no assumptions about ray geom-
etry, other than no forward scattering and no grazing imméeon the acquisition
surfaceY’, are needed.
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The Picture
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Proof: Plan of attack

Recall that
Flelr(x,, 1) = (%,
where
1 9%0u 9 1 0%u
oV ouT aae’
1 0%u N
ﬁw — Vu = 5(t>5(X — X5>

andu,ou =0, t < 0.

Need to understand (1) F'(u), (2) relationWV F(r) « W F(ru), (3) W F of soln
of WE in terms ofiV/ F' of RHS (this also gives (1)!).
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Singularities of the Acoustic Potential Field

Main tool: Propagation of Singularitiestheorem of Hhrmander (1970).

Given symbolb(x, &), order m, with asymptotic expansion, defmal bicharater-
Istics (= rays) as solutiongx(t), £(t)) of Hamiltonian system

dx Op dg _@
dt _ ag(xa 5)7 E — aX(Xa €>

with p(x(t),&(t)) = 0.

Theorem: Suppose(x, D)u = f, and suppose that fog < ¢t < ¢, (x(t),&(t))
WE(f). Then eithed (x(t),&(t)) : to <t < t;} C WF(u) or{(x(t),&(t)) : to
t <t} CT*R") — WF(u).

IA A
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Source to Fleld

RHS of wave equation far = § function inx, t. WF set ={(x,t,&,7) : X = X,,t =
0} - i.e. no restriction on covector part.

= (x,t,&€,7) € WF(u) Iff a ray starting at(x;, 0) passes ovefx,t) - i.e. (x,t)
lies on the “light cone” with vertex dtx,, 0). Symbol for wave op i9(x,t,&,7) =

2 —v%(x)[€]?), so Hamilton’s equations for null bicharacteristics are

2
dX 5 d=
— = — = — =VI X
o ve(X)E, o V log v(X)

Thusé is proportional to velocity vector of ray.

[(&, 7) normalto light cone.]
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Singularities of Products

To computelV/ F'(ru) from W EF(r) andW F'(u), useGabor calculugDuistermaat,
Ch. 1)

Herer is really (r o m)u, wheren(x,t) = x. Choose bump function localized
near(x, t)

—_—

o1 o m)u(, ) = / d¢’ dr'or(€)s(r)a(E — €7 — 1)

_ / A€o (€)a(E — €, 7)
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This will decay rapidly as(&, 7)| — oo unless (i) you can findx’, &) € WF(r)
so thatx, x’ € w(suppg), € — & € WF(u),i.e. (§,7) € WF(rom)+ WF(u), or
(i e WF(r)or(g,7) € WF(u).

Possibility (ii) will not contribute, so effectively

WE((rom)u) = {(x, 1, & + Ey(t,), ) : (x,€) € WF(r), x = X, (t,)

for a ray(Xs, ;) with X(0) = x,, somer.
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Wavefront set of Scattered Field

Once again use propagation of singularities;,t,&,.,7.) € WF(du) < on ray
(X, E,) passing throughV’ F'(r«). Can argue that time of intersectiontis t, < t.

That Is,
X, (t) =%, X, (t — t,) = X(ts) = x,

t=t,+t,, and

for some¢ € WF(r). Q. E.D.
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Rakesh’s Thesis

Rakesh also showed thatwv| is aFourier Integral Operator= class of oscillatory
Integral operators, introduced byoknmander and others in the '70s to describe the
solutions of nonelliptic PDEs.

Phases and amplitudes of FIOs satisfy certain restriciorelitions. Canonical
relations have geometric description similar to that®s|. Adjoint of FIO is FIO
with inverse canonical relation.

UDOQOs are special FIOs, as are GRTSs.

Composition of FIOs doesot yield an FIO in general. Beylkin had shown that
Flv*Flv] is FIO (DO, actually) under simple ray geometry hypothesis - bug thi
IS only sufficient. Rakesh noted that this follows from gehegsults of Hhrmander:
simple ray geometrys- canonical relation is graph of ext. deriv. of phase function
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The Shell Guys and TIC

Smit, tenKroode and Verdel (1998): provided that

e source, receiver positionig,, x,.) form anopen4D manifold (“complete cover-
age” - all source, receiver positions at least locally), and

e the Traveltime Injectivity Conditio*TIC”) holds: C;[%}] CTY —{0} xT*X —
{0} is afunction- that is, initial data for source and receiver rays and toéadel

time together determine reflector uniquely.

then F'[v]*F|v] is WDO =- application ofF'[v]* produces image, anBl[v|* F'|v] has
microlocal parametrix (“asymptotic inversion”).
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TIC Is a nontrivial constraint!

X X

S r

X|
>

Symmetric waveguide: timex( — x — x,) same as timex;, — x — x,), SO TIC
fails.
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Stolk’s Thesis

Stolk (2000): under “complete coverage” hypothesigor which Flv|*F|v] is =
[WDO + rel. smoothing op] form open, dense set (without assgmig!).

NB: application of F'|v]* involves accounting forll rays connecting source and
receiver with reflectors. Standard practice still attenmp@&ging with single choice
of ray pair (shortest time, max energy,...). Operto et aD@@ive nice illustration
that all rays must be included.

30



Nolan’s Thesis

Limitation of Smit-tenKroode-Verdel: most idealized datequisition geometries
violate “complete coverage”. for example, idealized margstreamer geometry
(src-recvr submfd is 3D)

Nolan (1997): result remains true without “complete cogefecondition: requires
only TIC plus addl condition so that projecti@ry, — T*Y Is embedding - but
examples violating TIC are much easier to construct whencgereceiver submfd
has positive codim.

Sinister Implication: When data is just a single gather - common shot, common
offset - image may contaiartifacts i.e. spurious reflectors not present in model.
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Horrible Example |

Synthetic 2D Example (Stolk and WWS, 200Geophysic2004)
Strongly refracting acoustic lens)(over horizontal reflector-{, d = F|v|r.

(i) for open source-receiver set|v]*d = good image of reflector - within limits of
finite frequency implied by numerical methalljv]* F'[v] acts likeWDO;

(if) for common offsetubmfd (codim 1), TIC is violated and’ F'( F[v|*d) is larger
thanWW F(r).
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X1
-1 0 1

N

H 1
0.6

Gaussian lens velocity model, flat reflector at depth 2 kmrlawewith rays and
wavefronts (Stolk & S. 2002 SEQG).

| AR
/S TR\

PN X
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receiver position (km)

time
(s)

Typical shot gather - lots of arrivals

34



offset

1.6

travel time # s,r
— 11
33
—21
---12
31
— 3,2

Xy 2.0 R ————

2.4

Offset common image gather (slice Bfv]*d), with kinematically predicted reflec-
tor images overlain.
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Horrible Example Il

Stolk and Symes(zeophysic2004: “Marmouflat” model = smoothed Marmousi
(Versteeg & Grau 1991) with two flat reflectors.

X (km)

5.5km/s
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Typical shot gather:

receiver position (km)
5.2 5.6 6 6.4 6.8 7.2

time
(s

much evidence of multipathing, caustimation.
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angle (deq)
0] 20 4|0 80

2.2+

< 2.4+

2.6-

Typical common scattering angle image gather: note nonfettan box - results
from data event migrating alongrong ray pair.
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X (km)
5.6 6 6.4 6.8 7.2 7.6

zZ 12
(km)

Blue rays = energy path producing data event. Black raysiggrmath for migra-
tion, resulting in displaced, angle-dependent imagesattif
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What it all means

Note that a gather scheme makes the scattering operatértiiagonal: for exam-
ple with data sorted into common offset gathers (x, — x;)/2,

Flv] = [Fy, |v], ...,FhN[v]]T, d = |dp,, ...,th]T

Thus Fv]*d = ), Fy [v]*dp,. Otherwise put: to form imagemigrate ith gather
(apply migration operatof;, [v]*, thenstack individual migrated images (hence
prestack migratioh

Horrible Examples show that individual migrated images maytain nonphysical
apparent reflectors (artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds, therefie artifacts are not sta-
tionary with respect to the gather parameter, hestaek ou(interfere destructively)
In final image.
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