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Wave Equation Migration

Techniques for computingF [v]∗:

(i) Reverse time

(ii) Reverse depth
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Reverse Time Migration, Zero Offset

Start with the zero-offset case - easier, but only if you replace it with the exploding
reflector model, which replacesF [v] by

F̃ [v]r(xs, t) = w(xs, t), xs ∈ Xs, 0 ≤ t ≤ T

(

4

v2

∂2

∂t2
−∇2

)

w = δ(t)
2r

v2
, w ≡ 0, t < 0

To compute the adjoint, start with its definition: choosed ∈ E(Xs × (0, T )), so that

< F̃ [v]∗d, r >=< d, F̃ [v]r >

=

∫

Xs

dxs

∫ T

0

dt d(xs, t)w(xs, t)
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The only thing you know aboutw is that it solves a wave equation withr on the
RHS. To get this fact into play, (i) rewrite the integral as a space-time integral:

=

∫

R3

dx

∫ T

0

dt

∫

Xs

dxs d(xs, t)δ(x − xs)w(x, t)

(ii) write the other factor in the integrand as the image of a fieldq under the (adjoint
of the) wave operator (it’s self-adjoint), that is,

(

4

v2

∂2

∂t2
−∇2

)

q(x, t) =

∫

Xs

dxs d(xs, t)δ(x − xs)

so

=

∫

R3

dx

∫ T

0

dt

[(

4

v2(x)

∂2

∂t2
−∇2

)

q(x, t)

]

w(x, t)
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(iii) integrate by parts

=

∫

R3

dx

∫ T

0

dt

[(

4

v2(x)

∂2

∂t2
−∇2

)

w(x, t)

]

q(x, t)

which works ifq ≡ 0, t > T (final value condition); (iv) use the wave equation for
w

=

∫

R3

dx

∫ T

0

dt
2

v(x)2
r(x)δ(t)q(x, t)

(v) observe that you have computed the adjoint:

=

∫

R3

dx r(x)

[

2

v(x)2
q(x, 0)

]

=< r, F̃ [v]∗d >

i.e.

F̃ [v]∗d =
2

v(x)2
q(x, 0)
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Summary of the computation, with the usual description:

• Use that data as sources, backpropagate in time - i.e. solve the final value (“re-
verse time”) problem

(

4

v2

∂2

∂t2
−∇2

)

q(x, t) =

∫

Xs

dxs d(xs, t)δ(x − xs), q ≡ 0, t > T

• read out the “image” (= adjoint output) att = 0:

F̃ [v]∗d =
2

v(x)2
q(x, 0)

Note: The adjoint (time-reversed) fieldq is not the physical field (δu) run back-
wards in time, contrary to some imputations in the literature.
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Historical Remarks

• Known as “two way reverse time finite difference poststack migration” in geo-
physical literature (Whitmore, 1982)

• uses full (two way) wave equation, propagates adjoint field backwards in time,
generally implemented using finite difference discretization.

• Same as “adjoint state method”, Lions 1968, Chavent 1974 forcontrol and in-
verse problems for PDEs - much earlier for control of ODEs - Lailly, Tarantola
’80s.

• My buddy Tapia says: all you’re doing is transposing a matrix! True (after
discretization), but it’s important that these matrices are triangular, so can be
implemented by recursions - forward for simulation, backwards for adjoint.
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Reverse Time Migration, Prestack

A slightly messier computation computes the adjoint ofF [v] (i.e. multioffset or
prestackmigration):

F [v]∗d(x) = −
2

v(x)

∫

dxs

∫ T

0

dt

(

∂q

∂t
∇2u

)

(x, t;xs)

whereadjoint fieldq satisfiesq ≡ 0, t ≥ T and

(

1

v2

∂2

∂t2
−∇2

)

q(x, t;xs) =

∫

dxr d(xr, t;xs)δ(x − xr)
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Proof

< F [v]∗d, r >=< d, F [v]r >

=

∫ ∫

dxs dxr

∫ T

0

dt d(xr, t;xs)
∂δu

∂t
(xr, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

{
∫

dxr d(xr, t;xs)δ(x − xr)

}

∂δu

∂t
(x, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

q

]

∂δu

∂t
(x, t;xs)
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= −

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

δu

]

∂q

∂t
(x, t;xs)

(boundary terms in integration by parts vanish because (i)δu ≡ 0, t << 0; (ii)
q ≡ 0, t >> 0; (iii) both vanish for largex, at eacht)

= −

∫

dxs

∫

dx

∫ T

0

dt

(

2r

v2

∂2u

∂t2
∂q

∂t

)

(x, t;xs)

= −

∫

dxs

∫

dx r(x)
2

v2(x)

∫ T

0

dt

(

∂2u

∂t2
∂q

∂t

)

(x, t;xs)

=< r, F [v]∗d >

q.e.d.
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Implementation

Algorithm: finite difference or finite element discretization in x, finite difference
time stepping.

• For eachxs, solve wave equation foru forward in t, record final (t=T) Cauchy
data, also (for example) Dirichlet boundary data.

• Stepu andq backwards in time together; at each time step, data serves assource
for q (“backpropagate data”)

• During backwards time stepping, accumulate (approximations to)

Q(x)+ =
2

v2(x)

∫ T

0

dt

(

∂2u

∂t2
∂q

∂t

)

(x, t;xs)

(“crosscorrelate reference and backpropagated field”).

• nextxs - after lastxs, F [v]∗d = Q.
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Reverse Depth Migration, Zero Offset

aka: depth extrapolation, downward continuation, or simply “wave equation migra-
tion”.

Introduced by Claerbout, early 70’s (“swimming pool equation”). Again, assume
exploding reflector model:

F̃ [v]r(xs, t) = w(xs, t), xs ∈ Xs, 0 ≤ t ≤ T

(

4

v2

∂2

∂t2
−∇2

)

w = δ(t)
2r

v2
, w ≡ 0, t < 0

Basic idea: 2nd order wave equation permits waves to move in all directions, but
waves carrying reflected energy are (mostly) movingup. Should satisfy a 1st order
equation for wave motion in one direction.
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Coming up...

For the moment use 2D notationx = (x, z) etc. Write wave equation as evolution
equation inz:

∂2w

∂z2
−

(

4

v2

∂2

∂t2
−

∂2

∂x2

)

w = −δ(t)
2r

v2

Suppose that you could take the square root of the operator inparentheses - call it
B. Then the LHS of the wave equation becomes

(

∂

∂z
− B

)(

∂

∂z
+ B

)

w = −δ(t)
2r

v2

so settingw̃ =
(

∂
∂z + B

)

w you get
(

∂

∂z
− B

)

w̃ = −δ(t)
2r

v2
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Some issues

Thismightbe the required equation for upcoming waves.

Two major problems: (i) how the h–l do you take the square rootof a PDO?

(ii) what guarantees that the equation just written governsupcoming waves?

Answers to be found in the theory ofΨDOs!
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ClassicalΨDOs

Importantsubclassof classicalΨDOs: those whose (“classical”) symbols have
asymptotic expansions:

p(x, ξ) ∼
∑

j≤m

pj(x, ξ), |ξ| → ∞

in whichpj is homogeneous inξ of degreej:

pj(x, τξ) = τ jpj(x, τξ), τ, |ξ| ≥ 1

Theprincipal symbolis the homogeneous term of highest degree, i.e.pm above.
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Products ofΨDOs areΨDOs.

ClassicalΨDOs have more completecalculus, including prescriptions for “com-
puting” adjoints, products, and the like. From now on unlessotherwise stated, all
ΨDOs are classical.

Product rule forΨDOs: if p1, p2 are classical,

p1(x, ξ) =
∑

j≤m1

p1

j(x, ξ), p2(x, ξ) =
∑

j≤m2

p2

j(x, ξ)

then so isp1(x, D)p2(x, D), and its principal symbol isp1

m1(x, ξ)p2

m2(x, ξ), and
there is an algorithm for computing the rest of the expansion.

In an open neighborhoodX × Ξ of (x0, ξ0), symbol ofp1(x, D)p2(x, D) depends
only on symbols ofp1, p2 in X × Ξ.

15



Consequence: ifa(x, D) has an asymptotic expansion and is of orderm ∈ R, and
am(x0, ξ0) > 0 in P ⊂ Rn × Rn − 0, then there existsb(x, D) of orderm/2 with
asymptotic expansion for which

(a(x, D) − b(x, D)b(x, D))u ∈ E(Rn)

for anyu ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover,bm/2(x, ξ) =
√

am(x, ξ), (x, ξ) ∈ P. Will call b a microlocal square
root of a.

Similar construction: ifa(x, ξ) 6= 0 in P, then there isc(x, D) of order−m so that

c(x, D)a(x, D)u − u, a(x, D)c(x, D)u − u ∈ E(Rn)

for anyu ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover,c−m(x, ξ) = 1/am(x, ξ), (x, ξ) ∈ P. Will call b a microlocal inverseof
a.
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Application: the Square Root Operator

a(x, z,Dt, Dx) =
∂2

∂x2
−

4

v(x, z)2
∂2

∂t2
=

4

v(x, z)2
D2

t − D2

x

is

a(x, z, τ, ξ) =
4

v(x, z)2
τ 2 − ξ2

For δ > 0, set

Pδ(z) =

{

(x, t, ξ, τ ) :
4

v(x, z)2
τ 2 > (1 + δ)ξ2

}
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The SSR Operator

Then according to the last slide, there is an order 1ΨDO-valued function ofz,
b(x, z, Dt, Dx), with principal symbol

b1(x, z, τ, ξ) =

√

4

v(x, z)2
τ 2 − ξ2 = τ

√

4

v(x, z)2
−

ξ2

τ 2
, (x, t, ξ, τ ) ∈ Pδ(z)

for whicha(x, z,Dt, Dx)u ≃ b(x, z, Dt, Dx)b(x, z, Dt, Dx)u if WF (u) ⊂ Pδ(z).

b is the world-famoussingle square root (“SSR”) operator - see Claerbout, IEI.
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The SSR Assumption

To what extent has this construction factored the wave operator:

(

∂

∂z
− ib(x, z,Dx, Dt)

)(

∂

∂z
+ ib(x, z, Dx, Dt)

)

=
∂2

∂z2
+ b(x, z, Dx, Dt)b(x, z,Dx, Dt) +

∂b

∂z
(x, z,Dx, Dt)

SSR Assumption: For someδ > 0, the wavefieldw satisfies

(x, z, t, ξ, ζ, τ ) ∈ WF (w) ⇒ (x, t, ξ, τ ) ∈ Pδ(z) andζτ > 0
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This statement has a ray-theoretic interpretation (which will eventually make sense):
rays carrying significant energy are nowhere horizontal. Along any such ray,z de-
creases ast increases -coming up!

w̃(x, z, t) =

(

∂

∂z
+ ib(x, z, Dx, Dt)

)

w(x, z, t)

b(x, z,Dx, Dt)b(x, z,Dx, Dt)w ≃

(

4

v(x, z)2
D2

t − D2

x

)

w

with a smooth error, so
(

∂

∂z
− ib(x, z,Dx, Dt)

)

w̃(x, z, t) = −
2r(x, z)

v(x, z)2
δ(t)

+i

(

∂

∂z
b(x, z,Dx, Dt)

)

w(x, z, t)
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(sinceb depends onz, thez deriv. does not commute withb). So w̃ = w̃0 + w̃1,
where

(

∂

∂z
− ib(x, z,Dx, Dt)

)

w̃0(x, z, t) = −
2r(x, z)

v(x, z)2
δ(t)

(this is theSSR modeling equation)

(

∂

∂z
− ib(x, z,Dx, Dt)

)

w̃1(x, z, t) = i

(

∂

∂z
b(x, z,Dx, Dt)

)

w(x, z, t)

Claim: WF (w̃1) ⊂ WF (w). Granted this⇒ WF (w̃0) ⊂ WF (w) also.
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Upshot: SSR modeling

F̃0[v]r(xs, zs, t) = w̃0(xs, zs, t)

produces the same singularities (i.e. the same waves) as exploding reflector model-
ing, so is as good a basis for migration.

SSR migration: assume that sources all lie onzs = 0.

< F̃0[v]∗d, r >=< d, F̃0[v]r >

=

∫

dxs

∫

dt d(xs, t)w̃0(xs, 0, t)
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=

∫

dxs

∫

dt

∫

dz ¯d(xs, t)δ(z)w̃0(xs, z, t)

Define the adjoint fieldq by
(

∂

∂z
− b(x, z,Dx, Dt)

)

q(x, z, t) = d(x, t)δ(z), q(x, z, t) ≡ 0, z < 0

which is equivalent to solving the initial value problem
(

∂

∂z
− ib(x, z,Dx, Dt)

)

q(x, z, t) = 0, z > 0; , q(x, 0, t) = d(x, t)

Insert in expression for inner product, integrate by parts,use self-adjointness ofb,
get

< d, F̃0[v]r >=

∫

dx

∫

dz
2r(x, z)

v(x, z)2
q(x, z, 0)
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whence

F̃0[v]∗d(x, z) =
2

v(x, z)2
q(x, z, 0)

Standard description of the SSR migration algorithm:

• downward continue data (i.e. solve forq)

• image att = 0.

The art of SSR migration: computable approximations tob(x, z, Dx, Dt) - swim-
ming pool operator, many successors.
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Proof of the Claim

Unfinished business: proof of claim

Depends on celebratedPropagation of Singularities theorem of Ḧormander (1970).

Given symbolp(x, ξ), order m, with asymptotic expansion, definebicharateristics
as solutions(x(t), ξ(t)) of Hamiltonian system

dx

dt
=

∂p

∂ξ
(x, ξ),

dξ

dt
= −

∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Supposep(x, D)u = f , and suppose that fort0 ≤ t ≤ t1, (x(t), ξ(t)) /∈

WF (f). Then either{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ WF (u) or {(x(t), ξ(t)) : t0 ≤

t ≤ t1} ⊂ T ∗(Rn) − WF (u).
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P of S has at least two distinct proofs:

• Nirenberg, 1972

• Hörmander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR operator are just upcoming
rays of geom. optics for wave equation. These pass intot < 0 where RHS is
smooth, also initial condn at largez is smooth - so each ray has one “end” outside
of WF (w̃1). If ray carries singularity, must pass ofWF of w, but then it’s entirely
contained by P of S applied tow. q. e. d.
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Reverse Depth Migration, Prestack

Nonzero offset (“prestack”): starting point is integral representation of the scattered
field

F [v]r(xr, t;xs) =
∂2

∂t2

∫

dx
2r(x)

v(x)2

∫

dsG(xr, t − s;x)G(xs, s;x)

By analogy with zero offset case, would like to view this as “exploding reflectors
in both directions”: reflectors propagate energy upward to sources and to receivers.

However can’t do this because reflection location issamefor both.
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The “survey sinking” idea

Bold stroke: introduce a new space variabley (a “sunken source”, think ofx as a
“sunken receiver”), define

F̃ [v]R(xr, t;xs) =
∂2

∂t2

∫ ∫

dx dy R(x,y)

∫

dsG(xr, t − s;x)G(xs, s;y)

and note that̃F [v]R = F [v]r if

R(x,y) =
2r

v2

(x + y

2

)

δ(x − y)
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This trick decomposesF [v] into two “exploding reflectors”:

F̃ [v]R(xr, t;xs) = u(x, t;xs)|x=xr

where
(

1

v(x)2
∂2

∂t2
−∇2

x

)

u(x, t;xs) =

∫

dy R(x,y)G(xs, t;y)

≡ ws(xs, t;x)

(“upward continue the receivers”),
(

1

v(y)2
∂2

∂t2
−∇2

y

)

ws(y, t;x) = R(x,y)δ(t)

(“upward continue the sources”).
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This factorization ofF [v] (r 7→ R 7→ F̃ [v]R) leads to a reverse time computation
of adjointF̃ [v]∗ - will discuss this later.

It’s equally possible to continue the receivers first, then the sources, which leads to
(

1

v(y)2
∂2

∂t2
−∇2

y

)

u(xr, t;y) =

∫

dxR(x,y)G(xr, t;x)

≡ wr(xr, t;y)

(“upward continue the sources”),
(

1

v(x)2
∂2

∂t2
−∇2

x

)

wr(x, t;y) = R(x,y)δ(t)

(“upward continue the receivers”).
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The DSR Assumption

Apply reverse depth concept: as before, go 2D temporarily,x = (x, zr),y = (y, zs),
all sources and receivers onz = 0.

Double Square Root (“DSR”) assumption: For someδ > 0, the wavefieldu satis-
fies

(x, zr, t, y, zs, ξ, ζs, τ, η, ζr) ∈ WF (u) ⇒

(x, t, ξ, τ ) ∈ Pδ(zr), (y, t, η, τ ) ∈ Pδ(zs), andζrτ > 0, ζsτ > 0,

As for SSR, there is a ray-theoretic interpretation: rays from source and receiver to
scattering point stay away from the vertical and decrease inz for increasingt, i.e.
they are all upcoming.
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Sincez will be singled out (and eventuallyR(x,y) will have a factor ofδ(x,y)),
impose the constraint that

R(x, z, x, zs) = R̃(x, y, z)δ(z − zs)

Define upcoming projections as for SSR:

w̃s =

(

∂

∂zs
+ ib(y, zs, Dy, Dt)

)

ws,

w̃r =

(

∂

∂zr
+ ib(x, zr, Dx, Dt)

)

wr,

ũ =

(

∂

∂zs
+ ib(y, zs, Dy, Dt)

) (

∂

∂zr
+ ib(x, zr, Dx, Dt)

)

u
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Except for lower order commutators which we justify throwing away as before,
(

∂

∂zs
− ib(y, zs, Dy, Dt)

)

w̃s = R̃δ(zr − zs)δ(t),

(

∂

∂zr
− ib(x, zr, Dx, Dt)

)

w̃r = R̃δ(zr − zs)δ(t),

(

∂

∂zr
− ib(x, zr, Dx, Dt)

)

ũ = w̃s

(

∂

∂zs
− ib(y, zs, Dy, Dt)

)

ũ = w̃r

Initial (final) conditions are that̃wr, w̃s, andũ all vanish for largez - the equations
are to be solve in decreasingz (“upward continuation”).
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Simultaneous upward continuation:

∂

∂z
ũ(x, z, t; y, z) =

∂

∂zr
ũ(x, zr, t; y, z)|z=zr +

∂

∂zr
ũ(x, z, t; y, zs)|z=zs

= [ib(x, zr, Dx, Dt)ũ + w̃s + ib(y, zs, Dy, Dt)ũ + w̃r]zr=zs=z

Sincew̃s(y, z, t; x, z) = w̃r(x, z, t; y, z) = R̃(x, y, z)δ(t), ũ is seen to satisfy the

DSR modeling equation:
(

∂

∂z
− ib(x, z,Dx, Dt) − ib(y, z, Dy, Dt)

)

ũ(x, z, t; y, z) = 2R̃(x, y, z)δ(t)

F̃ [v]R̃(xr, t; xs) = ũ(xr, 0, t; xs, 0)
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DSR Migration

Computation of adjoint follows same pattern as for SSR, and leads to

DSR migration equation: solve
(

∂

∂z
− ib(x, z, Dx, Dt) − ib(y, z, Dy, Dt)

)

q̃(x, y, z, t) = 0

in increasingz with initial condition atz = 0:

q̃(xr, xs, 0, t) = d(xr, xs, t)

ThenF̃ [v]∗d(x, y, z) = q̃(x, y, z, 0)

The physical DSR model has̃R(x, y, z) = r(x, z)δ(x − y), so final step in DSR
computation ofF [v]∗ is adjoint ofr 7→ R̃:

F [v]∗d(x, z) = q̃(x, x, z, 0)
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Standard description of DSR migration

(See Claerbout, IEI):

• downward continue sources and receivers (solve DSR migration equation)

• image att = 0 and zero offset (x = y)

Another moniker: “survey sinking”: DSR field̃q is (related to) the field that you
would get by conducting the survey with sources and receivers at depthz. At any
given depth, the zero-offset, time-zero part of the field is the instantaneous response
to scatterers on which source = receiver is sitting, therefore constitutes an image.

As for SSR, the art of DSR migration is in the approximation ofthe DSR operator.
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Remarks

Stolk and deHoop (2001) derived DSR modeling and migration via a more system-
atic argument than that used here, involvingΨDO matrix factorization of the wave
equation written as a first order evolution system inz. This idea goes back to Tay-
lor (1975) who used it to show that singularities propagating along bicharacteristics
reflect as expected at boundaries.

Stolk (2003) has also carried out a very careful global construction of a family of
SSRΨDOs which are of non-classical type at near-horizontal directions (“nearly
evanescent waves”). This construction should lead to more reliable discretizations.

The last part of the course will present the various apparently ad-hoc “prestack
modeling” ideas within a unified framework.
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