Mathematics of Seismic Imaging Part III

William W. Symes

PIMS, July 2005

A step beyond linearization: velocity analysis

Velocity Analysis

Partially linearized seismic inverse problem ("velocity analysis"): given observed seismic data d, find smooth velocity $v \in \mathcal{E}(X), X \subset \mathbb{R}^3$ oscillatory reflectivity $r \in \mathcal{E}'(X)$ so that

$$F[v]r \simeq d$$

Acoustic partially linearized model: acoustic potential field u and its perturbation δu solve

$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)u = \delta(t)\delta(\mathbf{x} - \mathbf{x}_s), \ \left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\delta u = 2r\nabla^2 u$$

plus suitable bdry and initial conditions.

$$F[v]r = \frac{\partial \delta u}{\partial t} \bigg|_{Y}$$

data acquisition manifold $Y = \{(\mathbf{x}_r, t; \mathbf{x}_s)\} \subset \mathbf{R}^7$, dimn $Y \leq 5$ (many idealizations here!).

 $F[v] : \mathcal{E}'(X) \to \mathcal{D}'(Y)$ is a linear map (FIO of order 1), but dependence on v is quite nonlinear, so this inverse problem is nonlinear.

Agenda:

- reformulation of inverse problem via extensions
- "standard processing" extension and standard VA
- the surface oriented extension and standard MVA
- \bullet the ΨDO property and why it's important
- \bullet global failure of the ΨDO property for the SOE
- \bullet Claerbout's depth oriented extension has the ΨDO property
- differential semblance

Extensions

Extension of F[v]: manifold \overline{X} and maps $\chi : \mathcal{E}'(X) \to \mathcal{E}'(\overline{X}), \overline{F}[v] : \mathcal{E}'(\overline{X}) \to \mathcal{D}'(Y)$ so that

commutes.

Invertible extension: $\overline{F}[v]$ has a right parametrix $\overline{G}[v]$, i.e. $I - \overline{F}[v]\overline{G}[v]$ is smoothing. [The trivial extension - $\overline{X} = X$, $\overline{F} = F$ - is virtually never invertible.] Also χ has a left inverse η .

Reformulation of inverse problem: given d, find v so that $\overline{G}[v]d \in \mathcal{R}(\chi)$ (implicitly determines r also!).

Reformulation of inverse problem

Given d, find v so that $\overline{G}[v]d \in$ the range of χ .

Claim: if v is so chosen, then [v, r] solves partially linearized inverse problem with $r = \eta \overline{G}[v]d$.

Proof: Hypothesis means

$$\bar{G}[v]d = \chi r$$

for some r (whence necessarily $r = \eta \overline{G}[v]d$), so

$$d \simeq \bar{F}[v]\bar{G}[v]d = \bar{F}[v]\chi r = F[v]r$$

Q. E. D.

Example 1: Standard VA extension

Treat each CMP *as if it were the result of an experiment performed over a layered medium*, but permit the layers to vary with midpoint.

Thus v = v(z), r = r(z) for purposes of analysis, but at the end $v = v(\mathbf{x}_m, z), r = r(\mathbf{x}_m, z)$.

$$F[v]R(\mathbf{x}_m, h, t) \simeq A(\mathbf{x}_m, h, z(\mathbf{x}_m, h, t))R(\mathbf{x}_m, z(\mathbf{x}_m, h, t))$$

Here $z(\mathbf{x}_m, h, t)$ is the inverse of the 2-way traveltime

$$t(\mathbf{x}_m, h, z) = 2\tau(\mathbf{x}_m + (h, 0, z), \mathbf{x}_m)_{v=v(\mathbf{x}_m, z)}$$

computed with the layered velocity $v(\mathbf{x}_m, z)$, i.e. $z(\mathbf{x}_m, h, t(\mathbf{x}_m, h, z')) = z'$.

That is, F[v] is a change of variable followed by multiplication by a smooth function. NB: industry standard practice is to use vertical traveltime t_0 instead of z for depth variable.

Can write this as $F[v] = \overline{F}[v]S^*$, where $\overline{F}[v] = N[v]^{-1}M[v]^{-1}$ has right parametrix $\overline{G}[v] = M[v]N[v]$:

N[v] =**NMO operator** $N[v]d(\mathbf{x}_m, h, z) = d(\mathbf{x}_m, h, t(\mathbf{x}_m, h, z))$

M[v] = multiplication by A

S =stacking operator

$$Sf(\mathbf{x}_m, z) = \int dh f(\mathbf{x}_m, h, z), \ S^*r(\mathbf{x}_m, h, z) = r(\mathbf{x}, z)$$

Identify as extension: $\overline{F}[v], \overline{G}[v]$ as above, $X = \{\mathbf{x}_m, z\}, H = \{h\}, \overline{X} = X \times H, \chi = S^*, \eta = S$ - the invertible extension properties are clear.

Standard names for the Standard VA extension objects: $\overline{F}[v] =$ "inverse NMO", $\overline{G}[v] =$ "NMO" [often the multiplication op M[v] is neglected]; $\eta =$ "stack", $\chi =$ "spread"

How this is used for velocity analysis: Look for v that makes $\overline{G}[v]d \in \mathcal{R}(\chi)$

So what is $\mathcal{R}(\chi)$? $\chi[r](\mathbf{x}_m, z, h) = r(\mathbf{x}_m, z)$ Anything in range of χ is *independent* of h. Practical issues \Rightarrow replace "independent of" with "smooth in".

Flatten them gathers!

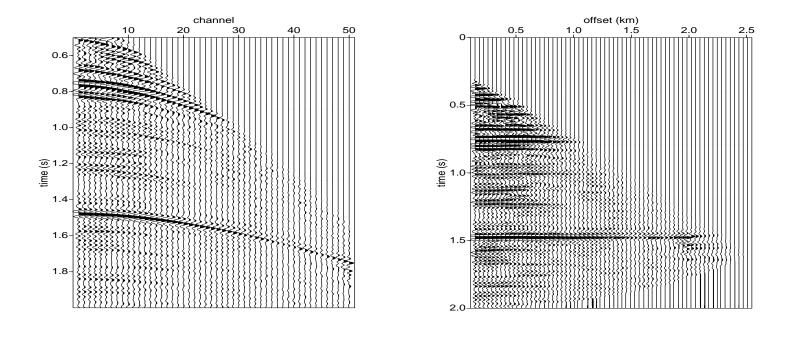
Inverse problem reduced to: adjust v to make $\overline{G}[v]d^{\text{obs}}$ smooth in h, i.e. *flat* in z, h display for each \mathbf{x}_m (*NMO-corrected CMP*).

Replace z with t_0 , v with v_{RMS} em localizes computation: reflection through \mathbf{x}_m , t_0 , 0 flattened by adjusting $v_{\text{RMS}}(\mathbf{x}_m, t_0) \Rightarrow 1D$ search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra, etc.

See: Claerbout: Imaging the Earth's Interior

WWS: MGSS 2000 notes



Left: part of survey (d) from North Sea (thanks: Shell Research), lightly preprocessed.

,

Right: restriction of $\overline{G}[v]d$ to $\mathbf{x}_m = \text{const}$ (function of depth, offset): shows rel. sm'ness in h (offset) for properly chosen v.

Example 2: Surface oriented or standard MVA extension

. Standard VA only works where Earth is "nearly layered". Where this fails, replace NMO by prestack migration.

Version based on common offset modeling/migration: Σ_h = set of half-offsets in data, $\bar{X} = X \times \Sigma_h$, $\chi[r](\mathbf{x}, \mathbf{h}) = r(\mathbf{x})$.

$$\bar{F}[v]\bar{r}(\mathbf{x}_s, t, \mathbf{h}) = \frac{\partial^2}{\partial t^2} \int dx \,\bar{r}(\mathbf{x}, \mathbf{h}) \,\int ds \, G(\mathbf{x}_s + 2\mathbf{h}, t - s; \mathbf{x}) G(\mathbf{x}_s, s; \mathbf{x})$$

Note that this operator is "block diagonal" in h.

Properties of SOE

Beylkin (1985), Rakesh (1988): if $||v||_{C^2(X)}$ "not too big", then

- \bar{F} has the Ψ **DO property**: $\bar{F}\bar{F}^*$ is Ψ **DO**
- singularities of $\bar{F}\bar{F}^*d\subset$ singularities of d
- straightforward construction of right parametrix $\overline{G} = \overline{F}^*Q$, $Q = \Psi DO$, also as generalized Radon Transform explicitly computable.

Range of χ (offset version): $\bar{r}(\mathbf{x}, \mathbf{h})$ independent of $\mathbf{h} \Rightarrow$ "semblance principle": find v so that $\bar{G}[v]d^{\text{obs}}$ is independent of \mathbf{h} . Practical limitations \Rightarrow replace "independent of \mathbf{h} " by "smooth in \mathbf{h} ".

Industrial MVA

Application of these ideas = industrial practice of migration velocity analysis.

Idea: twiddle v until $\overline{G}[v]d^{\text{obs}}$ is smooth in h.

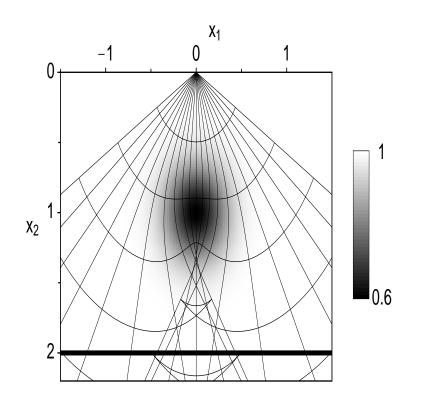
Since it is hard to inspect $\overline{G}[v]d^{\text{obs}}(x, y, z, h)$, pull out subset for constant x, y = **common image gather** ("CIG"): display function of z, h for fixed x, y. These play same role as NMO corrected CMP gathers in layered case.

Try to adjust v so that selected CIGs are *flat* - just as in Standard VA. This is much harder, as there is no RMS velocity trick to localize the computation - each CIG depends globally on v.

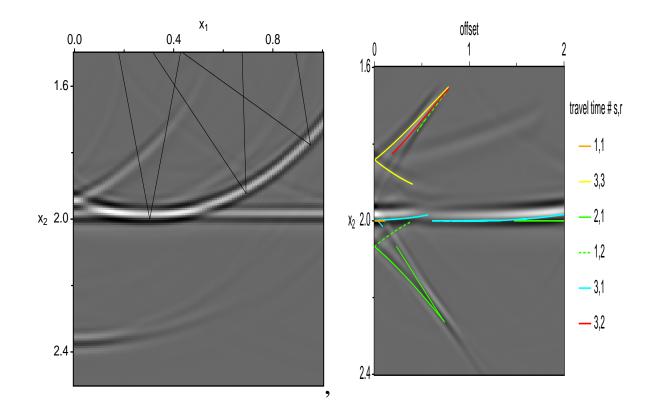
Description, some examples: Yilmaz, Seismic Data Processing.

Bad news

Nolan (1997), Stolk & WWS (2004): big trouble! In general, standard extension does **not** have the Ψ DO property. Geometric optics analysis: for $||v||_{C^2(X)}$ "large", multiple rays connect source, receiver to reflecting points in X; block diagonal structure of $\overline{F}[v] \Rightarrow$ info necessary to distinguish multiple rays is *projected out*.



Example (Stolk & WWS, 2001): Gaussian lens over flat reflector at depth z ($r(\mathbf{x}) = \delta(x_1 - z)$, $x_1 = \text{depth}$).



Left: Const. *h* slice of $\overline{G}d$: several refl. points corresponding to same singularity in d^{obs} . **Right:** CIG (const. *x*, *y* slice) of $\overline{G}d$: not smooth in *h*!

Example 3: Claerbout's depth oriented extension

Standard MVA extension only works when Earth has simple ray geometry. Claerbout (1971) proposed alternative extension:

 Σ_d = somewhat arbitrary set of vectors near 0 ("offsets"), $\bar{X} = X \times \Sigma_d$, $\chi[r](\mathbf{x}, \mathbf{h}) = r(\mathbf{x})\delta(\mathbf{h})$, $\eta[\bar{r}](\mathbf{x}) = \bar{r}(\mathbf{x}, 0)$

$$\begin{split} \bar{F}[v]\bar{r}(\mathbf{x}_s, t, \mathbf{x}_r) &= \frac{\partial^2}{\partial t^2} \int dx \, \int_{\Sigma_d} dh \, \bar{r}(\mathbf{x}, \mathbf{h}) \, \int ds \, G(\mathbf{x}_s, t-s; \mathbf{x}+2\mathbf{h}) G(\mathbf{x}_r, s; \mathbf{x}) \\ &= \frac{\partial^2}{\partial t^2} \int dx \, \int_{\mathbf{x}+2\Sigma_d} dy \, \bar{r}(\mathbf{x}, \mathbf{y}-\mathbf{x}) \, \int ds \, G(\mathbf{x}_s, t-s; \mathbf{y}) G(\mathbf{x}_r, s; \mathbf{x}) \end{split}$$

NB: in this formulation, there appears to be too many model parameters.

Shot record modeling

for each \mathbf{x}_s solve

$$\bar{F}[v]\bar{r}(\mathbf{x}_r, t; \mathbf{x}_s) = u(\mathbf{x}, t; \mathbf{x}_s)|_{\mathbf{x}=\mathbf{x}_r}$$

where

$$\begin{split} \left(\frac{1}{v(\mathbf{x})^2}\frac{\partial^2}{\partial t^2} - \nabla_{\mathbf{x}}^2\right) u(\mathbf{x}, t; \mathbf{x}_s) &= \int_{\mathbf{x}+2\Sigma_d} dy \, \bar{r}(\mathbf{x}, \mathbf{y}) G(\mathbf{y}, t; \mathbf{x}_s) \\ \left(\frac{1}{v(\mathbf{y})^2}\frac{\partial^2}{\partial t^2} - \nabla_{\mathbf{y}}^2\right) G(\mathbf{y}, t; \mathbf{x}_s) &= \delta(t)\delta(\mathbf{x}_s - \mathbf{y}) \end{split}$$

Finite difference scheme: form RHS for eqn 1, step u, G forward in t.

Computing $\bar{G}[v]$

Instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint field as in standard reverse time prestack migration:

$$\left(\frac{1}{v(\mathbf{x})^2}\frac{\partial^2}{\partial t^2} - \nabla_{\mathbf{x}}^2\right)w(\mathbf{x}, t; \mathbf{x}_s) = \int dx_r \, d(\mathbf{x}_r, t; \mathbf{x}_s)\delta(\mathbf{x} - \mathbf{x}_r)$$

with $w(x, t; x_s) = 0, t >> 0$. Then

$$\bar{F}[v]^* d(\mathbf{x}, \mathbf{h}) = \int dx_s \int dt \, G(\mathbf{x} + 2\mathbf{h}, t; \mathbf{x}_s) w(\mathbf{x}, t; \mathbf{x}_s)$$

i.e. exactly the same computation as for reverse time prestack, except that crosscorrelation occurs at an offset 2h.

Nomenclature

NB: the "usual computation" of $\overline{G}[v]$ is either DSR or a variant of shot record computation of previous slide using depth extrapolation. h is usually restricted to be horizontal, i.e. $h_3 = 0$.

Common names: shot-geophone or survey-sinking migration (with DSR), or shot record migration.

"Downward continue sources and receivers, image at t = 0, h = 0"

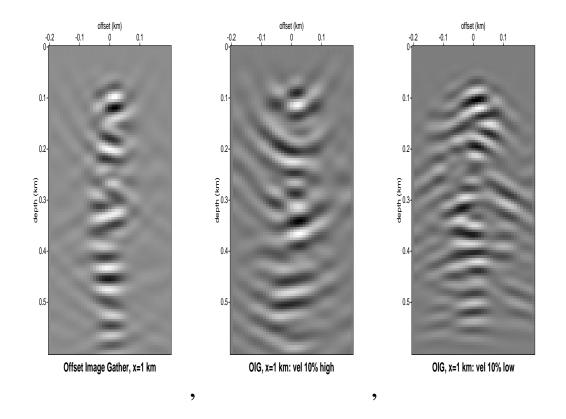
These are what is typically meant by "wave equation migration"!

What should be the character of the image when the velocity is correct?

Hint: for simulation of seismograms, the input reflectivity had the form $r(\mathbf{x})\delta(\mathbf{h})$.

Therefore guess that when velocity is correct, *image is concentrated near* h = 0.

Examples: 2D finite difference implementation of reverse time method. Correct velocity $\equiv 1$. Input reflectivity used to generate synthetic data: random! For output reflectivity (image of $\bar{F}[v]^*$), constrain offset to be horizontal: $\bar{r}(\mathbf{x}, \mathbf{h}) = \tilde{r}(\mathbf{x}, h_1)\delta(h_3)$. Display CIGs (i.e. x_1 =const. slices).



Two way reverse time horizontal offset S-G image gathers of data from random reflectivity, constant velocity. From left to right: correct velocity, 10% high, 10% low.

Stolk and deHoop, 2001

Claerbout extension has the Ψ DO property, at least when restricted to \bar{r} of the form $\bar{r}(\mathbf{x}, \mathbf{h}) = R(\mathbf{x}, h_1, h_2)\delta(h_3)$, and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

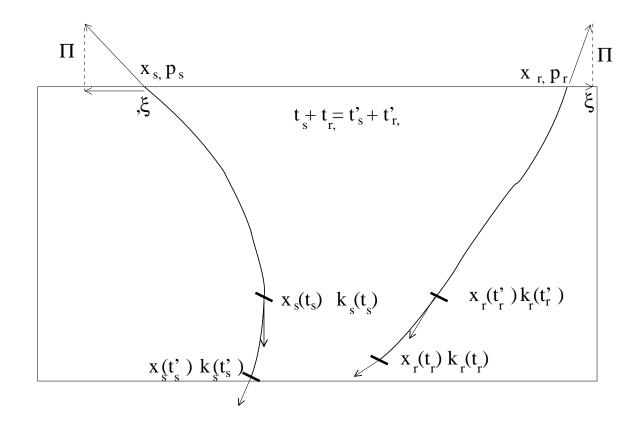
This will follow from *injectivity* of wavefront or *canonical relation* $C_{\bar{F}} \subset T^*(\bar{X}) - \{0\} \times T^*(Y) - \{0\}$ which describes singularity mapping properties of \bar{F} :

 $(\mathbf{x}, \mathbf{h}, \xi, \nu, \mathbf{y}, \eta) \in C_{F_{\delta}[v]} \Leftrightarrow$

for some $u \in \mathcal{E}'(\bar{X}), \ (\mathbf{x}, \mathbf{h}, \xi, \nu) \in WF(u), \ \text{and} \ (\mathbf{y}, \eta) \in WF(\bar{F}u)$

Characterization of $C_{\overline{F}}$

$$\begin{aligned} ((\mathbf{x}, \mathbf{h}, \xi, \nu), (\mathbf{x}_s, t, \mathbf{x}_r, \xi_s, \tau, \xi_r)) &\in C_{\bar{F}}[v] \subset T^*(\bar{X}) - \{\mathbf{0}\} \times T^*(Y) - \{\mathbf{0}\} \\ \Leftrightarrow \text{ there are rays of geometric optics } (\mathbf{X}_s, \mathbf{\Xi}_s), (\mathbf{X}_r, \mathbf{\Xi}_r) \text{ and times } t_s, t_r \text{ so that} \\ \Pi(\mathbf{X}_s(0), t, \mathbf{X}_r(0), \mathbf{\Xi}_s(0), \tau, \mathbf{\Xi}_r(0)) &= (\mathbf{x}_s, t, \mathbf{x}_r, \xi_s, \tau, \xi_r), \\ \mathbf{X}_s(t_s) &= \mathbf{x}, \mathbf{X}_r(t_r) = \mathbf{x} + 2\mathbf{h}, \ t_s + t_r = t, \\ \mathbf{\Xi}_s(t_s) + \mathbf{\Xi}_r(t_r) ||\xi, \mathbf{\Xi}_s(t_s) - \mathbf{\Xi}_r(t_r)||\nu \end{aligned}$$



Proof

Uses wave equations for u, G and

- Gabor calculus: computes wave front sets of products, pullbacks, integrals, etc. See Duistermaat, Ch. 1.
- Propagation of Singularities Theorem

and that's all! [No integral representations, phase functions,...]

Note intrinsic ambiguity: if you have a ray pair, move times t_s, t_r resp. t'_s, t'_r , for which $t_s+t_r = t'_s+t'_r = t$ then you can construct two points $(\mathbf{x}, \mathbf{h}, \boldsymbol{\xi}, \nu), (\mathbf{x}', \mathbf{h}', \boldsymbol{\xi}', \nu')$ which are candidates for membership in $WF(\bar{r})$ and which satisfy the above relations with the same point in the cotangent bundle of $T^*(Y)$.

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

- DSR assumption: all rays carrying significant reflected energy (source or receiver) are upcoming.
- \bullet Restrict \bar{F} to the domain $\mathcal{Z} \subset \mathcal{E}'(\bar{X})$

 $\bar{r} \in \mathcal{Z} \Leftrightarrow \bar{r}(\mathbf{x}, \mathbf{h}) = R(\mathbf{x}, h_1, h_2)\delta(h_3)$

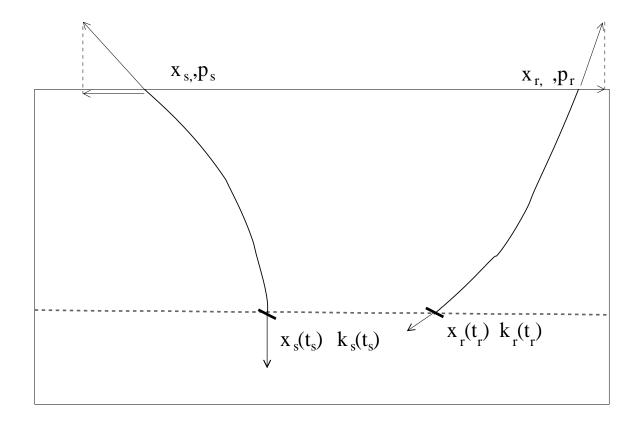
If $\bar{r} \in \mathcal{Z}$, then $(\mathbf{x}, \mathbf{h}, \boldsymbol{\xi}, \nu) \in WF(\bar{r}) \Rightarrow h_3 = 0$. So source and receiver rays in $C_{\bar{F}}$ must terminate at same depth, to hit such a point.

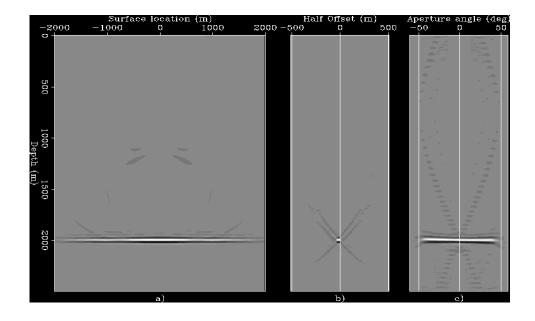
Because of DSR assumption, this fixes the traveltimes t_s, t_r .

Restricted to \mathcal{Z} , $C_{\bar{F}}$ is injective.

 $\Rightarrow C_{\bar{F}^*\bar{F}} = I$

 $\Rightarrow \bar{F}^* \bar{F}$ is Ψ DO when restricted to \mathcal{Z} .





Lens data, shot-geophone migration [B. Biondi, 2002] Left: Image via DSR. Middle: $\overline{G}[v]d$ - well-focused (at h = 0), i.e. in range of χ to extent possible. Right: Angle CIG.

Quantitative VA

Suppose $W : \mathcal{E}'(\bar{X}) \to \mathcal{D}'(Z)$ annihilates range of χ :

$$\mathcal{E}'(X) \xrightarrow{\chi} \mathcal{E}'(\bar{X}) \xrightarrow{W} \mathcal{D}'(Z) \to 0$$

and moreover W is bounded on $L^2(\bar{X})$. Then

$$J[v;d] = \frac{1}{2} \|W\bar{G}[v]d\|^2$$

minimized when $[v, \eta \overline{G}[v]d]$ solves partially linearized inverse problem.

Construction of *annihilator* of $\mathcal{R}(F[v])$ (Guillemin, 1985):

$$d \in \mathcal{R}(F[v]) \Leftrightarrow \bar{G}[v]d \in \mathcal{R}(\chi) \Leftrightarrow W\bar{G}[v]d = 0$$

Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

- $W = (I \Delta)^{-\frac{1}{2}} \nabla_{\mathbf{h}}$ ("differential semblance" WWS, 1986)
- $W = I \frac{1}{|H|} \int dh$ ("stack power" Toldi, 1985)
- $W = I \chi F[v]^{\dagger} \overline{F}[v] \Rightarrow$ minimizing J[v, d] equivalent to least squares.

For Claerbout extension, differential semblance W = h.

But not many are good for much...

Since *problem is huge*, only W giving rise to differentiable $v \mapsto J[v, d]$ are useful - must be able to use Newton!!! Once again, idealize $w(t) = \delta(t)$.

Theorem (Stolk & WWS, 2003): $v \mapsto J[v, d]$ smooth $\Leftrightarrow W$ pseudodifferential.

i.e. only *differential semblance* gives rise to smooth optimization problem, *uni- formly in source bandwidth*.

Numerical examples using synthetic and field data: WWS et al., Chauris & Noble 2001, Mulder & tenKroode 2002. deHoop et al. 2004.

Example: NMO-based Differential Semblance

$$J[v,d] = \frac{1}{2} \left\| \frac{\partial}{\partial h} N[v] d \right\|^2$$

(recall that N[v] is the NMO operator = composition with t(z, h))

Theory: under some circumstances, can show that *all stationary points are global minimizers* (WWS, TRIP annual reports '99, '01).

Example uses data from North Sea survey (thanks: Shell) with light preprocessing: cutoff ("mute") and multiple suppression (predictive decon) to enhance conformance with model, low pass filter.

Minimization of J via quasi-Newton method.

Beyond Born

Nonlinear effects not included in linearized model: *multiple reflections*. Conventional approach: treat as *coherent noise*, attempt to eliminate - active area of research going back 40+ years, with recent important developments.

Why not model this "noise"?

Proposal: *nonlinear extensions* with F[v]r replaced by $\mathcal{F}[c]$. Create annihilators in same way (now also nonlinear), optimize differential semblance.

Nonlinear analog of Standard Extended Model appears to be *invertible* - in fact extended nonlinear inverse problem is *underdetermined*.

Open problems: no theory. Also must determine w(t) (Lailly SEG 2003).

And so on...

- Elasticity: theory of asymptotic Born inversion at smooth background in good shape (Beylkin & Burridge 1988, deHoop & Bleistein 1997). Theory of extensions, annihilators, differential semblance partially complete (Brandsberg-Dahl et al 2003).
- Anisotropy work of deHoop (Brandsberg-Dahl et al 2003).
- Anelasticity in the sedimentary section, Q = 100 1000, lower in gassy sediments and near surface. No mathematical results, but some numerics Minkoff & WWS 1997, Blanch et al 1998.
- Source determination actually always an issue. Some success in casting as an inverse problem Minkoff & WWS 1997, Routh et al SEG 2003.

• ...