Automatic wave equation migration velocity analysis by differential semblance optimization

Peng Shen, Christiaan Stolk, William W. Symes

The Rice Inversion Project

Rice University

Thanks to Dr. Scott Morton at Amerada Hess Corporation

1

Outline

- Method
 - Objective function
 - Gradient calculation
- Low velocity lens example
- Marmousi example
- Conclusions and future works

Introduction

• Method of depth extrapolation used in this work:

 $\frac{\partial}{\partial z}R = -\frac{iw}{c}\sqrt{1 + \frac{c^2}{w^2}\nabla_x^2}R$

Implicity finite difference (reference: Ober et al, 1997)

(similar treatment by Double-Square-Root equation: see abstract)

• Subsurface offset imaging by shot-record migration:

 $I(x,h) = \sum_{\omega} \sum_{s} S(x-h;s,\omega) R(x+h;s,\omega,)$

where $S(x; s, \omega)$, $R(x; s, \omega)$ are depth-extrapolated source, receiver fields.

Semblance principle for subsurface offset depth imaging

h : half of the correlation distance between source and receiver fields. $I(\mathbf{x}, h)$: focused at zero offset.

Model: low velocity lens, background velocity at 2 km/sec, 6 horizontal reflectors

Offset gathers at center

At correct velocity

At constant velocity of 2km/sec

Differential semblance minimization criterion

At correct velocity

 $I(\mathbf{x},h)\approx \delta(h)I(\mathbf{x}) \quad \rightarrow \quad \|hI(\mathbf{x},h)\|^2 \text{ is minimized}$

Differential semblance objective function in offset domain $J = \frac{1}{2} \sum_{h} \sum_{x} h^2 I(x,h)^2$

Properties of J

It is (essentially) the unique objective which is

- quadratic in image (implicitly, in data)
- smooth in velocity

Therefore J is (essentially) the only objective suitable for automatic velocity analysis by gradient-based optimization. (Stolk & Symes, 2003)

Gradient calculation

Model smoothness

Problem:

Focussing property of offset gathers assured when model is smooth (length scale \gg wavelength), but gradient updates have full data bandwidth.

Solution:

Confine velocity model to space of B-splines with node spacing \gg wavelength

Implication:

Projection onto B-spline space

- B = interpolation operator : from B-spline grid onto imaging grid
- B^* = projection operator : from imaging grid onto B-spline grid

Optimization on B-spline model space

output: optimized velocity, optimized image

(Reference for BFGS quasi-Newton method: Nocedal & Wright, 2000)

Lens example

Model: background velocity at 2km/sec, a = 0.8.

Acquisition geometry and setup of optimization

- Acquisition gemetry
 - source spacing = receiver spacing = 0.02 km
 - source wavelet: Ricker wavelet with peak frequency at 18Hz
 - source location ranging from 0.1 km to 3.9 km
 - data received at simulated streamer geometry
- setup of optimization
 - B-spline grid: $\Delta x = 0.18$ km, $\Delta z = 0.1$ km
 - imaging grid: dx = 0.01 km, dz = 0.01 km
 - initial velocity: 2km/sec, constant background

Data: strong multipathing

Shot gather at center.

Progress of BFGS iterations

- most significant function value decay in first iteration
- magnitude of gradient \rightarrow "zero"

Initial images obtained at velocity=2km/sec

Image

Offset gathers at mid-points 0.5-3.5

- wrong image at constant velocity
- offset gathers are *not focused* at zero offset

Images at final model

Result of image at 6th BFGS iteration.

Image gathers at final model

Image gathers at final model

Image gathers at true velocity

- image gathers from optimization become focused at zero offset
- image gathers from optimization resemble those from true velocity

Final model vs. true model

Final model

True model

Marmousi example

True velocity

Migrated at true velocity

objective function: a wide smooth curve centered at the true velocity

BFGS iterations

- minimization setups:
 - B-spline grid spacing: $\Delta x = 1.5$ km, $\Delta z = 0.1$ km
 - imaging grid spacing: dx = 0.01km, dz = 0.01km
 - starting at constant background velocity: 1.8km/sec
- iterations:

Offset image gathers

Initial image gathers at 1.8km/sec

Final image gathers

- initial image gathers not focused
- differential semblance optimization focuses the offset gathers

Initial image vs. final image

Initial image at 1.8km/sec

Final image

Final velocity

Conclusions & Future works

• Concusion:

- Optimizing in B-spline space provide velocity update with sufficient smoothness.
- Offset domain differential semblance objective function is, in general, free of local minima.
- This technique of offset domain differential semblance velocity analysis works when background velocity is smooth.

• Furture works:

- Understand why optimization may reach beyond the objective of true model.
- Reduce the degree of smoothness.

Relationship between angle gather and offset gather

 $\begin{array}{rcl} \text{offset gather} & \to & \text{Radon transform} & \to & \text{angle gather} \\ \text{focused offset gather} & \to & \text{Radon transform} & \to & \text{flat angle gather} \end{array}$

(Sava & Fomel, 2003) In this work, we only use offset domain version