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High frequency asymptotics and imaging
operators




Aymptotic assumption

Linearization is accurate> length scale otr >> length scale of- ~ wavelength,
properties ofF’[v] dominated by those afs[v| (= Flv] with w = §). Implicit in

migration concept (eg. Hagedoorn, 1954); explicit use: €o& Bleistein, SIAM
JAM 1977.

Key idea:reflectors (rapid changes in) emulatesingularities reflections (rapidly
oscillating features in data) also emulate singularities.

NB: “everybody’s favorite reflector”. the smooth interfageross which- jumps.
But this is an oversimplification - reflectors in the Earth may beplex zones of
rapid change, pehaps in all directions. More flexible notieaded!!




Wave Front Sets

Paley-Wiener characterization of smoothness D'(R") is
smooth atx, < for some nbhdX of x,, any¢ € £(X) andN, there isCy > 0 so
that for any¢ = 0,

| F(pu)(r6)] < Cn(r]€)) ™"

Harmonic analysis of singularitiegpresHormander: thevave front setWW F'(u) C
R"xR"—0o0fu € D'(R") - captures orientation as well as position of singularities

(x0,&y) ¢ WF(u) <, there is some open nbhd x = C R" x R™ — 0 of (xg, &)
so that for anyp € £(X), N, there isCy > 0 so that for all¢ € =,

| F(pu)(r€)] < Cn(r1€]) "




Housekeeping chores

(1) note that the nbhds may naturally be taken to m®nes

(i) W F(u) is invariant under chg. of coords if it is regarded as a subbéhe
cotangent bundl&™(R") (i.e. the¢ components transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 19816dshander, 1983]

The standard example: 4fjumps across the interfagéx) = 0, otherwise smooth,
thenW F(u) C Ny ={(x,€) : f(x) =0, &||Vf(x)} (normal bundleof f = 0).




Wavefront set of a jump discontinuity

<0 ¢=0

¢>0
WF(H(¢)) ={(x,€) : ¢(x) = 0, &[|Vo(x)}




Microlocal property of differential operators

Supposen € D'(R"), (x¢,&,) ¢ WF(u), and P(x, D) is a partial differential
operator:

P(x,D)= Y au(x)D"

la|<m

D® = D™... D%
Then(xg, &) € WE(P(x, D)u) [i.e.. WEF(Pu) C WF(u)].




Proof

ChooseX x = as in the definitiony € D(X) form the required Fourier transform

/ dz e (%) P(x, D)u(x)

and start integrating by parts: eventually

=) e / dz ™™g, (x)u(x)
o] <m
where¢, € D(X) is a linear combination of derivatives gfand thea,s. Since
each integral is rapidly decreasing@as- oo for ¢ € =, it remains rapidly decreas-
ing after multiplication byr'®!, and so does the sur@. E. D.




Formalizing the reflector concept

Key idea, restated: reflectors (or “reflecting elements’) ke points inWW F(r).
Reflections will be points i/ F'(d).

These ideas lead to a usable definitionnoége a reflectivity model is an image
of rif WE(r) C WFE(r) (the closer to equality, the better the image).

|dealizedmigration problem: givend (hencelV F'(d)) deduce somehow a function
which hashe right reflectorsi.e. a function with W F' (7)) ~ W F'(r).

NB: you're going to need! (“It all depends on v(x,y,z)” - J. Claerbout)




Integral representation of linearized operator

With w = §, acoustic potential is same as Causal Green’s functiGix, t; x,) =
retarded fundamental solution:

1 0* )
292 V7 G(x,t;xs) = 0(t)d(x — bxy)

andG = 0,¢ < 0. Then v = d!) p = &, 6p = LE and

1 82 5 2 62G
(_— — v ) (5G<X, t, XS> = ’(}2<X> atZ <X7 t? XS>T(X)

Simplification: from now on, defing"[v|r = 6G|,_, - i.e. lose at-derivative.
Duhamel’s principle=

L 2r(x) L 0°G |
5G<X¢,t7Xs>—/dQZ o(x)? /dsG(Xr,t—s,X)W(x,s,xs)




Add geometric optics...

Geometric optics approximation ¢f should be good, as is smooth. Local ver-
sion: If x “not too far” fromx,, then

G(x, %) = a(X;X,)0(t — T(X:X;)) + R(X, 15 X,)
where the traveltime(x; x;) solves the eikonal equation
v|Vr| =1

X — X4
U(XS)

and the amplitude(x; x,) solves the transport equation

T(X; Xg) ~ X — X

)

V- (a*VT)=0
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Simple Geometric Optics

“Not too far” means: there should be one and only one ray ofvg#nc optics
connecting eacla, or x, to eachx € suppr.

Will call this thesimple geometric opticsassumption.
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An oft-forgotten detall

All of this is meaningful only if the remainddk is small in a suitable sense: energy
estimate Exercisel) =

/dx/ dt |R(x.t:x)[2 < vl
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Numerics, and a caution

Numerical solution of eikonal, transport: ray tracing (kaggian), various sorts of
upwind finite difference (Eulerian) methods. See eg. Setheok, WWS 1999
MGSS notes (online) for details.

For “random but smooth?(x) with variances, more than one connecting ray oc-
curs as soon as the distanceisr—2/3). Suchmultipathingis invariably accompa-
nied by the formation of aaustic(White, 1982).

Upon caustic formation, the simple geometric optics fieldodigtion above is no
longer correct (Ludwig, 1966).
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A caustic example (1)

sinl: velocity field
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2D Example of strong refraction: Sinusoidal velocity field:, z) = 14-0.2sin % sin 3w
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A caustic example (2)

sinl: rays with takeoff angles in range 1.41372 to 1.72788
T T T T T T

Rays in sinusoidal velocity field, source point = origin. Blédrmation of caustic,
multiple rays to source point in lower center.
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The linearized operator as Generalized Radon
Transform

Assume:supp r contained in simple geometric optics domain (each poirthred
by unique ray from any source or receiver point).

Then distribution kernek’ of F'[v] is

2
K(x,,t, X4 %) = / ds G(x,,t — s;x)%—g(x, S;XS)%
v

- / s 2a<X7~, X)CL(X, XS)5/(t e 7_(er X))(S”(S B T(X, Xs>)

v (%)

16



~2a(x,xr)a(X,Xs) oy r(x.%.) — 7(X. X
_ v2(x) 0 (t — 7%, %) = 7(x, %))

provided that

VT (x,%X,) + Vi (X, X5) # 0

< velocity atx of ray fromx, not negative of velocity of ray fronx,. < no forward
scattering [Gel'fand and Shilov, 1958 - when is pullback of distrimrniagain a
distribution].
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Q: What does~> mean?

A: It means “differs by something smoother”.

In theory, can complete the geometric optics approximasidhe Green'’s function

so that the difference I6* - then the two sides have the same singularities, ie. the
same wavefront set.

In practice, it's sufficient to make the difference just admtoother, so the first term

of the geometric optics approximation (displayed abovdficgs (can formalize

this with modification of wavefront set defn).

These lectures will ignore the distinction.
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GRT = “Kirchhoff” modeling

So: forr supported in simple geometric optics domain, no forwardtenag =-
0G (X, 1;X,)

6’_2 I 2r(x)
ot? v?(x)
That is: pressure perturbation is sum (integral) aver reflection isochron{x
t = 7(x,%x,) + 7(x, %) }, W. weighting, filtering. Note: ifv =const. then isochron

Is ellipsoid, asr(x;, x) = |xs — x|/v!

a(x, X, )a(x,Xs)0(t — 7(x, X,.) — 7(X, X))

ET X
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Zero Offset data and the Exploding Reflector

Zero offset datax, = x,) is seldom actually measured (contrast radar, sonar!), but
routinelyapproximatedhroughNMO-stack(to be explained later).

Extracting image from zero offset data, rather than from(EHNO’s) of offsets, is

tremendougdata reduction- when approximation is accurate, leads to excellent
Images.

Imaging basis: thexploding reflectomodel (Claerbout, 1970’s).
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For zero-offset data, distribution kernel Bfv] is

0* 2
K (xs,1,%4;X) = @/ ds 02(X)G(Xs,t — 5:x)G(x, 8;%;)

Under some circumstances (explained beldy), = G time-convolved with itself)
is “similar” (also explained) t@* = Green’s function fow /2. Then

0? - 2r(x
0G(Xs, ;X)) ~ ﬁ/ dIG(Xs,t,X>%

~ solutionw of

Thus reflector “explodes” at time zero, resulting field pggias in “material” with
velocity v /2.
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Explain when the exploding reflector model “works”, i.e. wil& time-convolved
with itself is “similar” to G = Green’s function for /2. If suppr lies in simple
geometry domain, then

Kcotxix) = [ as 2250 ) — k)

_ 20°(X, X,)
v*(x)

whereas the Green’s functi@n for v/2 is

6" (t — 27(x, x,))

~

G(x,t;xs) = a(x,x5)0(t — 27(x, X5))

(half velocity = double traveltime, same rays!).
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Difference between effects @€, G: for eachx, scaler by smooth fcn - preserves
W F(r) henceW F'(Flv]r) and relation between them. Also: adjoints have same
effect onW/ F’ sets.

Upshot: from imaging point of view (i.e. apart from ampligydierivative (filter)),
kernel of F'|v] restricted to zero offset is same as Green'’s functiomw f@r provided
that simple geometry hypothesis holdsily one ray connects each source point to
each scattering point, i®o multipathing

See Claerbout, IEI, for examples which demonstrate thatipatihing really does
iInvalidate exploding reflector model.
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Standard Processing

Inspirational interlude: the sort-of-layered theory =i8tlard Processing”

Suppose were,r functions ofz = z3 only, all sources and receivers at= 0.

Then the entire system is translation-invariantcinz, = Green’s function its

perturbationdG, and the idealized dat&>|.—, are really only functions of and
half-offseth = |x;—x,|/2. There would b@nly one seismic experimeeguivalent
to anycommon midpoint gathg¢fCMP”).

This isn’t really true -look at the data!!! However it isapproximatelycorrect in
many places in the world: CMPs change very slowly with midpei,, = (x, +

Xs)/2.
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Standard processing: treat each CEHif it were the result of an experiment per-
formed over a layered mediyrout permit the layers to vary with midpoint.

Thusv = v(z),r = r(z) for purposes of analysis, but at the ené- v(x,,, z),r =
(X, 2).

Flolr(x,,t;xs)

- / dxizézia()(’ ZUT>CL(X, x3)5//(t - T(Xv x?“) - T<X’ 333)>

2 .
:/dz T(Z)/dw/dazw%(x, ZC”CL(X, xg)ezw(t—f(x,xr)—T(x,xS))
v¥(2)
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Since we have already thrown away smoother (lower frequelresns, do it again
usingstationary phaseUpshot (see 2000 MGSS notes for details): up to smoother
(lower frequency) error,

Flolr(h,t) ~ A(z(h, 1), h)R(z(h,t))
Herez(h,t) is the inverse of the 2-way traveltime

t(h, z) = 27((h, 0, 2), (0,0,0))
l.e. z(t(h, 2'),h) = 2'. Ris (yet another version of) “reflectivity”
Ldr
=5,
That is, F'[v] is a a derivative followed by a change of variable followedntyti-

plication by a smooth functiorSubstitute, (vertical travel time) forz (depth) and
you get “Inverse NMO” {, — (¢, h)). Will be sloppy and calt — (¢, 2) INMO.
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Anatomy of an adjoint

/dt/dhd(t,h)F[u]r(t,h):/dt/dhd(t,h)A( (t

h), h)R(=(t, h))

= / dz R(z) / dh%(z h)A(z, h)d(t(z, h), h) = / dzr(z)(Flv]"d)(z)

soF[u]* = —2£SM[v]N[v], where

e N|v] = NMO operator N{v|d(z,h) = d(t(z,h),h)
e Mv] = multiplication by(%A
e S = stacking operator Sf(z) = [ dh f(z, h)
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FR Flolr() = — [ / dh % (2 ) A%(2, )| (2

Microlocal property of PDOss> W F(F|v|*F|v]r) C W F(r)i.e. F|v]* is an imag-
INng operator.

If you leave out the amplitude facton{|v]) and the derivatives, as is commonly
done, then you get essentially the same expression - so (MMCK) is an imaging
operator!

It's even easy to get an (asymptotic) inverse out of this r@ge for the reader.

Now make everything dependent &p, and you've got standard processing. (end
of layered interlude).
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Multioffset (“Prestack”) Imaging, ags Beylkin

If d = Flv|r, then
Flol*d = Fv]"Flv|r

In the layered casé/[v]|* F'[v] is an operator which preserves wave front séthen-
ever F'[v]* F[v] preserves wave front set8[v]* is an imaging operator.

Beylkin, JIMP 1985: for supported in simple geometric optics domain,

o W FE(Fslv]*Fslvlr) C WF(r)
o if 5°" = S[v]+ Fj[v]r (data consistent with linearized model), thgw]* (S°" —
Slv]) is an image of

e an operatorFs[v]" exists for which F;[v]"(S° — S[v]) — r is smootherthan
r, under some constraints on- an inverse modulo smoothing operatoos
parametrix
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Outline of proof

ExpressF'|v]*F|v] as “Kirchhoff modeling” followed by “Kirchhoff migration;”
(i) introduce Fourier transform; (iii) approximate forr¢gge wavenumbers using
stationary phase, leads to representatio’ef* £'[v] modulo smoothing error as
pseudodifferential operatdf WDO"):

Flo]Flulr(x) = px D)r(x) = [ de plx,e*Er(g
In whichp € C°, and for somen (the order of p), all multiindices«, 5, and all

compactK’ C R", there exist constants, s x > 0 for which

DEDp(x,€)] < Copr(L+1€)" V), x € K

Explicit computation oymbol p - for details, see Notes on Math Foundations.
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Microlocal PropertyoftDOs

if p(z, D)isa¥DO,u € &'(R") thenW F(p(z, D)u) C W F(u).

Will prove this, from which imaging property of prestack gnhoff migration fol-
lows. First, a few other properties:

e differential operators aréDOs (easy - exercise)
e UDOs of ordern form a module ove’**(R") (also easy)

e product ofUDO orderm, WDO orderl = VDO order< m + [; adjoint of DO
orderm is YDO orderm (much harder)

Complete accounts of theory, many apps: books of Duistdarnhaglor, Nirenberg,
Treves, Hhrmander.
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Proof of Microlocal Property

Supposex, &,) ¢ W F(u), choose neighborhoods, = as in defn, with= conic.
Need to choose analogous nbhds fre, D)u. Pickd > 0 so thatBss(xg) C X,
setX’ = Bs(xp).

Similarly pick 0 < e < 1/3 so thatBs.(&,/|&,|) C =, and chos&’ = {7£ : € €
Be(&y/[&ol), 7 > 0}

Need to choose < £'(X’), estimateF (¢P(x, D)u). Choosey € £(X) so that
’QD =1o0n Bg(g(Xo).

NB: this implies that ifx € X', ¢)(y) # 1 then|x — y| > 6.
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Write u = (1 — ¢)u + vu. Claim: ¢ P(x, D)((1 — ¢)u) is smooth.
¢(x)P(x, D)((1 = P)u))(x)

— o) [ dePx.&exE [ dy(1 - vy)uly)e S
= [ de [ ayPx. 060 — vy Euty)

= [t [ dy(-9VPex.gox)1 - vly)lx -y Ve Euly)
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using the identity
6%’(X—Y)'£ = |x — y\_2 [_vgei(x—.\/)f}
and integrating by part8M times in&. This is permissible becausgx)(1 —
b(y)) #0=[x—y|[>0.
According to the definition o’DO,
(VY P(x, &) < Clg™

For anyK, the integral thus becomes absolutely convergent &aftdifferentiations
of the integrand, provided/ is chosen large enough. Q.E.D. Claim.

This leaves us witlp P(x, D)(yu). Pickn € = and w.l.0.g. scalé;| = 1.
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Fourier transform:

FloPtx, D)) = [ do [ d Pix,€)otx)u(e)e €

Introducerf = &, and rewrite this as

:7'”/ dx / df P(x, 79)¢(X)?ﬁu(79)ewx'(9_”>

Divide the domain of the inner integral inf@d : |§ — n| > €} and its complement.
Use

_vieiTx-(Q—n) _ 7'2‘6 o U‘QeiTx-(Q—n)
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Integrate by part8M times to estimate the first integral:

et [ [ o (-9 P oo u(eo

x |9 o 77‘—2M6i7'x-(«9—77)

< CTner—QM

m being the order of°. Thus the first integral is rapidly decreasingrin
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For the second integral, note that— n| < ¢ = 6 € =, per the defn of’. Since

X x =z Is disjoint from the wavefront set af, for a sequence of constantsy,
Wu(fﬁ)l < Cx7 uniformly for # in the (compact) domain of integration, whence
the second integral is also rapidly decreasing.iQ. E. D.

And that’s why Kirchhoff migration works, at least in the $il@ geometric optics
regime.
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Asymptotic Prestack Inversion

Recall: in layered case,

Flolr(h.t) ~ A(2(h.t). h)%%(z(h, 0)
Flu*d(z) ~ _% dh Az, h)%(z, B)d(t (2, h), B

Fu|"Flv] = —% [/ dh %(z, h)A%(z, h) %

In particular, the normal operatét|v|* F'|v] is an elliptic PDO.
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Thus normal operator igsymptotically invertibleand you can construct approxi-
mate least-squares solution&v|r = d:

7o (Flo) Flo)) " Flo]*d

Relation betweemn andr: difference issmootherthan either. Thus difference is
smallif r is oscillatory - consistent with conditions under whichelamization is
accurate.

Analogous construction in simple geometric optics case:tdBeylkin (1985).

Complication: F'[v]* F'|v] cannot be invertible - becau$B F' (F[v]* F'[v]r) generally
quite a bit “smaller” thariV F'(r).
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Inversion aperture

M) CR?x R? =0

if WF(r) C '], thenW F(Fv|*Flv]r) = W F(r) andF|[v]*F|v] “acts invertible”.
[construction ofl'[v] - later!]

Beylkin: with proper choice of amplitud&x,, t; x,), the modified Kirchhoff mi-
gration operator

/// dx, drs dt b(x,,t;Xs)0(t — 7(x; Xs) — 7(X;%,) ) d(Xr, T Xs)
yields F[v]' Flv]r ~ r if WF(r) C T'[v]
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For details of Beylkin construction: Beylkin, 1985; Millet al 1989; Bleistein,
Cohen, and Stockwell 2000; WWS Math Foundations, MGSS nb®&s8. All
components are by-products of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, RaprBinversion, migra-
tion/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, BurridgeHdop, Lambas, ...

Apparent limitation: construction relies on simple geoneaiptics (no multipathing)
- how much of this can be rescued? cf. Part Ill.
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Example of GRT Inversion (application df[v|): K. Araya (1995), “2.5D" in-
version of marine streamer data from Gulf of Mexico: 500 seypositions, 120

receiver channels, 750 Mb.

42



