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A step beyond linearization: velocity analysis

1



Velocity Analysis

Partially linearized seismic inverse problem (“velocity analysis”): given observed
seismic datad, find smoothvelocity v ∈ E(X), X ⊂ R3 oscillatory reflectivity
r ∈ E ′(X) so that

F [v]r ' d

Acoustic partially linearized model: acoustic potential field u and its perturbation
δu solve

(

1

v2

∂2

∂t2
−∇2

)

u = δ(t)δ(x − xs),

(

1

v2

∂2

∂t2
−∇2

)

δu = 2r∇2u

plus suitable bdry and initial conditions.

F [v]r =
∂δu

∂t

∣

∣

∣

∣

Y

data acquisition manifoldY = {(xr, t;xs)} ⊂ R7, dimnY ≤ 5 (many idealizations
here!).
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F [v] : E ′(X) → D′(Y ) is a linear map (FIO of order1), but dependence onv is
quite nonlinear, so this inverse problem is nonlinear.

Agenda:

• reformulation of inverse problem viaextensions

• “standard processing” extension and standard VA

• the surface oriented extension and standard MVA

• theΨDO property and why it’s important

• global failure of theΨDO property for the SOE

• Claerbout’s depth oriented extension has theΨDO property

• differential semblance

3



Extensions

Extensionof F [v]: manifold X̄ and mapsχ : E ′(X) → E ′(X̄), F̄ [v] : E ′(X̄) →
D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes.

Invertible extension:̄F [v] has aright parametrixḠ[v], i.e. I − F̄ [v]Ḡ[v] is smooth-
ing. [The trivial extension -X̄ = X, F̄ = F - is virtually never invertible.] Alsoχ
has aleft inverseη.

Reformulation of inverse problem: givend, find v so thatḠ[v]d ∈ R(χ) (implicitly
determinesr also!).
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Example 1: Standard VA extension

Treat each CMPas if it were the result of an experiment performed over a layered
medium, but permit the layers to vary with midpoint.

Thusv = v(z), r = r(z) for purposes of analysis, but at the endv = v(xm, z), r =

r(xm, z).

F [v]R(xm, h, t) ' A(xm, h, z(xm, h, t))R(xm, z(xm, h, t))

Herez(xm, h, t) is the inverse of the 2-way traveltime

t(xm, h, z) = 2τ (xm + (h, 0, z),xm)v=v(xm,z)

computed with the layered velocityv(xm, z), i.e.
z(xm, h, t(xm, h, z′)) = z′.
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That is,F [v] is a change of variable followed by multiplication by a smooth func-
tion. NB: industry standard practice is to use vertical traveltime t0 instead ofz for
depth variable.

Can write this asF [v] = F̄ S∗, whereF̄ [v] = N [v]−1M [v] has right parametrix
Ḡ[v] = M [v]N [v]:

N [v] = NMO operator N [v]d(xm, h, z) = d(xm, h, t(xm, h, z))

M [v] = multiplication byA

S = stacking operator

Sf(xm, z) =

∫

dh f(xm, h, z), S∗r(xm, h, z) = r(x, z)
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Identify as extension:F̄ [v], Ḡ[v] as above,X = {xm, z}, H = {h}, X̄ = X ×

H,χ = S∗, η = S - the invertible extension properties are clear.

Standard names for the Standard VA extension objects:F̄ [v] = “inverse NMO”,
Ḡ[v] = “NMO” [often the multiplication opM [v] is neglected];η = “stack”, χ =
“spread”

How this is used for velocity analysis: Look for v that makesḠ[v]d ∈ R(χ)

So what isR(χ)? χ[r](xm, z, h) = r(xm, z) Anything in range ofχ is independent
of h. Practical issues⇒ replace “independent of” with “smooth in”.
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Flatten them gathers!

Inverse problem reduced to: adjustv to makeḠ[v]dobs smooth inh, i.e. flat in z, h

display for eachxm (NMO-corrected CMP).

Replacez with t0, v with vRMS em localizes computation: reflection throughxm, t0, 0

flattenedby adjustingvRMS(xm, t0) ⇒ 1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra,etc.

See: Claerbout:Imaging the Earth’s Interior

WWS: MGSS 2000 notes
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Left: part of survey (d) from North Sea (thanks: Shell Research), lightly prepro-
cessed.
Right: restriction ofḠ[v]d to xm = const (function of depth, offset): shows rel.
sm’ness inh (offset) for properly chosenv.
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Example 2: Surface oriented or standard MVA

extension

. This only works where Earth is “nearly layered”. Where thisfails, replace NMO
by prestack migration.

Shot version:Σs = set of shot locations,̄X = X × Σs, χ[r](x,xs) = r(x).

F̄ [v]r̄(xr, t,xs) =
∂2

∂t2

∫

dx r̄(x,xs)

∫

dsG(xr, t − s;x)G(xs, s;x)

Offset version (preferred because it minimizes truncationartifacts): Σh = set of
half-offsets in data,̄X = X × Σh, χ[r](x,h) = r(x).

F̄ [v]r̄(xs, t,h) =
∂2

∂t2

∫

dx r̄(x,h)

∫

dsG(xs + h, t − s;x)G(xs, s;x)
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[Parametrize data with source locationxs, time t, offset h.] NB: note that both
versions are “block diagonal” - family of operators (FIOs) parametrized byxs or
h.
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Properties of SOE

Beylkin (1985), Rakesh (1988): if‖v‖C2(X) “not too big”, then

• F̄ hasthe ΨDO property: F̄ F̄ ∗ is ΨDO

• singularities ofF̄ F̄ ∗d ⊂ singularities ofd

• straightforward construction of right parametrix̄G = F̄ ∗Q, Q = ΨDO, also as
generalized Radon Transform - explicitly computable.

Range ofχ (offset version):r̄(x,h) independent ofh ⇒ “semblance principle”:
find v so thatḠ[v]dobs is independent ofh. Practical limitations⇒ replace “inde-
pendent ofh” by “smooth inh”.
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Industrial MVA

Application of these ideas = industrial practice of migration velocity analysis.

Idea: twiddlev until Ḡ[v]dobs is smooth inh.

Since it is hard to inspect̄G[v]dobs(x, y, z, h), pull out subset for constantx, y =
common image gather (“CIG”): display function ofz, h for fixedx, y. These play
same role as NMO corrected CMP gathers in layered case.

Try to adjustv so that selected CIGs areflat - just as in Standard VA. This is much
harder, as there is no RMS velocity trick to localize the computation - each CIG
depends globally onv.

Description, some examples: Yilmaz,Seismic Data Processing.
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Bad news

Nolan (1997): big trouble! In general, standard extension doesnot have theΨDO
property. Geometric optics analysis: for‖v‖C2(X) “large”, multiple rays connect
source, receiver to reflecting points inX; block diagonal structure of̄F [v] ⇒ info
necessary to distinguish multiple rays isprojected out.
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Example 3: Claerbout’s depth oriented extension

Standard MVA extension only works when Earth has simple ray geometry. Claer-
bout proposed alternative extension:

Σd = somewhat arbitrary set of vectors near 0 (“offsets”),X̄ = X×Σd, χ[r](x,h) =

r(x)δ(h), η[r̄](x) = r̄(x, 0)

F̄ [v]r̄(xs, t,xr) =
∂2

∂t2

∫

dx

∫

Σd

dh r̄(x,h)

∫

dsG(xs, t − s;x + 2h)G(xr, s;x)

=
∂2

∂t2

∫

dx

∫

x+2Σd

dy r̄(x,y − x)

∫

dsG(xs, t − s;y)G(xr, s;x)

NB: in this formulation, there appears to be too many model parameters.
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Shot record modeling

for eachxs solve

F̄ [v]r̄(xr, t;xs) = u(x, t;xs)|x=xr

where
(

1

v(x)2
∂2

∂t2
−∇2

x

)

u(x, t;xs) =

∫

x+2Σd

dy r̄(x,y)G(y, t;xs)

(

1

v(y)2
∂2

∂t2
−∇2

y

)

G(y, t;xs) = δ(t)δ(xs − y)

Finite difference scheme: form RHS for eqn 1, stepu, G forward in t.
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ComputingḠ[v]

Instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint field as in standard reverse time
prestack migration:

(

1

v(x)2
∂2

∂t2
−∇2

x

)

w(x, t;xs) =

∫

dxr d(xr, t;xs)δ(x − xr)

with w(x, t;xs) = 0, t >> 0. Then

F̄ [v]∗d(x,h) =

∫

dxs

∫

dtG(x + 2h, t;xs)w(x, t;xs)

i.e. exactly the same computation as for reverse time prestack, except that crosscor-
relation occurs at an offset2h.
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Nomenclature

NB: the “usual computation” of̄G[v] is either DSR or a variant of shot record com-
putation of previous slide using depth extrapolation.h is usually restricted to be
horizontal, i.e.h3 = 0.

Common names: shot-geophone or survey-sinking migration (with DSR), or shot
record migration.

“Downward continue sources and receivers, image att = 0, h = 0”

These are what is typically meant by “wave equation migration”!
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What should be the character of the image when the velocity iscorrect?

Hint: for simulation of seismograms, the input reflectivityhad the formr(x)δ(h).

Therefore guess that when velocity is correct,image is concentrated nearh = 0.

Examples: 2D finite difference implementation of reverse time method. Correct
velocity ≡ 1. Input reflectivity used to generate synthetic data: random! For
output reflectivity (image ofF̄ [v]∗), constrain offset to be horizontal:̄r(x,h) =

r̃(x, h1)δ(h3). Display CIGs (i.e.x1 =const. slices).
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Two way reverse time horizontal offset S-G image gathers of data from random
reflectivity, constant velocity. From left to right: correct velocity, 10% high, 10%
low.
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Stolk and deHoop, 2001

Claerbout extension has theΨDO
property, at least when restricted tor̄ of the formr̄(x,h) = R(x, h1, h2)δ(h3), and
under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivityof wavefront orcanonical relationCF̄ ⊂ T ∗(X̄)−

{0} × T ∗(Y ) − {0} which describes singularity mapping properties ofF̄ :

(x,h, ξ, ν,y, η) ∈ CFδ[v] ⇔

for someu ∈ E ′(X̄), (x,h, ξ, ν) ∈ WF (u), and (y, η) ∈ WF (F̄ u)
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Characterization ofCF̄

((x,h, ξ, ν), (xs, t,xr, ξs, τ, ξr)) ∈ CF̄ [v] ⊂ T ∗(X̄) − {0} × T ∗(Y ) − {0}

⇔ there arerays of geometric optics(Xs,Ξs), (Xr,Ξr) and timests, tr so that

Π(Xs(0), t,Xr(0),Ξs(0), τ,Ξr(0)) = (xs, t,xr, ξs, τ, ξr),

Xs(ts) = x,Xr(tr) = x + 2h, ts + tr = t,

Ξs(ts) + Ξr(tr)||ξ,Ξs(ts) − Ξr(tr)||ν

24



ξ,

Π Π

ξ

(t )
r r

(t )
r r 

s(t )s (t )
ss

ss ss
(t’ ) (t’ )

r rr 
(t’ ) (t’ )

t + t = t’ + t’
s s r,r,

r

x s, s x r, rp

x

p

kx x k

kxk

25



Proof

Uses wave equations foru, G and

• Gabor calculus: computes wave front sets of products, pullbacks, integrals, etc.
See Duistermaat, Ch. 1.

• Propagation of Singularities Theorem

and that’s all! [No integral representations, phase functions,...]
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Note intrinsic ambiguity: if you have a ray pair, move timests, tr resp. t′s, t
′
r, for

whichts+tr = t′s+t′r = t then you can construct two points(x,h, ξ, ν), (x′,h′, ξ′, ν ′)

which are candidates for membership inWF (r̄) and which satisfy the above rela-
tions with the same point in the cotangent bundle ofT ∗(Y ).

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

• DSR assumption: all rays carrying significant reflected energy (source or re-
ceiver) are upcoming.

• RestrictF̄ to the domainZ ⊂ E ′(X̄)

r̄ ∈ Z ⇔ r̄(x,h) = R(x, h1, h2)δ(h3)
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If r̄ ∈ Z, then(x,h, ξ, ν) ∈ WF (r̄) ⇒ h3 = 0. So source and receiver rays inCF̄

must terminate at same depth, to hit such a point.

Because of DSR assumption, this fixes the traveltimests, tr.

Restricted to Z , CF̄ is injective.

⇒ CF̄ ∗F̄ = I

⇒ F̄ ∗F̄ is ΨDO when restricted toZ.
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Lens data, shot-geophone migration [B. Biondi, 2002]
Left: Image via DSR. Middle:̄G[v]d - well-focused (ath = 0), i.e. in range ofχ to

extent possible. Right: Angle CIG.
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Quantitative VA

SupposeW : E ′(X̄) → D′(Z) annihilates range ofχ:

χ W
E ′(X) → E ′(X̄) → D′(Z) → 0

and moreoverW is bounded onL2(X̄). Then

J [v; d] =
1

2
‖WḠ[v]d‖2

minimizedwhen[v, ηḠ[v]d] solves partially linearized inverse problem.

Construction ofannihilatorof R(F [v]) (Guillemin, 1985):

d ∈ R(F [v]) ⇔ Ḡ[v]d ∈ R(χ) ⇔ WḠ[v]d = 0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

• W = (I − ∆)−
1
2∇h (“differential semblance” - WWS, 1986)

• W = I − 1
|H|

∫

dh (“stack power” - Toldi, 1985)

• W = I − χF [v]†F̄ [v] ⇒ minimizingJ [v, d] equivalent to least squares.

For Claerbout extension, differential semblanceW = h.
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But not many are good for much...

Sinceproblem is huge, only W giving rise to differentiablev 7→ J [v, d] are useful -
must be able to use Newton!!! Once again, idealizew(t) = δ(t).

Theorem (Stolk & WWS, 2003):v 7→ J [v, d] smooth⇔ W pseudodifferential.

i.e. only differential semblancegives rise to smooth optimization problem,uni-
formly in source bandwidth.

NB: Least squares embedded in larger family of optimizationformulations, some
(others) of which are tractable.

Numerical examples using synthetic and field data: WWS et al., Chauris & Noble
2001, Mulder & tenKroode 2002. deHoop et al. 2004.
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Beyond Born

Nonlinear effects not included in linearized model:multiple reflections. Conven-
tional approach: treat ascoherent noise, attempt to eliminate - active area of re-
search going back 40+ years, with recent important developments.

Why not model this “noise”?

Proposal:nonlinear extensionswith F [v]r replaced byF [c]. Create annihilators in
same way (now also nonlinear), optimize differential semblance.

Nonlinear analog of Standard Extended Model appears to beinvertible - in fact
extended nonlinear inverse problem isunderdetermined.

Open problems: no theory. Also must determinew(t) (Lailly SEG 2003).
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And so on...

• Elasticity: theory of asymptotic Born inversion at smooth background in good
shape (Beylkin & Burridge 1988, deHoop & Bleistein 1997). Theory of exten-
sions, annihilators, differential semblance partially complete (Brandsberg-Dahl
et al 2003).

• Anisotropy - work of deHoop (Brandsberg-Dahl et al 2003).

• Anelasticity - in the sedimentary section,Q = 100 − 1000, lower in gassy sedi-
ments and near surface. No mathematical results, but some numerics - Minkoff
& WWS 1997, Blanch et al 1998.

• Source determination - actually always an issue. Some success in casting as an
inverse problem - Minkoff & WWS 1997, Routh et al SEG 2003.

• ...
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