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Practical Abstract Inverse Problems

The usual set-up:

I M = a set of models

I D = a Hilbert space of (potential) data

I F :M→D

[These things are collectively “the model”.]

Inverse problem: given d ∈ D, find m ∈M so that F [m] ' d .



Practical Abstract Inverse Problems

Chief requirement of a “solution”: must be able to

1. Characterize - what problem does the “solution” solve? Does
it exist? What degree of nonuniqueness? [Interpretation of
inaccurate, insufficient, and inconsistent data, D. D. Jackson,
Geophys. J. Royal Astr. Soc. 28 (1972), pp. 97-110.]

2. Find - does the characterizing problem admit an effective
numerical solution?

Common pattern for 2.: solution is extremum of variational
principle, for instance

m = argmin‖F [m]− d‖



Practical Abstract Inverse Problems

Example, topic of this talk: reflection seismology. Naturally
formulated as inverse problem using various physical descriptions of
seismic wave motion (acoustic, elastic, viscoelastic,...)

Typical problem size for adequately sampled 3D reflection seismic
survey: dim(M) ∼ 109, dim(D) ∼ 1012

⇒ any computational “solution” must admit algorithms that scale
well with problem size - if iterative, then iteration count should be
ess. independent of dimension.

Optimization ⇒ Newton’s method ⇒ must be satisfied with any
stationary point.



Practical Abstract Inverse Problems

Takeaway messages of this talk:

Straightforward data fitting (eg. by least squares) does not work
well for this class of problems

“Relaxed” variational formulation via model extensions leads to
effective numerical algorithms

For simplest cases, can show that all stationary points are
approximate global minimizers.

Numerical evidence for more than this, but many open questions
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Marine Seismic Reflection Experiment

Airguns = source of sound. Streamer consists of hydrophone
receiver groups. Each group records a trace (time series of
pressure) for each shot = excitation of source. Source-receiver
distance = offset.



Typical Shot Record
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offset (km) North Sea Survey (thanks:

Shell).
Processing applied:

I bandpass filter 3-8-25-35
Hz (data was oscillatory to
begin with!);

I cutoff or mute to remove
non-reflection energy
(direct, diving, head waves);

I predictive deconvolution to
suppress multiple
reflections.



Mechanical properties of sedimentary rocks

Well (vp) log from Texas borehole

(thanks: P. Janak, Total E&P, USA)

I vp varies significantly.

I Heterogeneity at all scales -
km to mm to µm.



Point Source Acoustics - the minimal model

Earth “=” Ω ⊂ R3, wave velocity v : Ω→ R, v > 0.

Wave equation for acoustic potential response to isotropic point
radiator at xs , time dependence w(t):(

1

v 2

∂2u

∂t2
−∇2

)
u(t, x; xs) = w(t)δ(x− xs)

plus appropriate initial and boundary conditions. NB: to model
oscillatory nature of data, w must be oscillatory -
ŵ(ω) = O(|ω|p), p ≥ 1.

Lions, late ’60’s: proper notion of weak solution, well posed for
v ∈M = {log v ∈ L∞(Ω)}, RHS in L2([0,T ]× Ω)



Point Source Acoustics - the minimal model

Forward map: F :M→D = L2([0,T ]× Σ),
Σ ⊂ {x3 = 0} × {x3 = 0} open, samples pressure in support of
φ ∈ C∞0 (Σ): for (t, xr , xs) ∈ [0,T ]× Σ,

F [v ](t, xr ; xs) =

(
φ
∂u

∂t

)
(t, xr ; xs)

If v = v0 known & constant in {x3 < z} for some z > 0,
w ∈ L2(R), slight extension of Lions’ argument shows F
well-defined.

Stolk 2000: continuous, differentiable “with loss of derivative”.
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Least Squares Data Fitting

Natural formulation, in view of defn of D: choose v by

v = argmin (‖F [v ]− d‖2
L2([0,T ]×Σ) +R[v ])

(“mean square error”) in which R (regularization functional)
supplies additional stability.

Promoted heavily by Tarantola and others in the 1980’s on
grounds of Bayesian justification (maximum likelihood solution
given Gaussian data error statistics)

Recently revived as major industry interest (“Full Waveform
Inversion”, FWI) - all-day workshop with attendance > 300 at SEG
09.



Least Squares Data Fitting
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A Sad Story:

Data is oscillatory - O(100)
wavelengths
Small changes in velocity ⇒
small changes in data isosurfaces
⇒ large changes in mean square
error ⇒ saturation ⇒ many
stationary points



Least Squares Data Fitting

Upshot:

I FWI via iterative optimization method recovers very detailed
subsurface models, at least in numerical tests with model
data, when starting model is sufficiently accurate (Tarantola
and coworkers 80’s, 90’s; Bunks 95; much recent work)

I Fails when starting model is not sufficiently accurate (stalls at
stationary point with poor data fit)

I Hard to tell what “sufficiently accurate” means - no a priori
test

I Continuation from low to high frequency / depth permits
convergence with less accurate starting model (Kolb et al
1986, Bunks 95, Pratt 2004, recent from Shin and coauthors)
- however no guarantees



Solution via Model Extension

Extension of F :

I χ :M→ M̄,

I F̄ : M̄ → D̄
I φ : D̄ → D

so that
F̄

M̄ → D̄
χ ↑ ↓ φ
M → D

F

commutes - that is,

φ[F̄ [χ[v ]]] = F [v ], v ∈M



Solution via Model Extension
Example:

M̄ ⊂ self-adjoint positive definite bounded operators on L2(Ω)
[Remark: action-at-a-distance], D̄ ⊂ D′(R× Σ). For v̄ ∈ M̄,

F̄ [v̄ ](t, xr ; xs) =

(
φ
∂u

∂t

)
(t, xr ; xs)

in which u is causal solution of(
v̄−2∂

2u

∂t2
−∇2

)
u(t, x; xs) = δ(t)δ(x− xs)

Minor modification of Lions’ construction ⇒ well-posed when v̄
acts as multiple of identity on functions supported near xs .

χ :M⊂ L∞(Ω)→ M̄ multiplier: χ[v ]u = vu. φ : D̄ → D by
φ[d ] = w ∗t d - filters out low freqs

Range of χ = “physical” models



Solution via Model Extension

Invertible extension: F̄ has approximate left inverse Ḡ (on R(F̄))

NB: trivial extension - M̄ =M, F̄ = F , χ = φ = id - virtually
never invertible.

Example: considerable numerical evidence (but little theory, except
for space dimn = 1) strongly suggests that example extension is
invertible.



Solution via Model Extension

Reformulation of inverse problem: seek v̄ ∈ M̄, d̄ ∈ φ−1[d ] so that

F̄ [v̄ ] ' d̄ , v̄ ∈ R(χ)

Then v̄ = χ[v ] and v is an (approx.) solution of original inverse
problem

Only advantageous if F̄ is invertible, with approximate inverse Ḡ -
then problem becomes:

find d̄ ∈ φ−1[d ] so that Ḡ[d̄ ] ∈ R(χ)



Solution via Model Extension

Practical importance - back to Main Example:

Range of χ consists of multiplication ops by L∞ functions,

⇒ distribution kernels v(x, y) supported on (near) ⊂ diagonal
x = y

⇒ VISUALLY OBVIOUS in plot of v(x, y)!!!!

⇒ industry standard algorithms: tweak (mostly by hand)
parameters of v(x, y) until support focuses on diagonal



Automation

Suppose W : M̄ → M̄ annihilates range of χ:

χ W
M → M̄ → M̄ → 0

Define
A ≡W ◦ Ḡ : D̄ → M̄

Then for d̄ ∈ φ−1(d),

A[d̄ ] = 0⇒ Ḡ[d̄ ] = χv ⇒ d ' φ[F̄ [Ḡ[d̄ ]]] = F̄ [χ[v ]] = F [v ]

Thus inverse problem equivalent to:

find d̄ ∈ φ−1[d ] so that A[d̄ ] = 0



Automation

Back to the main example: range of χ consists of multiplication
ops by L∞ functions, which commute with other multiplication ops
- so can choose

W [v̄ ] = [v̄ , x]

in which x represents multiplication by coordinate vector.

Write v̄ formally as integral operator with kernel v̄(x, y). Then

W [v̄ ]u(x) =

∫
Ω

dyv̄(x, y)(x− y)u(y)

multiplication of v̄ by offset x− y



Automation

Why should you care?

For very simple model problem using drastic approximations to F
and so on:

I least squares data fitting has stationary points unrelated to
solution of inverse problem, even for noiseless data

I for proper choice of W , hence A, parametrization of φ−1[d ],
and Hilbert norm ‖ · ‖ in M̄, all stationary points of

d̄ 7→ ‖A[d̄ ]‖2

are approximate global minimizers (WWS).

I numerical experiments with synthetic, field data suggest that
same is true in some generality



Linearized Extension and Migration Velocity Analysis

Conventional simplification: replace F̄ with linearization at smooth
physical models, in terms of r̄ = δv̄−2:

M̄1 = {(v , r̄) : log v ∈ C∞(Ω), r̄ ∈ Bsymm(L2(Ω))},
D̄1 = {v : log v ∈ C∞(Ω)} × D

define linearization DF̄ : M̄1 → D̄1 by

DF̄ [v , r̄ ] =

(
v , φ

∂δu

∂t

)
in which (

1

v 2

∂2u

∂t2
−∇2

)
δu(t, x; xs) = −r̄

[
∂2u

∂t2
(t, ·; xs)

]



Linearized Extension and Migration Velocity Analysis

Notes:

I geometric optics analysis ⇒ inclusion of low frequencies in
extended data ⇔ inclusion of smooth “background” velocity
model in extended data

I φ[v , d ] = d , so search in φ−1[d ] is search over smooth
background velocities

I Adjoint of r̄ 7→ DF̄ [v , r̄ ] is shot-geophone migration operator

I with H-S norm, r̄ 7→ DF̄ [v , r̄ ] is “nearly unitary”, so adjoint is
closely related to inverse, often used instead



Linearized Extension and Migration Velocity Analysis

Recall annihilator of physical model perturbations: W [r̄ ] = [r̄ , x] -
in terms of kernel.

“prestack imaging operator”: approximate inverse I[v ] of
r̄ 7→ DF̄ [v , r̄ ]

Idealized extended inversion algorithm boils down to: minimize
(over v) operator norm of W [I[v ]d ].

All implementations so far: take advantage of smoothness of
numerical approximations to replace operator norm with H-S norm:

JDS [v , d ] =
1

2

∫
dx

∫
dy|I[v ]d(x, y)(x− y)|2

Estimate v by minimizing JDS : “differential semblance”,
“annihilator-based waveform tomography”,... (Stolk-de Hoop 01,
Shen et al 03, 05, Kabir et al. 06, Shen & WWS 08,...)
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Field Data Example

Shen & WWS Geophysics 08 (similar expl: Kabir et al. 07 SEG)

Based on penalty version of differential semblance: compute I[v ]
by fitting extended data in least-squares sense, with JDS [v , d ] as
penalty.

Various approximations -

I use adjoint in place of inverse of DF̄
I approximate adjoint by solving wave equation as evolution in

depth (see Stolk-de Hoop Wave Motion 05, 06)

I compute gradient of JDS by adjoint state method (Shen’s
thesis)

I iterative quasi-Newton optimization algorithm - limited
memory BFGS with adjoint state gradients



Field Data Example

Gas chimney example - thanks Shell

Marine 2D line - preliminary imaging with regional velocity model
shows gas-induced distortion (“sag”).

Reflection tomography (traveltime inversion) partially removes sag
effect, but interpreters not happy.

Differential Semblance to rescue - 20 iterations of Newton-like
optimization algorithm produces more “geological” velocity (v),
image (diagonal of I[v ]d) - interpreters happier.



Field Data Example

Initial velocity model - regional trends with depth



Field Data Example

Image at initial model



Field Data Example

Model produced by Reflection Tomography



Field Data Example

Reflection Tomography image



Field Data Example

Model produced by diff’l semblance (20 LBFGS iterations)



Field Data Example

Diffl semblance image (diagonal of I[v ]d)



Field Data Example

Angle domain common image gathers (“ADCIGs” - Sava & Fomel
03) - Radon transform of 2D slice (“depth-offset”) of I[v ]d ,
should be flat at correct velocity - internal measure of consistency
between v , d

Initial velocity - dramatic failure to flatten.

Reflection tomography - much better, but still not flat at larger
depths.

Differential semblance - better yet



Field Data Example

ADCIGs, initial model



Field Data Example

ADCIGs, reflection tomography



Field Data Example

ADCIGs, differential semblance



Summary

I Because of oscillatory/wave character of data, seismic inverse
problem for wave velocity poorly suited for data fitting
formulation - data misfit norm has many stationary points far
from solution

I Model extensions permit reformulation in larger model domain
(“relaxation”, infeasible point method)

I Example extension: velocity coefficient in wave equation as
possibly nondiagonal SPD operator

I Simplest examples of extended variational principle
(“differential semblance”) yield quasi-convex optimization
problem - all stationary points are global mins

I With sufficiently many layers of approximation, applicable at
field scale

I Almost every mathematical question is open
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