# Mathematics of Seismic Imaging Part 2: Linearization, High Frequency Asymptotics, and Imaging 

William W. Symes

Rice University
2. Linearization, High frequency Asymptotics and Imaging

### 2.1 Linearization

2.2 Linear and Nonlinear Inverse Problems
2.3 High Frequency Asymptotics
2.4 Geometric Optics
2.5 Interesting Special Cases
2.6 Asymptotics and Imaging
2. Linearization, High frequency Asymptotics and Imaging

### 2.1 Linearization

2.2 Linear and Nonlinear Inverse Problems
2.3 High Frequency Asymptotics
2.4 Geometric Optics
2.5 Interesting Special Cases
2.6 Asymptotics and Imaging

## Linearization

All useful technology relies somehow on linearization (aka perturbation theory, Born approximation,...): write $c=v(1+r), r=$ relative first order perturbation about $v \Rightarrow$ perturbation of pressure field $\delta p=\frac{\partial \delta u}{\partial t}=0, t \leq 0$,

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \delta u=\frac{2 r}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

linearized forward map $F$ :

$$
F[v] r=\left.\delta p\right|_{\Sigma \times[0, T]}
$$

## Linearization in theory

Recall Lions-Stolk result: if $\log c \in L^{\infty}(\Omega)(\rho=1$ !) and $f \in L^{2}(\Omega \times[0, T])$, then weak solution has finite energy, i.e.

$$
u=u[c] \in C^{1}\left([0, T], L^{2}(\Omega)\right) \cap C^{0}\left([0, T], H_{0}^{1}(\Omega)\right)
$$

Suppose $\delta c \in L^{\infty}(\Omega)$, define $\delta u$ by solving perturbational problem: set $v=c, r=\delta c / c$.

## Linearization in theory

Stolk (2000): for $\delta c \in L^{\infty}(\Omega)$, small enough $h \in \mathbf{R}$,

$$
\|u[c+h \delta c]-u[c]-\delta u\|_{C^{0}\left([0, T], L^{2}(\Omega)\right)}=o(h)
$$

Note "loss of derivative": error in Newton quotient is $o(1)$ in weaker norm than that of space of weak solns

## Linearization in theory

Implication for $\mathcal{F}[c]$ : under suitable circumstances
( $c=$ const. near $\Sigma$ - "marine" case),

$$
\|\mathcal{F}[c]\|_{L^{2}(\Sigma \times[0, T])}=O\left(\|w\|_{L^{2}(\mathbf{R})}\right)
$$

but
$\|\mathcal{F}[v(1+r)]-\mathcal{F}[v]-F[v] r\|_{L^{2}(\Sigma \times[0, T])}=O\left(\|w\|_{H^{1}(\mathbf{R})}\right)$
and these estimates are both sharp

## Linearization in practice

Physical intuition, numerical simulation, and not nearly enough mathematics: linearization error

$$
\mathcal{F}[v(1+r)]-\mathcal{F}[v]-F[v] r
$$

- small when $v$ smooth, $r$ rough or oscillatory on wavelength scale - well-separated scales
- large when $v$ not smooth and/or $r$ not oscillatory - poorly separated scales


## Linearization in practice

Illustration: 2D finite difference simulation: shot gathers with typical marine seismic geometry. Smooth (linear) $v(x, z)$, oscillatory (random) $r(x, z)$ depending only on $z$ ("layered medium"). Source wavelet $w(t)=$ bandpass filter.


Left: $c=v(1+r)$. Std dev of $r=5 \%$.
Right: Simulated seismic response $(\mathcal{F}[v(1+r)])$, wavelet $=$ bandpass filter $4-10-30-45 \mathrm{~Hz}$. Simulator is $(2,4)$ finite difference scheme.


Decomposition of model in previous slide as smooth background (left, $v(x, z)$ ) plus rough perturbation (right, $r(x, z)$ ).


Left: Simulated seismic response of smooth model ( $\mathcal{F}[v]$ ),
Right: Simulated linearized response, rough perturbation of smooth model $(F[v] r)$


Left: Simulated seismic response of rough model $(\mathcal{F}[0.95 v+r])$,
Right: Simulated linearized response, smooth perturbation of rough model
$(F[0.95 v+r]((0.05 v) /(0.95 v+r)))$


Left: linearization error
$(\mathcal{F}[v(1+r)]-\mathcal{F}[v]-F[v] r)$, rough perturbation of smooth background
Right: linearization error, smooth perturbation of rough background (plotted with same grey scale).

## Summary

For the same pulse $w$,

- $v$ smooth, $r$ oscillatory $\Rightarrow F[v] r$ approximates primary reflection $=$ result of one-time wave-material interaction (single scattering); error = multiple reflections, "not too large" if $r$ is "not too big"
- $v$ nonsmooth, $r$ smooth $\Rightarrow$ error $=$ time shifts - very large perturbations since waves are oscillatory.

For typical oscillatory $w\left(\|w\|_{H^{1}} \gg\|w\|_{L^{2}}\right)$, tends to imply that in scale-separated case, effectively no loss of derivative!
2. Linearization, High frequency Asymptotics and Imaging

### 2.1 Linearization

2.2 Linear and Nonlinear Inverse Problems
2.3 High Frequency Asymptotics
2.4 Geometric Optics
2.5 Interesting Special Cases
2.6 Asymptotics and Imaging

## Velocity Analysis and Imaging

Velocity analysis problem = partially linearized inverse problem: given $d$ find $v, r$ so that

$$
\mathcal{F}[v]+F[v] r \simeq d
$$

Linearized inversion problem: given $d$ and $v$, find $r$ so that

$$
F[v] r \simeq d-\mathcal{F}[v]
$$

Imaging problem - relaxation of linearized inversion: given $d$ and $v$, find an image $r$ of "reality" $=$ solution of linearized inversion problem

## Velocity Analysis and Imaging

Last 20 years: mathematically speaking,

- much progress on imaging
- lots of progress on linearized inversion
- much less on velocity analysis
- none to speak of on nonlinear inversion
[Caveat: a lot of practical progress on nonlinear inversion in the last 10 years!]


## Velocity Analysis and Imaging

Interesting question: what's an image?

"...l know it when I see it." - Associate Justice Potter Stewart, 1964

2. Linearization, High frequency Asymptotics and Imaging

### 2.1 Linearization

2.2 Linear and Nonlinear Inverse Problems
2.3 High Frequency Asymptotics
2.4 Geometric Optics
2.5 Interesting Special Cases
2.6 Asymptotics and Imaging

## Aymptotic assumption

Linearization is accurate $\Leftrightarrow$ length scale of $v \gg$ length scale of $r \simeq$ wavelength, properties of $F[v]$ dominated by those of $F_{\delta}[v](=F[v]$ with $w=\delta)$.
[Implicit in migration concept (eg. Hagedoorn, 1954); explicit use: Cohen \& Bleistein, SIAM JAM 1977.]

Key idea: reflectors (rapid changes in $r$ ) emulate singularities; reflections (rapidly oscillating features in data) also emulate singularities.

## Aymptotic assumption

NB: "everybody's favorite reflector": the smooth interface across which $r$ jumps.

But this is an oversimplification - waves reflect at complex zones of rapid change in rock mechanics, pehaps in all directions. More flexible notion needed!!

## Wave Front Set

Paley-Wiener characterization of local smoothness for distributions: $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ is smooth at $\mathbf{x}_{0} \Leftrightarrow$ for some nbhd $X$ of $\mathbf{x}_{0}$, any $\chi \in C_{0}^{\infty}(X)$ and $N \in \mathbf{N}$, any $\boldsymbol{\xi} \in \mathbf{R}^{n},|\boldsymbol{\xi}|=1$,

$$
|\widehat{(\chi u)}(\tau \boldsymbol{\xi})|=O\left(\tau^{-N}\right), \tau \rightarrow \infty
$$

Proof (sketch): smooth at $\mathbf{x}_{0}$ means: for some nbhd $X, \chi u \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ for any $\chi \in C_{0}^{\infty}(X) \Leftrightarrow$.

$$
\widehat{\chi u}(\boldsymbol{\xi})=\int d x e^{i \boldsymbol{\xi} \cdot \mathbf{x}} \chi(x) u(x)
$$

## Wave Front Set

$$
\begin{aligned}
& =\int d x\left(1+|\boldsymbol{\xi}|^{2}\right)^{-p}\left[\left(I-\nabla^{2}\right)^{p} e^{i \boldsymbol{\xi} \cdot x}\right] \chi(x) u(x) \\
& =\left(1+|\boldsymbol{\xi}|^{2}\right)^{-p} \int d x e^{i \boldsymbol{\xi} \cdot \mathbf{x}\left[\left(I-\nabla^{2}\right)^{p} \chi(x) u(x)\right]}
\end{aligned}
$$

whence

$$
|\widehat{\chi u}(\boldsymbol{\xi})| \leq \text { const. }\left(1+|\boldsymbol{\xi}|^{2}\right)^{-p}
$$

where the const. depends on $p, \chi$ and $u$. For any $N$, choose $p$ large enough, replace $\boldsymbol{\xi} \leftarrow \tau \boldsymbol{\xi}$, get desired $\leq$.

## Wave Front Set

Harmonic analysis of singularities, après Hörmander: the wave front set $W F(u) \subset \mathbf{R}^{n} \times \mathbf{R}^{n} \backslash 0$ of
$u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ - captures orientation as well as position of singularities - microlocal smoothness
$\left(\mathbf{x}_{0}, \boldsymbol{\xi}_{0}\right) \notin W F(u) \Leftrightarrow$, there is open nbhd $X \times \equiv \subset \mathbf{R}^{n} \times \mathbf{R}^{n} \backslash 0$ of $\left(\mathbf{x}_{0}, \boldsymbol{\xi}_{0}\right)$ so that for any $\chi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$, supp $\chi \subset X, N \in \mathbf{N}$, all $\boldsymbol{\xi} \in \equiv$ so that
$|\boldsymbol{\xi}|=\left|\boldsymbol{\xi}_{0}\right|$,

$$
|\widehat{\chi u}(\tau \boldsymbol{\xi})|=O\left(\tau^{-N}\right)
$$

## Housekeeping chores

(i) note that the nbhds 玉 may naturally be taken to be cones
(ii) $W F(u)$ is invariant under chg. of coords - as subset of the cotangent bundle $T^{*}\left(\mathbf{R}^{n}\right)$ (i.e. the $\boldsymbol{\xi}$ components transform as covectors).
(iii) Standard example: if $u$ jumps across the interface $\phi(\mathbf{x})=0$, otherwise smooth, then $W F(u) \subset \mathcal{N}_{\phi}=\{(\mathbf{x}, \boldsymbol{\xi}): \phi(\mathbf{x})=0, \boldsymbol{\xi} \| \nabla \phi(\mathbf{x})\}$ (normal bundle of $\phi=0$ )
[Good refs for basics on WF: Duistermaat, 1996; Taylor, 1981; Hörmander, 1983]

## Housekeeping chores

Proof of (ii): follows from
(iv) Basic estimate for oscillatory integrals: suppose that $\psi \in C^{\infty}\left(\mathbf{R}^{n}\right), \nabla \psi\left(\mathbf{x}_{0}\right) \neq \mathbf{0}$,
$\left(\mathbf{x}_{0},-\nabla \psi\left(\mathbf{x}_{0}\right)\right) \notin W F(u)$. Then for any
$\chi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ supported in small enough nbhd of $\mathbf{x}_{0}$, and any $N \in \mathbf{N}$,

$$
\int d x e^{i \tau \psi(\mathbf{x})} \chi(\mathbf{x}) u(\mathbf{x})=O\left(\tau^{-N}\right), \tau \rightarrow \infty
$$

## Housekeeping chores

Proof of (iv): choose nbhd $X \times$ 三 of $\left(\mathbf{x}_{0},-\nabla \psi\left(\mathbf{x}_{0}\right)\right)$ as in definition: conic, i.e.
$(\mathbf{x}, \boldsymbol{\xi}) \in X \times$ 三 $\Rightarrow(\mathbf{x}, \tau \boldsymbol{\xi}) \in X \times \overline{\text { I }}, \tau>0$.
Choose $a \in C^{\infty}\left(\mathbf{R}^{n} \backslash\{0\}\right)$ homogeneous of degree 0 $(a(\boldsymbol{\xi})=a(\boldsymbol{\xi} /|\boldsymbol{\xi}|))$ for $|\boldsymbol{\xi}|>1$ so that $a(\boldsymbol{\xi})=0$ if $\boldsymbol{\xi} \notin \equiv$ or $|\boldsymbol{\xi}| \leq 1 / 2, a(\boldsymbol{\xi})=1$ if $|\boldsymbol{\xi}|>1$ and $\boldsymbol{\xi} \in \Xi_{1} \subset \bar{\Xi}$, another conic nbhd of $-\nabla \psi\left(\mathbf{x}_{0}\right)$. Pick $\chi_{1} \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ st $\chi_{1} \equiv 1$ on $\operatorname{supp} \chi$, and write

$$
\chi(x) u(x)=\chi_{1}(x)(2 \pi)^{-n} \int d \boldsymbol{\xi} e^{i x \cdot \boldsymbol{\xi}} \widehat{\chi u}(\boldsymbol{\xi})
$$

## Housekeeping chores

$$
\begin{aligned}
& =\chi_{1}(x)(2 \pi)^{-n} \int d \boldsymbol{\xi} e^{i x \cdot \boldsymbol{\xi}} g_{1}(\boldsymbol{\xi}) \\
& +\chi_{1}(x)(2 \pi)^{-n} \int d \boldsymbol{\xi} e^{i x \cdot \boldsymbol{\xi}} g_{2}(\boldsymbol{\xi})
\end{aligned}
$$

in which $g_{1}=a \widehat{\chi u}, g_{2}=(1-a) \widehat{\chi u}$

## Housekeeping chores

So

$$
\begin{gathered}
\int d x e^{i \tau \psi(\mathbf{x})} \chi(\mathbf{x}) u(\mathbf{x}) \\
=\sum_{j=1,2} \int d x \int d \boldsymbol{\xi} e^{i(\tau \psi(x)+\mathbf{x} \cdot \boldsymbol{\xi})} \chi_{1}(x) g_{j}(\boldsymbol{\xi})
\end{gathered}
$$

## Housekeeping chores

For $\boldsymbol{\xi} \in \operatorname{supp}(1-a)$ (excludes a conic nbhd of
$\left.-\nabla \psi\left(\mathbf{x}_{0}\right)\right)$, can write

$$
\begin{gathered}
e^{i(\tau \psi(\mathbf{x})+\mathbf{x} \cdot \boldsymbol{\xi})} \\
=\left[-i|\tau \nabla \psi(\mathbf{x})+\boldsymbol{\xi}|^{-2}(\tau \nabla \psi(\mathbf{x})+\boldsymbol{\xi}) \cdot \nabla\right]^{p} e^{i(\tau \psi(\mathbf{x})+\mathbf{x} \cdot \boldsymbol{\xi})}
\end{gathered}
$$

## Housekeeping chores

Can guarantee that $|\tau \nabla \psi(\mathbf{x})+\boldsymbol{\xi}|>0$ by choosing $\operatorname{supp} \chi_{1}$ suff. small, so that in dom. of integration
$\nabla \psi(\mathbf{x})$ is close to $\nabla \psi\left(\mathbf{x}_{0}\right)$. In fact, for
$\boldsymbol{\xi} \in \operatorname{supp}(1-a), \operatorname{supp} \chi_{1}$ small enough, and
$\mathbf{x} \in \operatorname{supp} \chi_{1}$,

$$
|\tau \nabla \psi(\mathbf{x})+\boldsymbol{\xi}|>C \tau
$$

for some $C>0$. Exercise: prove this!

## Housekeeping chores

Substitute and integrate by parts, use above estimate to get

$$
\left|\int d x \int d \boldsymbol{\xi} e^{i(\tau \psi(\mathbf{x})+\mathbf{x} \cdot \boldsymbol{\xi})} \chi_{1}(\mathbf{x}) g_{2}(\boldsymbol{\xi})\right| \leq \text { const. } \tau^{-N}
$$

for any $N$.
Note that for $\boldsymbol{\xi} \in \operatorname{suppa}$,

$$
|\widehat{\chi u}(\boldsymbol{\xi})| \leq \text { const. }|\boldsymbol{\xi}|^{-p}
$$

for any $p$ (with $p$-dep. const, of course!).

## Housekeeping chores

Follows that

$$
h(\mathbf{x})=\int d \boldsymbol{\xi} e^{i x \cdot \boldsymbol{\xi}} g_{1}(\boldsymbol{\xi})
$$

converges absolutely, also after differentiating any number of times under the integral sign.

## Housekeeping chores

therefore $h \in C^{\infty}\left(\mathbf{R}^{n}\right)$, whence

$$
\begin{gathered}
\int d x \int d \boldsymbol{\xi} e^{i(\tau \psi(\mathbf{x})+\mathrm{x} \cdot \boldsymbol{\xi})} \chi_{1}(\mathbf{x}) g_{1}(\boldsymbol{\xi}) \\
=\int d x e^{i \tau \psi(\mathbf{x})} \chi_{1}(\mathbf{x}) h(\mathbf{x})
\end{gathered}
$$

## Housekeeping chores

with integrand supported as near as you like to $\mathbf{x}_{0}$. Since $\nabla \psi\left(\mathbf{x}_{0}\right) \neq 0$, same is true of supp $\chi_{1}$ provided this is chosen small enough; now use

$$
e^{i \tau \psi(\mathbf{x})}=\tau^{-p}\left(-i|\nabla \psi(\mathbf{x})|^{-2} \nabla \psi(\mathbf{x}) \cdot \nabla\right)^{p} e^{i \tau \psi(\mathbf{x})}
$$

and integration by parts again to show that this term is also $O\left(\tau^{-N}\right)$ any $N$.

## Housekeeping chores

Proof of (ii), for $u$ integrable (Exercise: formulate and prove similar statement for distributions)

Equivalent statement: suppose that $\Phi: U \rightarrow \mathbf{R}^{n}$ is a diffeomorphism on an open $U \subset \mathbf{R}^{n}$, $\operatorname{supp} u \subset \Phi(U), \mathbf{x}_{0} \in U, \mathbf{y}_{0}=\Phi\left(\mathbf{x}_{0}\right)$, and $\left(\mathbf{y}_{0}, \eta_{0}\right) \notin W F(u)$.

Claim: then $\left(\mathbf{x}_{0}, \boldsymbol{\xi}_{0}\right) \notin W F(u \circ \Phi)$, where $\xi_{0}=D \Phi\left(\mathbf{x}_{0}\right)^{T} \eta_{0}$.

## Housekeeping chores

Need to show that if $\chi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right), \mathbf{x}_{0} \in \operatorname{supp} \chi$ and small enough, then $\widehat{\chi u \circ \Phi}(\tau \boldsymbol{\xi})=O\left(\tau^{-N}\right)$ any $N$ for $\boldsymbol{\xi}$ conically near $\boldsymbol{\xi}_{0}$. From the change-of-variables formula

$$
\begin{gathered}
\widehat{\chi \boldsymbol{u} \circ \Phi}(\tau \boldsymbol{\xi})=\int d x \chi(\mathbf{x})(u \circ \Phi)(\mathbf{x}) e^{i \tau \mathbf{x} \cdot \boldsymbol{\xi}} \\
=\int d y\left(\chi \circ \Phi^{-1}\right)(\mathbf{y}) u(\mathbf{y}) e^{i \tau \boldsymbol{\xi} \cdot \Phi^{-1}(\mathbf{y})} \operatorname{det} D\left(\Phi^{-1}\right)(\mathbf{y})
\end{gathered}
$$

Set $j=\chi \circ \Phi^{-1} \operatorname{det} D\left(\Phi^{-1}\right)$. Note: $j \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ supported in nbhd $\mathcal{V}$ of $\mathbf{y}_{0}$ if $\chi$ supported in $\Phi^{-1}(\mathcal{V})$.

## Housekeeping chores

MVT: for $\mathbf{y}$ close enough to $\mathbf{y}_{0}$,

$$
\Phi^{-1}(\mathbf{y})=\mathbf{x}_{0}+\int_{0}^{1} d \sigma D \Phi^{-1}\left(\mathbf{y}_{0}+\sigma\left(\mathbf{y}-\mathbf{y}_{0}\right)\right)\left(\mathbf{y}-\mathbf{y}_{0}\right)
$$

Insert in exponent to get

$$
\widehat{\chi u \circ \Phi}(\tau \boldsymbol{\xi})=e^{i \tau \chi_{0} \cdot \boldsymbol{\xi}} \int d y j(\mathbf{y}) u(\mathbf{y}) e^{i \tau \psi} \boldsymbol{\xi}^{(\mathbf{y})}
$$

where

$$
\psi_{\boldsymbol{\xi}}(\mathbf{y})=\left(\mathbf{y}-\mathbf{y}_{0}\right) \cdot \int_{0}^{1} d \sigma D \Phi^{-1}\left(\mathbf{y}_{0}+\sigma\left(\mathbf{y}-\mathbf{y}_{0}\right)\right)^{T} \boldsymbol{\xi}
$$

## Housekeeping chores

Since

$$
\nabla \psi_{\boldsymbol{\xi}}\left(\mathbf{y}_{0}\right)=D \Phi^{-1}\left(\mathbf{y}_{0}\right) \boldsymbol{\xi}
$$

claim now follows from basic thm on oscillatory integrals.

## Housekeeping chores

Proof of (iii): Function of compact supp, jumping across $\phi=0$

$$
u=\chi H(\phi)
$$

with $\chi$ smooth, $H=$ Heaviside function
$(H(t)=1, t>0$ and $H(t)=0, t<0)$.
Pick $\mathbf{x}_{0}$ with $\phi\left(\mathbf{x}_{0}\right)=0$. Surface $\phi=0$ regular near $\mathbf{x}_{0}$ if $\nabla \phi\left(\mathbf{x}_{0}\right) \neq 0$ - assume this.

## Housekeeping chores

Suffices to consider case of $\chi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$ of small support cont'g $\mathbf{x}_{0}$. Inverse Function $\mathrm{Thm} \Rightarrow$ exists diffeo $\Phi$ mapping nbhd of $x_{0}$ to nbhd of 0 so that $\Phi\left(\mathbf{x}_{0}\right)=0$ and $\Phi_{1}(\mathbf{x})=\phi(\mathbf{x})$. Fact (ii) $\Rightarrow$ reduce to case $\phi(\mathbf{x})=x_{1}$ - Exercise: do this special case!

## Wavefront set of a jump discontinuity

$$
\begin{aligned}
& \phi<0 \\
& W>0 \\
& W F(\phi(\phi)=0 \\
& H=0
\end{aligned}
$$

## Formalizing the reflector concept

Key idea, restated: reflectors (or "reflecting elements") will be points in WF(r). Reflections will be points in $W F(d)$.

These ideas lead to a usable definition of image: a reflectivity model $\tilde{r}$ is an image of $r$ if $W F(\tilde{r}) \subset W F(r)$ (the closer to equality, the better the image).

## Formalizing the reflector concept

Idealized migration problem: given $d$ (hence WF(d)) deduce somehow a function which has the right reflectors, i.e. a function $\tilde{r}$ with $W F(\tilde{r}) \simeq W F(r)$.

NB: you're going to need $v$ ! ("It all depends on $\mathrm{v}(\mathrm{x}, \mathrm{y}, \mathrm{z})^{\prime \prime}$ - J. Claerbout)

## Microlocal property of differential

 operators$$
\begin{gathered}
P(\mathbf{x}, D)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha} \\
D=\left(D_{1}, \ldots, D_{n}\right), D_{i}=-i \frac{\partial}{\partial x_{i}} \\
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right),|\alpha|=\sum_{i} \alpha_{i}, \\
D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}}
\end{gathered}
$$

## Microlocal property of differential

 operatorsSuppose $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right),\left(\mathbf{x}_{0}, \boldsymbol{\xi}_{0}\right) \notin W F(u)$, and $P(\mathbf{x}, D)$ is a partial differential operator:

Then $\left(\mathbf{x}_{0}, \xi_{0}\right) \notin W F(P(\mathbf{x}, D) u)$
That is, $W F(P u) \subset W F(u)$.

## Proof

Choose $X \times$ 三as in the definition, $\phi \in \mathcal{D}(X)$ form the required Fourier transform

$$
\int d x e^{i \mathbf{x} \cdot(\tau \xi)} \phi(\mathbf{x}) P(\mathbf{x}, D) u(\mathbf{x})
$$

and start integrating by parts: eventually...

## Proof

$$
=\sum_{|\alpha| \leq m} \tau^{|\alpha|} \xi^{\alpha} \int d x e^{i \mathbf{x} \cdot(\tau \xi)} \phi_{\alpha}(\mathbf{x}) u(\mathbf{x})
$$

where $\phi_{\alpha} \in \mathcal{D}(X)$ is a linear combination of derivatives of $\phi$ and the $a_{\alpha} s$. Since each integral is rapidly decreasing as $\tau \rightarrow \infty$ for $\xi \in \Xi$, it remains rapidly decreasing after multiplication by $\tau^{|\alpha|}$, and so does the sum. Q. E. D.
2. Linearization, High frequency Asymptotics and Imaging

### 2.1 Linearization

2.2 Linear and Nonlinear Inverse Problems
2.3 High Frequency Asymptotics
2.4 Geometric Optics
2.5 Interesting Special Cases
2.6 Asymptotics and Imaging

## Integral representation of linearized

## operator

With $w=\delta$, acoustic potential $u$ is same as Causal Green's function $G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=$ retarded fundamental solution:

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\delta(t) \delta\left(\mathbf{x}-\mathbf{x}_{s}\right)
$$

and $G \equiv 0, t<0$. Then $(w=\delta!) p=\frac{\partial G}{\partial t}$,
$\delta p=\frac{\partial \delta G}{\partial t}$, and
$\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \delta G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\frac{2}{v^{2}(\mathbf{x})} \frac{\partial^{2} G}{\partial t^{2}}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right) r(\mathbf{x})$

## Integral representation of linearized

 operatorSimplification: from now on, define $F[v] r=\left.\delta G\right|_{\mathbf{x}^{\prime} \mathbf{x}_{r}}$

- i.e. lose a $t$-derivative. Duhamel's principle $\Rightarrow$

$$
\begin{gathered}
\delta G\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right) \\
=\int d x \frac{2 r(\mathbf{x})}{v(\mathbf{x})^{2}} \int d s G\left(\mathbf{x}_{r}, t-s ; \mathbf{x}\right) \frac{\partial^{2} G}{\partial t^{2}}\left(\mathbf{x}, s ; \mathbf{x}_{s}\right)
\end{gathered}
$$

## Add geometric optics...

Geometric optics approximation of $G$ for smooth $v$ :

$$
G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=a\left(\mathbf{x} ; \mathbf{x}_{s}\right) \delta\left(t-\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)\right)+R\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)
$$

where (a) traveltime $\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)$ solves eikonal equation

$$
\begin{gathered}
v|\nabla \tau|=1 \\
\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right) \sim \frac{r}{v\left(\mathbf{x}_{s}\right)}, r=\left|\mathbf{x}-\mathbf{x}_{s}\right| \rightarrow 0
\end{gathered}
$$

and (b) amplitude $a\left(\mathbf{x} ; \mathbf{x}_{s}\right)$ solves transport equation

$$
\nabla \cdot\left(a^{2} \nabla \tau\right)=0 ; \quad a \sim \frac{1}{4 \pi r}, r \rightarrow 0
$$

## Add geometric optics...

Why should this seem reasonable: formally, for constant $v, G$ solves radiation problem for $w=\delta$ :

$$
G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\frac{\delta\left(t-\frac{r}{v}\right)}{4 \pi r}
$$

so GO approx holds with
$\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)=\left|\mathbf{x}-\mathbf{x}_{s}\right| / v=r / v$ and $a=(4 \pi r)^{-1}-$ in fact, it's not an approximation ( $\mathrm{R}=0$ )!

Exercise: Verify that $\tau$, a as given here, satisfy the eikonal and transport equation.

## Add geometric optics...

Suppose

- $v$ is const near $\mathbf{x}=\mathbf{x}_{s}$ (simplifying assumption
- can be removed)
- $\tau$ smooth \& satisfies eikonal equation for $r>0,=r / v\left(\mathbf{x}_{s}\right)$ for small $r$
- a smooth \& satisfies transport equation for $r>0,=1 / 4 \pi r$ for small $r$

Then

$$
R\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=G\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)-a\left(\mathbf{x} ; \mathbf{x}_{s}\right) \delta\left(t-\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)\right)
$$

is locally square-integrable

## Add geometric optics...

(Hindsight!) Set

$$
R_{1}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\int_{0}^{t} d s R\left(\mathbf{x}, s ; \mathbf{x}_{s}\right)
$$

Will show that

$$
R_{1}\left(\cdot, \cdot ; \mathbf{x}_{s}\right) \in C^{1}\left(\mathbf{R}, L^{2}\left(\mathbf{R}^{3}\right)\right) \cap C^{0}\left(\mathbf{R}, H^{1}\left(\mathbf{R}^{3}\right)\right)
$$

which is sufficient.

## Add geometric optics...

$$
R_{1}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\int_{0}^{t} d s G\left(\mathbf{x}, s ; \mathbf{x}_{s}\right)-a\left(\mathbf{x} ; \mathbf{x}_{s}\right) H\left(t-\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)\right)
$$

Compute

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) R_{1}
$$

Use calculus rules (why are these valid?). Expl:

$$
\nabla a \delta(t-\tau)=(\nabla a) \delta(t-\tau)-a \nabla \tau \delta^{\prime}(t-\tau)
$$

(drop arguments for sake of space...)

## Add geometric optics...

$$
\begin{gathered}
=\delta\left(\mathbf{x}-\mathbf{x}_{s}\right) H(t)-a\left(\frac{1}{v^{2}}-|\nabla \tau|^{2}\right) \delta^{\prime}(t-\tau) \\
+\left(2 \nabla \tau \cdot \nabla a+\nabla^{2} \tau a\right) \delta(t-\tau) \\
+\nabla^{2} a H(t-\tau)
\end{gathered}
$$

## Add geometric optics...

Terms 2 \& 3 vanish due to eikonal \& transport -

$$
=\delta\left(\mathbf{x}-\mathbf{x}_{s}\right) H(t)-\delta\left(\mathbf{x}-\mathbf{x}_{s}\right) H(t-\tau)+\text { smooth }
$$

$=$ smooth
Quote Lions-Stolk result (++...) Q.E.D.

## Add geometric optics...

Upshot: remainder $R$ is more regular than the leading term - approximation of leading singularity or high frequency asymptotics

## Local Geometric Optics

Main theorem of local geometric optics: if $v$ is smooth in a nbhd of $\mathbf{x}_{s}$, then there exists a (possibly smaller) nbhd in which unique $\tau$ and a satisfying (a) and (b) exist, and are smooth except as indicated at $r=0$.

## Local Geometric Optics

Sketch of proof ("Hamilton-Jacobi theory"):

- basic ODE thm: solutions of IVP for Hamilton's Equations:

$$
\begin{gathered}
\frac{d \mathbf{X}}{d t}=\nabla_{\equiv} H(\mathbf{X}, \equiv) ; \frac{d \Xi}{d t}=-\nabla_{\mathbf{X}} H(\mathbf{X}, \equiv), \\
H(\mathbf{X}, \equiv)=-\frac{1}{2}\left[1-v^{2}(\mathbf{X})|\equiv|^{2}\right] \\
\mathbf{X}(0)=\mathbf{x}_{s}, v\left(\mathbf{x}_{s}\right) \equiv(0)=\theta \in S^{2}
\end{gathered}
$$

- exponential polar coordinates: for $\mathbf{x}$ in nbhd of $\mathbf{x}_{s}$, exist unique $t, \equiv(0)$ so that $\mathbf{X}(t)=\mathbf{x}$ : set $\tau(\mathbf{x})=t$


## Local Geometric Optics

- for any trajectory $\mathbf{X}$, ミ of HE, $t \mapsto H(\mathbf{X}(t), \equiv(t))$ is constant; for these trajectories, IC $\Rightarrow|\equiv(t)|=1 / v(\mathbf{X}(t))$
- $d \mathbf{X} / d t$ is parallel to $\nabla \tau$, in fact
- $\nabla \tau(\mathbf{X}(t))=$ 三 $(t) \Rightarrow$
- $\tau$ solves eikonal eqn

Exercise: complete this sketch to produce a proof may assume $v$ const near $\mathbf{x}=\mathbf{x}_{s}$

## Local Geometric Optics

Hint: the 2nd step is crucial.
Idea: initial data is $\left(\mathbf{x}_{s}, \bar{\Xi}_{0}\right)$ where $\bar{\Xi}_{0}$ lies on sphere of radius $1 / v\left(\mathbf{x}_{s}\right)$. Choose curve in sphere parameterized by $s \in \mathbf{R}$, passing through $\equiv_{0}$ at $s=0 ;$
develop ODE for

$$
t \mapsto\left(\frac{\partial X}{\partial s}\left(t, \Xi_{0}\right)\right)^{T} \frac{\partial X}{\partial t}\left(t, \Xi_{0}\right)
$$

init val $=0 \Rightarrow$ always $=0 \Rightarrow$ 三 perp to level surface of $\tau$

## Local Geometric Optics

Note: geometric optics ray $t \mapsto \mathbf{X}(t)$ is geodesic of Riemannian metric $v^{-2} \sum_{i=1}^{3} d x_{i} \otimes d x_{i}$
$v$ smooth $\Rightarrow$ distance to nearest conjugate point $>0$.

## Numerics, and a caution

Numerical solution of eikonal, transport: ray tracing (Lagrangian), various sorts of upwind finite difference (Eulerian) methods. See eg. Sethian book, WWS 1999 MGSS notes (online) for details.

For "random but smooth" $v(\mathbf{x})$ with variance $\sigma$, more than one connecting ray occurs as soon as the distance is $O\left(\sigma^{-2 / 3}\right)$. Such multipathing is invariably accompanied by the formation of a caustic (White, 1982).

Upon caustic formation, the simple geometric optics field description above is no longer correct (Ludwig, 1966).

## A caustic example (1)

sin1: velocity field


2D Example of strong refraction: Sinusoidal velocity field $v(x, z)=1+0.2 \sin \frac{\pi z}{2} \sin 3 \pi x$

## A caustic example (2)



Rays in sinusoidal velocity field, source point $=$ origin. Note formation of caustic, multiple rays to source point in lower center.

## The linearized operator as Generalized Radon Transform

Assume: supp $r$ contained in simple geometric optics domain: each point reached by unique ray from any source or receiver point


## The linearized operator as Generalized

 Radon TransformThen distribution kernel $K$ of $F[v]$ is

$$
\begin{aligned}
& K\left(\mathbf{x}_{r}, t, \mathbf{x}_{s} ; \mathbf{x}\right)=\int d s G\left(\mathbf{x}_{r}, t-s ; \mathbf{x}\right) \frac{\partial^{2} G}{\partial t^{2}}\left(\mathbf{x}, s ; \mathbf{x}_{s}\right) \frac{2}{v^{2}(\mathbf{x})} \\
& \simeq \int d s \frac{2 a\left(\mathbf{x}_{r}, \mathbf{x}\right) a\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathbf{x})} \delta^{\prime}\left(t-s-\tau\left(\mathbf{x}_{r}, \mathbf{x}\right)\right) \delta^{\prime \prime}\left(s-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
\end{aligned}
$$

$$
=\frac{2 a\left(\mathbf{x}, \mathbf{x}_{r}\right) a\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathbf{x})} \delta^{\prime \prime}\left(t-\tau\left(\mathbf{x}, \mathbf{x}_{r}\right)-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
$$

provided that

$$
\nabla_{\mathbf{x}} \tau\left(\mathbf{x}, \mathbf{x}_{r}\right)+\nabla_{\mathbf{x}} \tau\left(\mathbf{x}, \mathbf{x}_{s}\right) \neq 0
$$

$\Leftrightarrow$ velocity at $\mathbf{x}$ of ray from $\mathbf{x}_{s}$ not negative of velocity of ray from $\mathbf{x}_{r} \Leftrightarrow$ no forward scattering. [Gel'fand and Shilov, 1958 - when is pullback of distribution again a distribution?].

Q: What does $\simeq$ mean?
A: It means "differs by something smoother".
In theory: develop $R$ in series of terms of decreasing order of singularity
asymptotic: $G$ - sum of $N$ terms $\in C^{N-2}$
In practice, first term suffices (can formalize this with modification of wavefront set defn).

## GRT = "Kirchhoff" modeling

 supp $r \subset$ simple geometric optics domain $\Rightarrow$$$
\delta G\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right) \simeq
$$

$\frac{\partial^{2}}{\partial t^{2}} \int d x \frac{2 r(\mathbf{x})}{v^{2}(\mathbf{x})} a\left(\mathbf{x}, \mathbf{x}_{r}\right) a\left(\mathbf{x}, \mathbf{x}_{s}\right) \delta\left(t-\tau\left(\mathbf{x}, \mathbf{x}_{r}\right)-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)$
pressure perturbation is sum (integral) of $r$ over reflection isochron $\left\{\mathbf{x}: t=\tau\left(\mathbf{x}, \mathbf{x}_{r}\right)+\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right\}$, w. weighting, filtering. Note: if $v=$ const. then isochron is ellipsoid, as $\tau\left(\mathbf{x}_{s}, \mathbf{x}\right)=\left|\mathbf{x}_{s}-\mathbf{x}\right| / v$ !

2. Linearization, High frequency Asymptotics and Imaging

### 2.1 Linearization

2.2 Linear and Nonlinear Inverse Problems
2.3 High Frequency Asymptotics
2.4 Geometric Optics
2.5 Interesting Special Cases
2.6 Asymptotics and Imaging

## Zero Offset data and the Exploding

## Reflector

Zero offset data ( $\mathbf{x}_{s}=\mathbf{x}_{r}$ ) is seldom actually measured (contrast radar, sonar!), but routinely approximated through NMO-stack (to be explained later).

Extracting image from zero offset data, rather than from all (100's) of offsets, is tremendous data reduction - when approximation is accurate, leads to excellent images.

Imaging basis: the exploding reflector model (Claerbout, 1970's).

For zero-offset data, distribution kernel of $F[v]$ is

$$
\begin{gathered}
K\left(\mathbf{x}_{s}, t, \mathbf{x}_{s} ; \mathbf{x}\right)= \\
\frac{\partial^{2}}{\partial t^{2}} \int d s \frac{2}{v^{2}(\mathbf{x})} G\left(\mathbf{x}_{s}, t-s ; \mathbf{x}\right) G\left(\mathbf{x}, s ; \mathbf{x}_{s}\right)
\end{gathered}
$$

Under some circumstances (explained below), K ( $=G$ time-convolved with itself) is "similar" (also explained) to $\tilde{G}=G r e e n ' s ~ f u n c t i o n ~ f o r ~ v / 2$. Then...

$$
\delta G\left(\mathbf{x}_{s}, t ; \mathbf{x}_{s}\right) \sim \frac{\partial^{2}}{\partial t^{2}} \int d x \tilde{G}\left(\mathbf{x}_{s}, t, \mathbf{x}\right) \frac{2 r(\mathbf{x})}{v^{2}(\mathbf{x})}
$$

$\sim$ solution $w$ of

$$
\left(\frac{4}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) w=\delta(t) \frac{2 r}{v^{2}}
$$

Thus reflector "explodes" at time zero, resulting field propagates in "material" with velocity $v / 2$.

Explain when the exploding reflector model "works", i.e. when $G$ time-convolved with itself is "similar" to $\tilde{G}=G r e e n ' s$ function for $v / 2$. If supp $r$ lies in simple geometry domain, then

$$
\begin{gathered}
K\left(\mathbf{x}_{s}, t, \mathbf{x}_{s} ; \mathbf{x}\right)= \\
\int d s \frac{2 a^{2}\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathbf{x})} \delta\left(t-s-\tau\left(\mathbf{x}_{s}, \mathbf{x}\right)\right) \delta^{\prime \prime}\left(s-\tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
\end{gathered}
$$

$$
=\frac{2 a^{2}\left(\mathbf{x}, \mathbf{x}_{s}\right)}{v^{2}(\mathbf{x})} \delta^{\prime \prime}\left(t-2 \tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
$$

whereas the Green's function $\tilde{G}$ for $v / 2$ is

$$
\tilde{G}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\tilde{a}\left(\mathbf{x}, \mathbf{x}_{s}\right) \delta\left(t-2 \tau\left(\mathbf{x}, \mathbf{x}_{s}\right)\right)
$$

(half velocity $=$ double traveltime, same rays!).

Difference between effects of $K, \tilde{G}$ : for each $\mathbf{x}_{s}$ scale $r$ by smooth fcn - preserves $W F(r)$ hence $W F(F[v] r)$ and relation between them. Also: adjoints have same effect on WF sets.

Upshot: from imaging point of view (i.e. apart from amplitude, derivative (filter)), kernel of $F[v]$ restricted to zero offset is same as Green's function for $v / 2$, provided that simple geometry hypothesis holds: only one ray connects each source point to each scattering point, ie. no multipathing.

See Claerbout, IEI, for examples which demonstrate that multipathing really does invalidate exploding reflector model.

## Standard Processing

Inspirational interlude: the sort-of-layered theory
="Standard Processing"
Suppose $v, r$ functions of $z=x_{3}$ only, all sources and receivers at $z=0$
$\Rightarrow$ system is translation-invariant in $x_{1}, x_{2}$
$\Rightarrow$ Green's function $G$ its perturbation $\delta G$, and the idealized data $\left.\delta G\right|_{z=0}$ only functions of $t$ and half-offset $h=\left|\mathbf{x}_{s}-\mathbf{x}_{r}\right| / 2$.

## Standard Processing

$\Rightarrow$ only one seismic experiment, equivalent to any common midpoint gather ("CMP").

This isn't really true - look at the data!!!

## Standard Processing

Example: Mobil Viking Graben data
Released 1994 by Mobil R\&D as part of workshop exercise ("invert this!")

North Sea "2D" data, i.e. single 25 km sail line, single 3 km streamer - passes near location of well, log shown in Part I

## Standard Processing



Sort to CMP gathers (common $\mathbf{x}_{m}=\mathbf{x}_{s}+\mathbf{x}_{r} / 2$ ), extract every 50th - approx. 600 m between CMP locations

## Standard Processing

However the "locally layered" idea is approximately correct in many places in the world: CMPs change very slowly with midpoint $\mathbf{x}_{m}=\left(\mathbf{x}_{r}+\mathbf{x}_{s}\right) / 2$.

## Standard Processing



39 consecutive CMP gathers (1002-1040), distance between values of $\mathbf{x}_{m}=12.5 \mathrm{~m}$

Standard processing: treat each CMP as if it were the result of an experiment performed over a layered medium, but permit the layers to vary with midpoint (!).

Thus $v=v(z), r=r(z)$ for purposes of analysis, but at the end $v=v\left(\mathbf{x}_{m}, z\right), r=r\left(\mathbf{x}_{m}, z\right)$.

$$
F[v] r\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)
$$

$\simeq \int d x \frac{2 r(z)}{v^{2}(z)} a\left(\mathbf{x}, x_{r}\right) a\left(\mathbf{x}, x_{s}\right) \delta^{\prime \prime}\left(t-\tau\left(\mathbf{x}, x_{r}\right)-\tau\left(\mathbf{x}, x_{s}\right)\right)$

$$
\begin{gathered}
=\int d z \frac{2 r(z)}{v^{2}(z)} \int d \omega \int d x \omega^{2} a\left(\mathbf{x}, x_{r}\right) a\left(\mathbf{x}, x_{s}\right) \\
\times e^{i \omega\left(t-\tau\left(\mathbf{x}, x_{r}\right)-\tau\left(\mathbf{x}, x_{s}\right)\right)}
\end{gathered}
$$

Since we have already thrown away smoother (lower frequency) terms, do it again using stationary phase.

Upshot (see 2000 MGSS notes for details): up to smoother (lower frequency) error,

$$
F[v] r(h, t) \simeq A(z(h, t), h) R(z(h, t))
$$

Here $z(h, t)$ is the inverse of the 2-way traveltime

$$
t(h, z)=2 \tau((h, 0, z),(0,0,0))
$$

i.e. $z\left(t\left(h, z^{\prime}\right), h\right)=z^{\prime}$.
$R$ is (yet another version of) "reflectivity"

$$
R(z)=\frac{1}{2} \frac{d r}{d z}(z)
$$

That is, $F[v]$ is a derivative followed by a change of variable followed by multiplication by a smooth function.

## Anatomy of an adjoint

$$
\begin{gathered}
\int d t \int d h d(t, h) F[v] r(t, h) \\
=\int d t \int d h d(t, h) A(z(t, h), h) R(z(t, h)) \\
=\int d z R(z) \int d h \frac{\partial t}{\partial z}(z, h) A(z, h) d(t(z, h), h) \\
=\int d z r(z)\left(F[v]^{*} d\right)(z)
\end{gathered}
$$

## Anatomy of an adjoint

so $F[v]^{*}=-\frac{\partial}{\partial z} S M[v] N[v]$, where

- $N[v]=\mathbf{N M O}$ operator

$$
N[v] d(z, h)=d(t(z, h), h)
$$

- $M[v]=$ multiplication by $\frac{\partial t}{\partial z} A$
- $S=$ stacking operator $\operatorname{Sf}(z)=\int d h f(z, h)$
$F[v]^{*} F[v] r(z)=-\frac{\partial}{\partial z}\left[\int d h \frac{d t}{d z}(z, h) A^{2}(z, h)\right] \frac{\partial}{\partial z} r(z)$
Microlocal property of PDOs $\Rightarrow$
$W F\left(F[v]^{*} F[v] r\right) \subset W F(r)$ i.e.
$F[v]^{*}$ is an imaging operator
If you leave out the amplitude factor $(M[v])$ and the derivatives, as is commonly done, then you get essentially the same expression - so (NMO, stack) is an imaging operator!

Particularly nice transformation: define $t_{0}=$ two-way vertical travel time for $z$ (depth):

$$
t_{0}(z)=2 \int_{0}^{z} \frac{1}{v}
$$

and its inverse function $z_{0}$

RMS (or NMO) velocity:

$$
\bar{v}\left(t_{0}\right)^{2}=\frac{1}{t_{0}} \int_{0}^{t_{0}} d \tau v\left(z_{0}(\tau)\right)^{2}
$$

Then ("Dix's formula") $\bar{t}\left(t_{0}, h\right)=t\left(z_{0}\left(t_{0}\right), h\right)$

$$
=\sqrt{t_{0}^{2}+4 h^{2} / \bar{v}^{2}\left(t_{0}\right)}+O\left(h^{4}\right)
$$

which is exactly what the constant-v formula would be, if $\bar{v}$ were constant - hyperbolic moveout

Exercise: Prove this [hint: use eikonal, presumed symmetry of $t(z, h)$ to derive ODE for $\partial^{2} t / \partial h^{2}(z, 0)$, solve]

NMO operator (as usually construed):

$$
\bar{N}[\bar{v}] d\left(t_{0}, h\right)=d\left(\bar{t}\left(t_{0}, h\right), h\right)
$$

Now make everything dependent on $\mathbf{x}_{m}$ and you've got standard processing.
[LIVE DEMO - Mobil AVO data, Seismic Unix]

An interesting observation: if $d(t, h)$ conforms to the layered etc. etc. approximation, i.e.

$$
d(t, h)=F[v] r(t, h)
$$

then
$N[v] d(z, h)=d(t(z, h), h)=$ (amplitude factor $\times r(z)$
i.e. except for the amplitude factor, this part of $F[v]^{*}$ produces function independent of $h$ amplitude is smooth, $r$ is oscillatory, should be obvious

Similar if use $t_{0}$ as depth variable instead of $z$

## Example: apply NMO operator $N[v]$ to CMP 1040 from Mobil AVO data:






Upshot: if $v$ (or $\bar{v}$ ) chosen "well" (matching trend of velo in earth?), then NMO output is mostly indep of $h=$ flat
$\Rightarrow$ method for determining $v$ (and $r$ ) - velocity analysis

Sounds like voodoo - what does it have to do with inversion?

Stay tuned!
2. Linearization, High frequency Asymptotics and Imaging

### 2.1 Linearization

2.2 Linear and Nonlinear Inverse Problems
2.3 High Frequency Asymptotics
2.4 Geometric Optics
2.5 Interesting Special Cases
2.6 Asymptotics and Imaging

## Multioffset ("Prestack") Inversion, après

 BeylkinIf $d=F[v] r$, then

$$
F[v]^{*} d=F[v]^{*} F[v] r
$$

In the layered case, $F[v]^{*} F[v]$ is an operator which preserves wave front sets. Whenever $F[v]^{*} F[v]$ preserves wave front sets, $F[v]^{*}$ is an imaging operator.

## Multioffset ("Prestack") Inversion, après

## Beylkin

Beylkin, JMP 1985: for $r$ supported in simple geometric optics domain,

- $W F\left(F_{\delta}[v]^{*} F_{\delta}[v] r\right) \subset W F(r)$
- if $S^{\text {obs }}=S[v]+F_{\delta}[v] r$ (data consistent with linearized model), then $F_{\delta}[v]^{*}\left(S^{\text {obs }}-S[v]\right)$ is an image of $r$
- an operator $F_{\delta}[v]^{\dagger}$ exists for which $F_{\delta}[v]^{\dagger}\left(S^{\text {obs }}-S[v]\right)-r$ is smoother than $r$, under some constraints on $r$ - an inverse modulo smoothing operators or parametrix.


## Outline of proof

Express $F[v]^{*} F[v]$ as "Kirchhoff modeling" followed by "Kirchhoff migration"; (ii) introduce Fourier transform; (iii) approximate for large wavenumbers using stationary phase, leads to representation of $F[v]^{*} F[v]$ modulo smoothing error as pseudodifferential operator ("WDO"):
$F[v]^{*} F[v] r(\mathbf{x}) \simeq p(\mathbf{x}, D) r(\mathbf{x}) \equiv \int d \xi p(\mathbf{x}, \boldsymbol{\xi}) e^{i \mathbf{x} \cdot \boldsymbol{\xi}} \hat{\hat{r}}(\boldsymbol{\xi})$

## Outline of proof

$F[v]^{*} F[v] r(\mathbf{x}) \simeq p(\mathbf{x}, D) r(\mathbf{x}) \equiv \int d \xi p(\mathbf{x}, \boldsymbol{\xi}) e^{i \mathbf{x} \cdot \boldsymbol{\xi}} \hat{\hat{r}}(\boldsymbol{\xi})$
symbol $p \in C^{\infty}$ : for some $m \in \mathbf{R}$, all multiindices
$\alpha, \beta$, and all compact $K \subset \mathbf{R}^{n}$, there exist
$C_{\alpha, \beta, K} \geq 0$ for which

$$
\left|D_{\mathbf{x}}^{\alpha} D_{\boldsymbol{\xi}}^{\beta} p(\mathbf{x}, \boldsymbol{\xi})\right| \leq C_{\alpha, \beta, K}(1+|\boldsymbol{\xi}|)^{m-|\beta|}, \mathbf{x} \in K
$$

order of $p$ is inf of all such $m$ (or $-\infty$ if there is none)

## Outline of proof

Explicit computation of symbol $p$ of $F[v]^{*} F[v]$ in terms of rays, amplitudes - for details, see WWS: Math Foundations.
[Symbol in terms of operator ( $m=$ order): for $\phi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$

$$
p(\mathbf{x}, \boldsymbol{\xi}) \phi(\mathbf{x})=e^{i \mathbf{x} \cdot \boldsymbol{\xi}} p(\mathbf{x}, D) e^{-i \mathbf{x} \cdot \boldsymbol{\xi}} \phi(\mathbf{x})+O\left(|\boldsymbol{\xi}|^{m-1}\right)
$$

- will return to this fact!]


## Microlocal Property of $\Psi D O s$

$$
\begin{aligned}
& \text { if } p(x, D) \text { is a } \Psi D O, u \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right) \text { then } \\
& W F(p(x, D) u) \subset W F(u) \text {. }
\end{aligned}
$$

Will prove this; imaging property of prestack Kirchhoff migration follows.

## Microlocal Property of $\Psi D O s$

First, a few other properties:

- differential operators are $\Psi$ DOs (easy exercise)
- $\Psi$ DOs of order $m$ form a module over $C^{\infty}\left(\mathbf{R}^{n}\right)$ (also easy)
- product of $\Psi$ DO order $m, \Psi$ DO order $I=$ $\Psi$ DO order $\leq m+l$; adjoint of $\Psi$ DO order $m$ is $\Psi$ DO order $m$ (much harder)

Complete accounts of theory, many apps: books of Duistermaat, Taylor, Nirenberg, Treves, Hörmander.

## Proof of Microlocal Property

Suppose $\left(\mathrm{x}_{0}, \boldsymbol{\xi}_{0}\right) \notin W F(u)$, choose neighborhoods $X$, 三 as in defn, with $\equiv$ conic. Need to choose analogous nbhds for $P(x, D) u$. Pick $\delta>0$ so that $B_{3 \delta}\left(\mathbf{x}_{0}\right) \subset X$, set $X^{\prime}=B_{\delta}\left(\mathbf{x}_{0}\right)$.

Similarly pick $0<\epsilon<1 / 3$ so that $B_{3 \epsilon}\left(\xi_{0} /\left|\xi_{0}\right|\right) \subset$ 三, and chose $\Xi^{\prime}=\left\{\tau \boldsymbol{\xi}: \boldsymbol{\xi} \in B_{\epsilon}\left(\boldsymbol{\xi}_{0} /\left|\boldsymbol{\xi}_{0}\right|\right), \tau>0\right\}$.

Need to choose $\phi \in C_{0}^{\infty}\left(X^{\prime}\right)$, estimate $\left.\phi \widehat{P(\mathbf{x}, D}\right) u$. Choose $\psi \in \mathcal{E}(X)$ so that $\psi \equiv 1$ on $B_{2 \delta}\left(\mathbf{x}_{0}\right)$.

NB: this implies that if $\mathbf{x} \in X^{\prime}, \psi(\mathbf{y}) \neq 1$ then $|\mathbf{x}-\mathbf{y}| \geq \delta$.

Write $u=(1-\psi) u+\psi u$. Claim: $\phi P(\mathbf{x}, D)((1-\psi) u)$ is smooth.

$$
\begin{gathered}
\phi(\mathbf{x}) P(\mathbf{x}, D)((1-\psi) u))(\mathbf{x}) \\
=\phi(\mathbf{x}) \int d \xi P(\mathbf{x}, \boldsymbol{\xi}) e^{i \mathbf{x} \cdot \boldsymbol{\xi}} \int d y(1-\psi(\mathbf{y})) u(\mathbf{y}) e^{-i \mathbf{y} \cdot \boldsymbol{\xi}} \\
=\int d \xi \int d y P(\mathbf{x}, \boldsymbol{\xi}) \phi(\mathbf{x})(1-\psi(\mathbf{y})) e^{i(\mathbf{x}-\mathbf{y}) \cdot \boldsymbol{\xi}} u(\mathbf{y})
\end{gathered}
$$

$$
=\int d \xi \int d y\left(-\nabla_{\xi}^{2}\right)^{M} P(\mathbf{x}, \boldsymbol{\xi}) \phi(\mathbf{x})(1-\psi(\mathbf{y}))|\mathbf{x}-\mathbf{y}|^{-2 M}
$$

$$
\times e^{i(\mathrm{x}-\mathrm{y}) \cdot \boldsymbol{\xi}} u(\mathbf{y})
$$

using the identity

$$
e^{i(\mathbf{x}-\mathbf{y}) \cdot \boldsymbol{\xi}}=|\mathbf{x}-\mathbf{y}|^{-2}\left[-\nabla_{\xi}^{2} e^{i(\mathbf{x}-\mathbf{y}) \cdot \boldsymbol{\xi}}\right]
$$

and integrating by parts $2 M$ times in $\boldsymbol{\xi}$. This is permissible because
$\phi(\mathbf{x})(1-\psi(\mathbf{y})) \neq 0 \Rightarrow|\mathbf{x}-\mathbf{y}|>\delta$.

According to the definition of $\Psi D O$,

$$
\left|\left(-\nabla_{\xi}^{2}\right)^{M} P(\mathbf{x}, \boldsymbol{\xi})\right| \leq C|\boldsymbol{\xi}|^{m-2 M}
$$

For any $K$, the integral thus becomes absolutely convergent after $K$ differentiations of the integrand, provided $M$ is chosen large enough. Q.E.D. Claim.

This leaves us with $\phi P(\mathbf{x}, D)(\psi u)$. Pick $\eta \in \Xi^{\prime}$ and w.l.o.g. scale $|\eta|=1$.

## Fourier transform:

$$
\begin{gathered}
\phi P(\widehat{\mathbf{x}, D)}(\psi u)(\tau \eta) \\
=\int d x \int d \xi P(\mathbf{x}, \boldsymbol{\xi}) \phi(\mathbf{x}) \hat{\psi} u(\xi) \\
\times e^{i \mathbf{x} \cdot\left(\boldsymbol{\xi}_{-\tau \eta}\right)}
\end{gathered}
$$

Introduce $\tau \theta=\xi$, and rewrite this as

$$
=\tau^{n} \int d x \int d \theta P(\mathbf{x}, \tau \theta) \phi(\mathbf{x}) \hat{\psi} u(\tau \theta) e^{i \tau \mathbf{x} \cdot(\theta-\eta)}
$$

Divide the domain of the inner integral into $\{\theta:|\theta-\eta|>\epsilon\}$ and its complement. Use

$$
-\nabla_{x}^{2} e^{i \tau x \cdot(\theta-\eta)}=\tau^{2}|\theta-\eta|^{2} e^{i \tau x \cdot(\theta-\eta)}
$$

Integrate by parts $2 M$ times to estimate the first integral:

$$
\begin{aligned}
\tau^{n-2 M} \mid \int d x & \int_{|\theta-\eta|>\epsilon} d \theta\left(-\nabla_{x}^{2}\right)^{M}[P(\mathbf{x}, \tau \theta) \phi(\mathbf{x})] \hat{\psi} u(\tau \theta) \\
& \times|\theta-\eta|^{-2 M} e^{i \tau \mathbf{x} \cdot(\theta-\eta)} \mid
\end{aligned}
$$

$$
\leq C \tau^{n+m-2 M}
$$

$m$ being the order of $P$. Thus the first integral is rapidly decreasing in $\tau$.

For the second integral, note that
$|\theta-\eta| \leq \epsilon \Rightarrow \theta \in \Xi$, per the defn of $\Xi^{\prime}$. Since $X \times$ 三 is disjoint from the wavefront set of $u$, for a sequence of constants $C_{N},|\hat{\psi} u(\tau \theta)| \leq C_{N} \tau^{-N}$ uniformly for $\theta$ in the (compact) domain of integration, whence the second integral is also rapidly decreasing in $\tau$. Q. E. D.

And that's why migration works, at least in the simple geometric optics regime.

## An Example

In what sense can this work with "bandlimited" ( $w \neq \delta$ ) data?
$F[v]^{*} F[v] r$ then does not have any singularities, even if $r$ does, so no wave front set.

Answer: "ghost of departed wavefront set": as $w \rightarrow \delta, F[v]^{*} F[v] r \rightarrow$ a distribution with wavefront set $\subset W F(r)$.

## An Example

Marmousi $c^{2}$

williamsymes, Tue Aug 6 08:11

## An Example

Marmousi $v^{2}$

williamsymes, Tue Aug 6 08:10

## An Example

Marmousi $\delta\left(c^{2}\right)=2 v r$

williamsymes, Wed Aug 706:53

## An Example

## Marmousi $F[v]^{*} F[v] r$



## Symbol and Spectrum

Recall that for $p(x, D)$ of order $m, \phi \in C_{0}^{\infty}\left(\mathbf{R}^{n}\right)$,

$$
p(\mathbf{x}, \boldsymbol{\xi}) \phi(\mathbf{x})=e^{i \mathbf{x} \cdot \boldsymbol{\xi}} p(\mathbf{x}, D) e^{-i \mathbf{x} \cdot \boldsymbol{\xi}} \phi(\mathbf{x})+O\left(|\boldsymbol{\xi}|^{m-1}\right)
$$

Exercise: give a proof in case $p(x, D)$ is differential op of order m

Double Bonus Exercise: give a proof

## Symbol and Spectrum

Exercise: Write an application using Pysit to approximate the symbol of $F[v]^{*} F[v]$ at $(\mathbf{x}, \boldsymbol{\xi}) \in T^{*} X$

## Symbol and Spectrum

Special class of symbols: those with asymptotic expansions

$$
p(\mathbf{x}, \boldsymbol{\xi})=\sum_{l \in \mathbf{N}} p_{m-l}(\mathbf{x}, \boldsymbol{\xi})
$$

in which $p_{k}$ is a symbol, positively homogeneous in $\boldsymbol{\xi}$ of order $k$.

Consequence of a theorem of Borel: any such asymptotic series defines a symbol

## Symbol and Spectrum

Fact: $F[v]^{*} F[v]$ is a $\Psi D O$ whose symbol has an asymptotic expansion (assuming simple ray geometry)

Principal symbol $=$ leading order term $p_{m}$
$p$ is microlocally elliptic in a open conic nbhd $\Gamma$ of $\left(\mathbf{x}_{0}, \boldsymbol{\xi}_{0}\right)$ if $p_{m} \neq 0$ in $\Gamma$ : in any closed subnbhd $\Gamma_{0} \subset \Gamma$, there is $K>0$ so that for $(\mathbf{x}, \xi) \in \Gamma_{0}$,

$$
\left|p_{m}(\mathbf{x}, \xi)\right| \geq K|\xi|^{m}
$$

## Symbol and Spectrum

Assume $p$ microlocally elliptic at $\left(\mathbf{x}_{0}, \boldsymbol{\xi}_{0}\right)$,
$\phi \in C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ supported near $\mathbf{x}_{0}$ - then
$p(\mathbf{x}, D) e^{-i \mathbf{x} \cdot \boldsymbol{\xi}_{0}} \phi(\mathbf{x})=p_{m}\left(\mathbf{x}, \boldsymbol{\xi}_{0}\right) e^{-i \mathbf{x} \cdot \boldsymbol{\boldsymbol { \xi } _ { 0 }}} \phi(\mathbf{x})+O\left(\left|\boldsymbol{\xi}_{0}\right|^{m-1}\right)$
and remainder is rel. small for large $\boldsymbol{\xi}_{0} \Rightarrow$ localized oscillatory "approximate eigenfunction"

Much more precise results available (eg.
Demanet-Ying) - connect principal symbol to spectra of operators defined by $\Psi$ DO

## Asymptotic Prestack Inversion

Recall: in layered case,

$$
\begin{gathered}
F[v] r(h, t) \simeq A(z(h, t), h) \frac{1}{2} \frac{d r}{d z}(z(h, t)) \\
F[v]^{*} d(z) \simeq-\frac{\partial}{\partial z} \int d h A(z, h) \frac{\partial t}{\partial z}(z, h) d(t(z, h), h) \\
F[v]^{*} F[v]=-\frac{\partial}{\partial z}\left[\int d h \frac{d t}{d z}(z, h) A^{2}(z, h)\right] \frac{\partial}{\partial z}
\end{gathered}
$$

In particular, the normal operator $F[v]^{*} F[v]$ is an elliptic PDO.
$\Rightarrow$ normal operator is asymptotically invertible
approximate least-squares solution to $F[v] r=d$ :

$$
\tilde{r} \simeq\left(F[v]^{*} F[v]\right)^{-1} F[v]^{*} d
$$

Relation between $r$ and $\tilde{r}$ : difference is smoother than either. Thus difference is small if $r$ is oscillatory - consistent with conditions under which linearization is accurate.

Analogous construction in prestack simple geometric optics case: due to Beylkin (1985).

Complication: $F[v]^{*} F[v]$ cannot be invertible $W F\left(F[v]^{*} F[v] r\right)$ generally quite a bit "smaller" than $W F(r)$.

## Inversion aperture

$\Gamma[v] \subset \mathbf{R}^{3} \times \mathbf{R}^{3} \backslash\{\mathbf{0}\}:$
$W F(r) \subset \Gamma[v] \Rightarrow W F\left(F[v]^{*} F[v] r\right)=W F(r)$
$\Rightarrow F[v]^{*} F[v]$ "acts invertible"
$(\mathbf{x}, \boldsymbol{\xi}) \in \Gamma[v] \Leftrightarrow F[v]^{*} F[v]$ microlocally elliptic at ( $\mathbf{x}, \boldsymbol{\xi}$ )

Ray-geometric construction of $\Gamma[v]$ - later!

## Inversion aperture

Beylkin: with proper choice of amplitude $b\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)$, the integral operator (modification of the integral representation of $F^{*}$ )

$$
F[v]^{\dagger} d(\mathbf{x})=
$$

$\iiint d x_{r} d x_{s} d t b\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right) \delta\left(t-\tau\left(\mathbf{x} ; \mathbf{x}_{s}\right)-\tau\left(\mathbf{x} ; \mathbf{x}_{r}\right)\right)$

$$
\times d\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)
$$

yields $F[v]^{\dagger} F[v] r \simeq r$ if $W F(r) \subset \Gamma[v]$

For details of Beylkin construction: Beylkin, 1985; Miller et al 1989; Bleistein, Cohen, and Stockwell 2000; WWS Math Foundations, MGSS notes 1998. All components are by-products of eikonal solution.
aliases for numerical implementation: Generalized Radon Transform ("GRT") inversion, Ray-Born inversion, migration/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop, Lambaré,...

Apparent limitation: construction relies on simple geometric optics (no multipathing) - how much of this can be rescued?

## An Example, cont'd

Apparently, quite a bit.
Marmousi (even smoothed v) generates many conjugate points, multipaths, caustics...

## An Example, cont'd



## An Example, cont'd

 yet $F[v]^{*} F[v] r$ is a good "image"...

## An Example, cont'd

 of $r$

## An Example, cont'd

Of course $F[v]^{*} F[v] r$ just an "image"
Computation of $F[v]^{\dagger} F[v] r$ - not necessarily by integral representation - should restore amplitudes

## An Example, cont'd

Inversion by iterative solution of

$$
\min _{r}\|F[v] r-(d-\mathcal{F}[v])\|^{2}
$$

- 60 shots, 10 Hz Ricker; 96 receivers 25 m spacing (classic IFP geometry, subsampled)
- 2-4 FD scheme, 24 m grid
- 50 conjugate gradient iterations
- reduces obj fcn to $20 \%$ of its initial value $\left(\|d-\mathcal{F}[v]\|^{2}\right)$


## An Example, cont'd

## reasonably good recovery...



## An Example, cont'd

 of $r$ (same grey scale!)
williamsymes, Wed Aug 706:53


Example of GRT Inversion (application of $F[v]^{\dagger}$ ): K. Araya (1995), "2.5D" inversion of marine streamer data from Gulf of Mexico: 500 source positions, 120 receiver channels, 750 Mb .

