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Linearization

All useful technology relies somehow on linearization
(aka perturbation theory, Born approximation,...):
write c = v(1 + r), r = relative first order
perturbation about v ⇒ perturbation of pressure
field δp = ∂δu

∂t = 0, t ≤ 0,(
1

v 2

∂2

∂t2
−∇2

)
δu =

2r

v 2

∂2u

∂t2

linearized forward map F :

F [v ]r = δp|Σ×[0,T ]



Linearization in theory

Recall Lions-Stolk result: if log c ∈ L∞(Ω) (ρ = 1!)
and f ∈ L2(Ω× [0,T ]), then weak solution has
finite energy, i.e.

u = u[c] ∈ C 1([0,T ], L2(Ω)) ∩ C 0([0,T ],H1
0 (Ω))

Suppose δc ∈ L∞(Ω), define δu by solving
perturbational problem: set v = c , r = δc/c .



Linearization in theory

Stolk (2000): for δc ∈ L∞(Ω), small enough h ∈ R,

‖u[c + hδc]− u[c]− δu‖C 0([0,T ],L2(Ω)) = o(h)

Note “loss of derivative”: error in Newton quotient
is o(1) in weaker norm than that of space of weak
solns



Linearization in theory

Implication for F [c]: under suitable circumstances
(c = const. near Σ - “marine” case),

‖F [c]‖L2(Σ×[0,T ]) = O(‖w‖L2(R))

but

‖F [v(1+r)]−F [v ]−F [v ]r‖L2(Σ×[0,T ]) = O(‖w‖H1(R))

and these estimates are both sharp



Linearization in practice

Physical intuition, numerical simulation, and not
nearly enough mathematics: linearization error

F [v(1 + r)]−F [v ]− F [v ]r

I small when v smooth, r rough or oscillatory on
wavelength scale - well-separated scales

I large when v not smooth and/or r not
oscillatory - poorly separated scales



Linearization in practice

Illustration: 2D finite difference simulation: shot
gathers with typical marine seismic geometry.
Smooth (linear) v(x , z), oscillatory (random) r(x , z)
depending only on z(“layered medium”). Source
wavelet w(t) = bandpass filter.
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Left: c = v(1 + r). Std dev of r = 5%.
Right: Simulated seismic response (F [v(1 + r)]),
wavelet = bandpass filter 4-10-30-45 Hz. Simulator
is (2,4) finite difference scheme.
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Decomposition of model in previous slide as smooth
background (left, v(x , z)) plus rough perturbation
(right, r(x , z)).
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Left: Simulated seismic response of smooth model
(F [v ]),
Right: Simulated linearized response, rough
perturbation of smooth model (F [v ]r)
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Left: Simulated seismic response of rough model
(F [0.95v + r ]),
Right: Simulated linearized response, smooth
perturbation of rough model
(F [0.95v + r ]((0.05v)/(0.95v + r)))
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Summary
For the same pulse w ,

I v smooth, r oscillatory ⇒ F [v ]r approximates
primary reflection = result of one-time
wave-material interaction (single scattering);
error = multiple reflections, “not too large”
if r is “not too big”

I v nonsmooth, r smooth ⇒ error = time shifts
- very large perturbations since waves are
oscillatory.

For typical oscillatory w (‖w‖H1 >> ‖w‖L2), tends
to imply that in scale-separated case, effectively no
loss of derivative!

Math. justification available only in 1D (Lewis & S.,
1991)
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Velocity Analysis and Imaging

Velocity analysis problem = partially linearized
inverse problem: given d find v , r so that

F [v ] + F [v ]r ' d

Linearized inversion problem: given d and v , find
r so that

F [v ]r ' d −F [v ]

Imaging problem - relaxation of linearized inversion:
given d and v , find an image r of “reality” =
solution of linearized inversion problem



Velocity Analysis and Imaging

Last 20 years: mathematically speaking,

I much progress on imaging

I lots of progress on linearized inversion

I much less on velocity analysis

I none to speak of on nonlinear inversion

[Caveat: a lot of practical progress on nonlinear
inversion in the last 10 years!]



Velocity Analysis and Imaging

Interesting question: what’s an image?

“...I know it when I see it.” - Associate
Justice Potter Stewart, 1964
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Aymptotic assumption

Linearization is accurate ⇔ length scale of v >>
length scale of r ' wavelength, properties of F [v ]
dominated by those of Fδ[v ] (= F [v ] with w = δ).

[Implicit in migration concept (eg. Hagedoorn,
1954); explicit use: Cohen & Bleistein, SIAM JAM
1977.]

Key idea: reflectors (rapid changes in r) emulate
singularities; reflections (rapidly oscillating features
in data) also emulate singularities.



Aymptotic assumption

NB: “everybody’s favorite reflector”: the smooth
interface across which r jumps.

But this is an oversimplification - waves reflect at
complex zones of rapid change in rock mechanics,
pehaps in all directions. More flexible notion
needed!!



Wave Front Set

Paley-Wiener characterization of local smoothness
for distributions: u ∈ D′(Rn) is smooth at x0 ⇔ for
some nbhd X of x0, any χ ∈ C∞0 (X ) and N ∈ N,
any ξ ∈ Rn, |ξ| = 1,

|(̂χu)(τξ)| = O(τ−N), τ →∞

Proof (sketch): smooth at x0 means: for some nbhd
X , χu ∈ C∞0 (Rn) for any χ ∈ C∞0 (X ) ⇔ .

χ̂u(ξ) =

∫
dx e iξ·xχ(x)u(x)



Wave Front Set

=

∫
dx (1 + |ξ|2)−p[(I −∇2)pe iξ·x]χ(x)u(x)

= (1 + |ξ|2)−p
∫

dx e iξ·x[(I −∇2)pχ(x)u(x)]

whence

|χ̂u(ξ)| ≤ const.(1 + |ξ|2)−p

where the const. depends on p, χ and u. For any
N , choose p large enough, replace ξ ← τξ, get
desired ≤.



Wave Front Set

Harmonic analysis of singularities, après Hörmander:
the wave front set WF (u) ⊂ Rn × Rn \ 0 of
u ∈ D′(Rn) - captures orientation as well as position
of singularities - microlocal smoothness

(x0, ξ0) /∈ WF (u) ⇔, there is open nbhd
X × Ξ ⊂ Rn × Rn \ 0 of (x0, ξ0) so that for any
χ ∈ C∞0 (Rn), suppχ ⊂ X , N ∈ N, all ξ ∈ Ξ so that
|ξ| = |ξ0|,

|χ̂u(τξ)| = O(τ−N)



Housekeeping chores
(i) note that the nbhds Ξ may naturally be taken to
be cones

(ii) WF (u) is invariant under chg. of coords - as
subset of the cotangent bundle T ∗(Rn) (i.e. the ξ
components transform as covectors).

(iii) Standard example: if u jumps across the
interface φ(x) = 0, otherwise smooth, then
WF (u) ⊂ Nφ = {(x, ξ) : φ(x) = 0, ξ||∇φ(x)}
(normal bundle of φ = 0)

[Good refs for basics on WF: Duistermaat, 1996;
Taylor, 1981; Hörmander, 1983]



Housekeeping chores

Proof of (ii): follows from

(iv) Basic estimate for oscillatory integrals: suppose
that ψ ∈ C∞(Rn),∇ψ(x0) 6= 0,
(x0,−∇ψ(x0)) /∈ WF (u). Then for any
χ ∈ C∞0 (Rn) supported in small enough nbhd of x0,
and any N ∈ N,∫

dx e iτψ(x)χ(x)u(x) = O(τ−N), τ →∞



Housekeeping chores
Proof of (iv): choose nbhd X × Ξ of (x0,−∇ψ(x0))
as in definition: conic, i.e.
(x, ξ) ∈ X × Ξ⇒ (x, τξ) ∈ X × Ξ, τ > 0.

Choose a ∈ C∞(Rn \ {0}) homogeneous of degree 0
(a(ξ) = a(ξ/|ξ|)) for |ξ| > 1 so that a(ξ) = 0 if
ξ /∈ Ξ or |ξ| ≤ 1/2, a(ξ) = 1 if |ξ| > 1 and
ξ ∈ Ξ1 ⊂ Ξ, another conic nbhd of −∇ψ(x0).

Pick χ1 ∈ C∞0 (Rn) st χ1 ≡ 1 on suppχ, and write

χ(x)u(x) = χ1(x)(2π)−n
∫

dξ e ix·ξχ̂u(ξ)



Housekeeping chores

= χ1(x)(2π)−n
∫

dξ e ix·ξg1(ξ)

+χ1(x)(2π)−n
∫

dξ e ix·ξg2(ξ)

in which g1 = aχ̂u, g2 = (1− a)χ̂u



Housekeeping chores

So ∫
dx e iτψ(x)χ(x)u(x)

=
∑
j=1,2

∫
dx

∫
dξ e i(τψ(x)+x·ξ)χ1(x)gj(ξ)



Housekeeping chores

For ξ ∈ supp(1− a) (excludes a conic nbhd of
−∇ψ(x0)), can write

e i(τψ(x)+x·ξ)

= [−i |τ∇ψ(x) + ξ|−2(τ∇ψ(x) + ξ) ·∇]pe i(τψ(x)+x·ξ)



Housekeeping chores

Can guarantee that |τ∇ψ(x) + ξ| > 0 by choosing
suppχ1 suff. small, so that in dom. of integration
∇ψ(x) is close to ∇ψ(x0). In fact, for
ξ ∈ supp(1− a), suppχ1 small enough, and
x ∈ suppχ1,

|τ∇ψ(x) + ξ| > Cτ

for some C > 0. Exercise: prove this!



Housekeeping chores

Substitute and integrate by parts, use above
estimate to get∣∣∣∣∫ dx

∫
dξ e i(τψ(x)+x·ξ)χ1(x)g2(ξ)

∣∣∣∣ ≤ const.τ−N

for any N .

Note that for ξ ∈ suppa,

|χ̂u(ξ)| ≤ const.|ξ|−p

for any p (with p-dep. const, of course!).



Housekeeping chores

Follows that

h(x) =

∫
dξ e ix·ξg1(ξ)

converges absolutely, also after differentiating any
number of times under the integral sign.



Housekeeping chores

therefore h ∈ C∞(Rn), whence∫
dx

∫
dξ e i(τψ(x)+x·ξ)χ1(x)g1(ξ)

=

∫
dx e iτψ(x)χ1(x)h(x)



Housekeeping chores

with integrand supported as near as you like to x0.
Since ∇ψ(x0) 6= 0, same is true of suppχ1 provided
this is chosen small enough; now use

e iτψ(x) = τ−p(−i |∇ψ(x)|−2∇ψ(x) · ∇)pe iτψ(x)

and integration by parts again to show that this
term is also O(τ−N) any N .



Housekeeping chores

Proof of (ii), for u integrable (Exercise: formulate
and prove similar statement for distributions)

Equivalent statement: suppose that Φ : U → Rn is
a diffeomorphism on an open U ⊂ Rn,
suppu ⊂ Φ(U), x0 ∈ U , y0 = Φ(x0), and
(y0, η0) /∈ WF (u).

Claim: then (x0, ξ0) /∈ WF (u ◦ Φ), where
ξ0 = DΦ(x0)Tη0.



Housekeeping chores
Need to show that if χ ∈ C∞0 (Rn), x0 ∈ suppχ and

small enough, then χ̂u ◦ Φ(τξ) = O(τ−N) any N
for ξ conically near ξ0. From the
change-of-variables formula

χ̂u ◦ Φ(τξ) =

∫
dxχ(x)(u ◦ Φ)(x)e iτx·ξ

=

∫
dy (χ ◦ Φ−1)(y)u(y)e iτξ·Φ

−1(y) detD(Φ−1)(y)

Set j = χ ◦ Φ−1detD(Φ−1). Note: j ∈ C∞0 (Rn)
supported in nbhd V of y0 if χ supported in
Φ−1(V).



Housekeeping chores
MVT: for y close enough to y0,

Φ−1(y) = x0 +

∫ 1

0

dσDΦ−1(y0 + σ(y− y0))(y− y0)

Insert in exponent to get

χ̂u ◦ Φ(τξ) = e iτx0·ξ
∫

dy j(y)u(y)e
iτψξ(y)

where

ψξ(y) = (y − y0) ·
∫ 1

0

dσDΦ−1(y0 + σ(y − y0))Tξ



Housekeeping chores

Since
∇ψξ(y0) = DΦ−1(y0)ξ

claim now follows from basic thm on oscillatory
integrals.



Housekeeping chores

Proof of (iii): Function of compact supp, jumping
across φ = 0

u = χH(φ)

with χ smooth, H = Heaviside function
(H(t) = 1, t > 0 and H(t) = 0, t < 0).

Pick x0 with φ(x0) = 0. Surface φ = 0 regular near
x0 if ∇φ(x0) 6= 0 - assume this.



Housekeeping chores

Suffices to consider case of χ ∈ C∞0 (Rn) of small
support cont’g x0. Inverse Function Thm ⇒ exists
diffeo Φ mapping nbhd of x0 to nbhd of 0 so that
Φ(x0) = 0 and Φ1(x) = φ(x). Fact (ii) ⇒ reduce to
case φ(x) = x1 - Exercise: do this special case!



Wavefront set of a jump discontinuity

H(

)=0

φ

φ

=0φ

φ)=1

>0

<0

φH(

ξ
x

WF (H(φ)) = {(x, ξ) : φ(x) = 0, ξ||∇φ(x)}



Formalizing the reflector concept

Key idea, restated: reflectors (or “reflecting
elements”) will be points in WF (r). Reflections will
be points in WF (d).

These ideas lead to a usable definition of image: a
reflectivity model r̃ is an image of r if
WF (r̃) ⊂ WF (r) (the closer to equality, the better
the image).



Formalizing the reflector concept

Idealized migration problem: given d (hence
WF (d)) deduce somehow a function which has the
right reflectors, i.e. a function r̃ with
WF (r̃) ' WF (r).

NB: you’re going to need v ! (“It all depends on
v(x,y,z)” - J. Claerbout)



Microlocal property of differential
operators

P(x,D) =
∑
|α|≤m

aα(x)Dα

D = (D1, ...,Dn), Di = −i ∂
∂xi

α = (α1, ..., αn), |α| =
∑
i

αi ,

Dα = Dα1

1 ...Dαn
n



Microlocal property of differential
operators

Suppose u ∈ D′(Rn), (x0, ξ0) /∈ WF (u), and
P(x,D) is a partial differential operator:

Then (x0, ξ0) /∈ WF (P(x,D)u)

That is, WF (Pu) ⊂ WF (u).



Proof

Choose X × Ξ as in the definition, φ ∈ D(X ) form
the required Fourier transform∫

dx e ix·(τξ)φ(x)P(x,D)u(x)

and start integrating by parts: eventually...



Proof

=
∑
|α|≤m

τ |α|ξα
∫

dx e ix·(τξ)φα(x)u(x)

where φα ∈ D(X ) is a linear combination of
derivatives of φ and the aαs. Since each integral is
rapidly decreasing as τ →∞ for ξ ∈ Ξ, it remains
rapidly decreasing after multiplication by τ |α|, and
so does the sum. Q. E. D.
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Integral representation of linearized
operator

With w = δ, acoustic potential u is same as Causal
Green’s function G (x, t; xs) = retarded fundamental
solution:(

1

v 2

∂2

∂t2
−∇2

)
G (x, t; xs) = δ(t)δ(x− xs)

and G ≡ 0, t < 0. Then (w = δ!) p = ∂G
∂t ,

δp = ∂δG
∂t , and(

1

v 2

∂2

∂t2
−∇2

)
δG (x, t; xs) =

2

v 2(x)

∂2G

∂t2
(x, t; xs)r(x)



Integral representation of linearized
operator

Simplification: from now on, define F [v ]r = δG |x=xr
- i.e. lose a t-derivative. Duhamel’s principle ⇒

δG (xr , t; xs)

=

∫
dx

2r(x)

v(x)2

∫
ds G (xr , t − s; x)

∂2G

∂t2
(x, s; xs)



Add geometric optics...
Geometric optics approximation of G for smooth v :

G (x, t; xs) = a(x; xs)δ(t − τ(x; xs)) + R(x, t; xs)

where (a) traveltime τ(x; xs) solves eikonal equation

v |∇τ | = 1

τ(x; xs) ∼
r

v(xs)
, r = |x− xs | → 0

and (b) amplitude a(x; xs) solves transport equation

∇ · (a2∇τ) = 0; a ∼ 1

4πr
, r → 0



Add geometric optics...

Why should this seem reasonable: formally, for
constant v , G solves radiation problem for w = δ:

G (x, t; xs) =
δ
(
t − r

v

)
4πr

so GO approx holds with
τ(x; xs) = |x− xs |/v = r/v and a = (4πr)−1 - in
fact, it’s not an approximation (R=0)!

Exercise: Verify that τ , a as given here, satisfy the
eikonal and transport equation.



Add geometric optics...
Suppose

I v is const near x = xs (simplifying assumption
- can be removed)

I τ smooth & satisfies eikonal equation for
r > 0, = r/v(xs) for small r

I a smooth & satisfies transport equation for
r > 0, = 1/4πr for small r

Then

R(x, t; xs) = G (x, t; xs)− a(x; xs)δ(t − τ(x; xs))

is locally square-integrable



Add geometric optics...

(Hindsight!) Set

R1(x, t; xs) =

∫ t

0

dsR(x, s; xs)

Will show that

R1(·, ·; xs) ∈ C 1(R, L2(R3)) ∩ C 0(R,H1(R3))

which is sufficient.



Add geometric optics...

R1(x, t; xs) =

∫ t

0

dsG (x, s; xs)−a(x; xs)H(t−τ(x; xs))

Compute (
1

v 2

∂2

∂t2
−∇2

)
R1

Use calculus rules (why are these valid?). Expl:

∇aδ(t − τ) = (∇a)δ(t − τ)− a∇τδ′(t − τ)

(drop arguments for sake of space...)



Add geometric optics...

= δ(x− xs)H(t)− a

(
1

v 2
− |∇τ |2

)
δ′(t − τ)

+(2∇τ · ∇a +∇2τa)δ(t − τ)

+∇2aH(t − τ)



Add geometric optics...

Terms 2 & 3 vanish due to eikonal & transport -

= δ(x− xs)H(t)− δ(x− xs)H(t − τ) + smooth

= smooth

Quote Lions-Stolk result (++...) Q.E.D.



Add geometric optics...

Upshot: remainder R is more regular than the
leading term - approximation of leading singularity
or high frequency asymptotics



Local Geometric Optics

Main theorem of local geometric optics: if v is
smooth in a nbhd of xs , then there exists a (possibly
smaller) nbhd in which unique τ and a satisfying (a)
and (b) exist, and are smooth except as indicated at
r = 0.



Local Geometric Optics
Sketch of proof (“Hamilton-Jacobi theory”):

I basic ODE thm: solutions of IVP for
Hamilton’s Equations:

dX

dt
= ∇ΞH(X,Ξ);

dΞ

dt
= −∇XH(X,Ξ), ,

H(X,Ξ) = −1

2
[1− v 2(X)|Ξ|2]

X(0) = xs , v(xs)Ξ(0) = θ ∈ S2

I exponential polar coordinates: for x in nbhd of
xs , exist unique t,Ξ(0) so that X(t) = x: set
τ(x) = t



Local Geometric Optics

I for any trajectory X,Ξ of HE,
t 7→ H(X(t),Ξ(t)) is constant; for these
trajectories, IC ⇒ |Ξ(t)| = 1/v(X(t))

I dX/dt is parallel to ∇τ , in fact

I ∇τ(X(t)) = Ξ(t) ⇒
I τ solves eikonal eqn

Exercise: complete this sketch to produce a proof -
may assume v const near x = xs



Local Geometric Optics
Hint: the 2nd step is crucial.

Idea: initial data is (xs ,Ξ0) where Ξ0 lies on sphere
of radius 1/v(xs). Choose curve in sphere
parameterized by s ∈ R, passing through Ξ0 at
s = 0;

develop ODE for

t 7→
(
∂X

∂s
(t,Ξ0)

)T
∂X

∂t
(t,Ξ0)

init val = 0 ⇒ always = 0 ⇒ Ξ perp to level
surface of τ



Local Geometric Optics

Note: geometric optics ray t 7→ X(t) is geodesic of
Riemannian metric v−2

∑3
i=1 dxi ⊗ dxi

v smooth ⇒ distance to nearest conjugate point
> 0.



Numerics, and a caution
Numerical solution of eikonal, transport: ray tracing
(Lagrangian), various sorts of upwind finite
difference (Eulerian) methods. See eg. Sethian
book, WWS 1999 MGSS notes (online) for details.

For “random but smooth” v(x) with variance σ,
more than one connecting ray occurs as soon as the
distance is O(σ−2/3). Such multipathing is
invariably accompanied by the formation of a
caustic (White, 1982).

Upon caustic formation, the simple geometric optics
field description above is no longer correct (Ludwig,
1966).



A caustic example (1)
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sin1: velocity field

2D Example of strong refraction: Sinusoidal velocity
field v(x , z) = 1 + 0.2 sin πz

2 sin 3πx



A caustic example (2)
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sin1: rays with takeoff angles in range 1.41372 to 1.72788

Rays in sinusoidal velocity field, source point =
origin. Note formation of caustic, multiple rays to
source point in lower center.



The linearized operator as Generalized
Radon Transform

Assume: supp r contained in simple geometric
optics domain: each point reached by unique ray
from any source or receiver point

(y,x )+  (y,x )ττt=

x x

y

s

r s

r



The linearized operator as Generalized
Radon Transform

Then distribution kernel K of F [v ] is

K (xr , t, xs ; x) =

∫
ds G (xr , t−s; x)

∂2G

∂t2
(x, s; xs)

2

v 2(x)

'
∫

ds
2a(xr , x)a(x, xs)

v 2(x)
δ′(t−s−τ(xr , x))δ′′(s−τ(x, xs))



=
2a(x, xr)a(x, xs)

v 2(x)
δ′′(t − τ(x, xr)− τ(x, xs))

provided that

∇xτ(x, xr) +∇xτ(x, xs) 6= 0

⇔ velocity at x of ray from xs not negative of
velocity of ray from xr ⇔ no forward scattering.
[Gel’fand and Shilov, 1958 - when is pullback of
distribution again a distribution?].



Q: What does ' mean?

A: It means “differs by something smoother”.

In theory: develop R in series of terms of decreasing
order of singularity

asymptotic: G - sum of N terms ∈ CN−2

In practice, first term suffices (can formalize this
with modification of wavefront set defn).



GRT = “Kirchhoff” modeling
supp r ⊂ simple geometric optics domain ⇒

δG (xr , t; xs) '
∂2

∂t2

∫
dx

2r(x)

v 2(x)
a(x, xr)a(x, xs)δ(t−τ(x, xr)−τ(x, xs))

pressure perturbation is sum (integral) of r over
reflection isochron {x : t = τ(x, xr) + τ(x, xs)}, w.
weighting, filtering. Note: if v =const. then
isochron is ellipsoid, as τ(xs , x) = |xs − x|/v !

(y,x )+  (y,x )ττt=

x x

y

s

r s

r
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Zero Offset data and the Exploding
Reflector

Zero offset data (xs = xr) is seldom actually
measured (contrast radar, sonar!), but routinely
approximated through NMO-stack (to be explained
later).

Extracting image from zero offset data, rather than
from all (100’s) of offsets, is tremendous data
reduction - when approximation is accurate, leads to
excellent images.

Imaging basis: the exploding reflector model
(Claerbout, 1970’s).



For zero-offset data, distribution kernel of F [v ] is

K (xs , t, xs ; x) =

∂2

∂t2

∫
ds

2

v 2(x)
G (xs , t − s; x)G (x, s; xs)

Under some circumstances (explained below), K (
= G time-convolved with itself) is “similar” (also
explained) to G̃ = Green’s function for v/2. Then...



δG (xs , t; xs) ∼
∂2

∂t2

∫
dx G̃ (xs , t, x)

2r(x)

v 2(x)

∼ solution w of(
4

v 2

∂2

∂t2
−∇2

)
w = δ(t)

2r

v 2

Thus reflector “explodes” at time zero, resulting
field propagates in “material” with velocity v/2.



Explain when the exploding reflector model
“works”, i.e. when G time-convolved with itself is
“similar” to G̃ = Green’s function for v/2. If supp r
lies in simple geometry domain, then

K (xs , t, xs ; x) =∫
ds

2a2(x, xs)

v 2(x)
δ(t − s − τ(xs , x))δ′′(s − τ(x, xs))



=
2a2(x, xs)

v 2(x)
δ′′(t − 2τ(x, xs))

whereas the Green’s function G̃ for v/2 is

G̃ (x, t; xs) = ã(x, xs)δ(t − 2τ(x, xs))

(half velocity = double traveltime, same rays!).



Difference between effects of K , G̃ : for each xs

scale r by smooth fcn - preserves WF (r) hence
WF (F [v ]r) and relation between them. Also:
adjoints have same effect on WF sets.

Upshot: from imaging point of view (i.e. apart from
amplitude, derivative (filter)), kernel of F [v ]
restricted to zero offset is same as Green’s function
for v/2, provided that simple geometry hypothesis
holds: only one ray connects each source point to
each scattering point, ie. no multipathing.

See Claerbout, IEI, for examples which demonstrate
that multipathing really does invalidate exploding
reflector model.



Standard Processing

Inspirational interlude: the sort-of-layered theory
=“Standard Processing”

Suppose v ,r functions of z = x3 only, all sources
and receivers at z = 0

⇒ system is translation-invariant in x1, x2

⇒ Green’s function G its perturbation δG , and the
idealized data δG |z=0 only functions of t and
half-offset h = |xs − xr |/2.



Standard Processing

⇒ only one seismic experiment, equivalent to any
common midpoint gather (“CMP”).

This isn’t really true - look at the data!!!



Standard Processing

Example: Mobil Viking Graben data

Released 1994 by Mobil R&D as part of workshop
exercise (“invert this!”)

North Sea “2D” data, i.e. single 25 km sail line,
single 3 km streamer - passes near location of well,
log shown in Part I



Standard Processing

0

2

t (
s)

5 10 15 20 25
cmp (km)

Sort to CMP gathers (common xm = xs + xr/2),
extract every 50th - approx. 600 m between CMP
locations



Standard Processing

However the “locally layered” idea is approximately
correct in many places in the world: CMPs change
very slowly with midpoint xm = (xr + xs)/2.



Standard Processing

0

2

t (
s)

1.5 1.6 1.7 1.8
cmp (km)

39 consecutive CMP gathers (1002-1040), distance
between values of xm = 12.5 m



Standard processing: treat each CMP as if it were
the result of an experiment performed over a layered
medium, but permit the layers to vary with
midpoint (!).

Thus v = v(z), r = r(z) for purposes of analysis,
but at the end v = v(xm, z), r = r(xm, z).

F [v ]r(xr , t; xs)

'
∫

dx
2r(z)

v 2(z)
a(x, xr)a(x, xs)δ

′′(t−τ(x, xr)−τ(x, xs))



=

∫
dz

2r(z)

v 2(z)

∫
dω

∫
dxω2a(x, xr)a(x, xs)

×e iω(t−τ(x,xr )−τ(x,xs))

Since we have already thrown away smoother (lower
frequency) terms, do it again using stationary phase.



Upshot (see 2000 MGSS notes for details): up to
smoother (lower frequency) error,

F [v ]r(h, t) ' A(z(h, t), h)R(z(h, t))

Here z(h, t) is the inverse of the 2-way traveltime

t(h, z) = 2τ((h, 0, z), (0, 0, 0))

i.e. z(t(h, z ′), h) = z ′.



R is (yet another version of) “reflectivity”

R(z) =
1

2

dr

dz
(z)

That is, F [v ] is a a derivative followed by a change
of variable followed by multiplication by a smooth
function.



Anatomy of an adjoint

∫
dt

∫
dh d(t, h)F [v ]r(t, h)

=

∫
dt

∫
dh d(t, h)A(z(t, h), h)R(z(t, h))

=

∫
dz R(z)

∫
dh

∂t

∂z
(z , h)A(z , h)d(t(z , h), h)

=

∫
dz r(z)(F [v ]∗d)(z)



Anatomy of an adjoint

so F [v ]∗ = − ∂
∂zSM[v ]N[v ], where

I N[v ] = NMO operator
N[v ]d(z , h) = d(t(z , h), h)

I M[v ] = multiplication by ∂t
∂zA

I S = stacking operator Sf (z) =
∫

dh f (z , h)



F [v ]∗F [v ]r(z) = − ∂

∂z

[∫
dh

dt

dz
(z , h)A2(z , h)

]
∂

∂z
r(z)

Microlocal property of PDOs ⇒
WF (F [v ]∗F [v ]r) ⊂ WF (r) i.e.

F [v ]∗ is an imaging operator

If you leave out the amplitude factor (M[v ]) and the
derivatives, as is commonly done, then you get
essentially the same expression - so (NMO, stack) is
an imaging operator!



Particularly nice transformation: define t0 =
two-way vertical travel time for z (depth):

t0(z) = 2

∫ z

0

1

v

and its inverse function z0



RMS (or NMO) velocity:

v̄(t0)2 =
1

t0

∫ t0

0

dτv(z0(τ))2



Then (“Dix’s formula”) t̄(t0, h) = t(z0(t0), h)

=
√
t2

0 + 4h2/v̄ 2(t0) + O(h4)

which is exactly what the constant-v formula would
be, if v̄ were constant - hyperbolic moveout

Exercise: Prove this [hint: use eikonal, presumed
symmetry of t(z , h) to derive ODE for
∂2t/∂h2(z , 0), solve]



NMO operator (as usually construed):

N̄[v̄ ]d(t0, h) = d(t̄(t0, h), h)

Now make everything dependent on xm and you’ve
got standard processing.

[LIVE DEMO - Mobil AVO data, Seismic Unix]



An interesting observation: if d(t, h) conforms to
the layered etc. etc. approximation, i.e.

d(t, h) = F [v ]r(t, h)

then

N[v ]d(z , h) = d(t(z , h), h) = (amplitude factor ×r(z)

i.e. except for the amplitude factor, this part of
F [v ]∗ produces function independent of h -
amplitude is smooth, r is oscillatory, should be
obvious

Similar if use t0 as depth variable instead of z



Example: apply NMO operator N[v ] to CMP 1040
from Mobil AVO data:
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NMO: v=1.5, 1.8, 2.2, 2.4
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NMO: v=1.5, 1.7, 2.0, 2.2
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NMO: v=1.5, 2.0, 2.4, 2.6



Upshot: if v (or v̄) chosen “well” (matching trend
of velo in earth?), then NMO output is mostly indep
of h = flat

⇒ method for determining v (and r) - velocity
analysis

Sounds like voodoo - what does it have to do with
inversion?

Stay tuned!
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Multioffset (“Prestack”) Inversion, après
Beylkin

If d = F [v ]r , then

F [v ]∗d = F [v ]∗F [v ]r

In the layered case, F [v ]∗F [v ] is an operator which
preserves wave front sets. Whenever F [v ]∗F [v ]
preserves wave front sets, F [v ]∗ is an imaging
operator.



Multioffset (“Prestack”) Inversion, après
Beylkin

Beylkin, JMP 1985: for r supported in simple
geometric optics domain,

I WF (Fδ[v ]∗Fδ[v ]r) ⊂ WF (r)

I if Sobs = S [v ] + Fδ[v ]r (data consistent with
linearized model), then Fδ[v ]∗(Sobs − S [v ]) is
an image of r

I an operator Fδ[v ]† exists for which
Fδ[v ]†(Sobs − S [v ])− r is smoother than r ,
under some constraints on r - an inverse
modulo smoothing operators or parametrix.



Outline of proof

Express F [v ]∗F [v ] as “Kirchhoff modeling” followed
by “Kirchhoff migration”; (ii) introduce Fourier
transform; (iii) approximate for large wavenumbers
using stationary phase, leads to representation of
F [v ]∗F [v ] modulo smoothing error as
pseudodifferential operator (“ΨDO”):

F [v ]∗F [v ]r(x) ' p(x,D)r(x) ≡
∫

dξ p(x, ξ)e ix·ξ r̂(ξ)



Outline of proof

F [v ]∗F [v ]r(x) ' p(x,D)r(x) ≡
∫

dξ p(x, ξ)e ix·ξ r̂(ξ)

symbol p ∈ C∞: for some m ∈ R, all multiindices
α, β, and all compact K ⊂ Rn, there exist
Cα,β,K ≥ 0 for which

|Dα
x D

β

ξ
p(x, ξ)| ≤ Cα,β,K (1 + |ξ|)m−|β|, x ∈ K

order of p is inf of all such m (or −∞ if there is
none)



Outline of proof

Explicit computation of symbol p of F [v ]∗F [v ] in
terms of rays, amplitudes - for details, see WWS:
Math Foundations.

[Symbol in terms of operator (m = order): for
φ ∈ C∞0 (Rn)

p(x, ξ)φ(x) = e ix·ξp(x,D)e−ix·ξφ(x) + O(|ξ|m−1)

- will return to this fact!]



Microlocal Property of ΨDOs

if p(x ,D) is a ΨDO, u ∈ E ′(Rn) then
WF (p(x ,D)u) ⊂ WF (u).

Will prove this; imaging property of prestack
Kirchhoff migration follows.



Microlocal Property of ΨDOs
First, a few other properties:

I differential operators are ΨDOs (easy -
exercise)

I ΨDOs of order m form a module over C∞(Rn)
(also easy)

I product of ΨDO order m, ΨDO order l =
ΨDO order ≤ m + l ; adjoint of ΨDO order m
is ΨDO order m (much harder)

Complete accounts of theory, many apps: books of
Duistermaat, Taylor, Nirenberg, Treves, Hörmander.



Proof of Microlocal Property

Suppose (x0, ξ0) /∈ WF (u), choose neighborhoods
X , Ξ as in defn, with Ξ conic. Need to choose
analogous nbhds for P(x ,D)u. Pick δ > 0 so that
B3δ(x0) ⊂ X , set X ′ = Bδ(x0).

Similarly pick 0 < ε < 1/3 so that B3ε(ξ0/|ξ0|) ⊂ Ξ,
and chose Ξ′ = {τξ : ξ ∈ Bε(ξ0/|ξ0|), τ > 0}.

Need to choose φ ∈ C∞0 (X ′), estimate ̂φP(x,D)u.
Choose ψ ∈ E(X ) so that ψ ≡ 1 on B2δ(x0).

NB: this implies that if x ∈ X ′, ψ(y) 6= 1 then
|x− y| ≥ δ.



Write u = (1− ψ)u + ψu. Claim:
φP(x,D)((1− ψ)u) is smooth.

φ(x)P(x,D)((1− ψ)u))(x)

= φ(x)

∫
dξ P(x, ξ)e ix·ξ

∫
dy (1−ψ(y))u(y)e−iy·ξ

=

∫
dξ

∫
dy P(x, ξ)φ(x)(1− ψ(y))e i(x−y)·ξu(y)



=

∫
dξ

∫
dy (−∇2

ξ)
MP(x, ξ)φ(x)(1−ψ(y))|x−y|−2M

×e i(x−y)·ξu(y)

using the identity

e i(x−y)·ξ = |x− y|−2
[
−∇2

ξe
i(x−y)·ξ

]
and integrating by parts 2M times in ξ. This is
permissible because
φ(x)(1− ψ(y)) 6= 0⇒ |x− y| > δ.



According to the definition of ΨDO,

|(−∇2
ξ)

MP(x, ξ)| ≤ C |ξ|m−2M

For any K , the integral thus becomes absolutely
convergent after K differentiations of the integrand,
provided M is chosen large enough. Q.E.D. Claim.

This leaves us with φP(x,D)(ψu). Pick η ∈ Ξ′ and
w.l.o.g. scale |η| = 1.



Fourier transform:

̂φP(x,D)(ψu)(τη)

=

∫
dx

∫
dξ P(x, ξ)φ(x)ψ̂u(ξ)

×e ix·(ξ−τη)



Introduce τθ = ξ, and rewrite this as

= τ n
∫

dx

∫
dθ P(x, τθ)φ(x)ψ̂u(τθ)e iτx·(θ−η)

Divide the domain of the inner integral into
{θ : |θ − η| > ε} and its complement. Use

−∇2
xe

iτx·(θ−η) = τ 2|θ − η|2e iτx·(θ−η)



Integrate by parts 2M times to estimate the first
integral:

τ n−2M

∣∣∣∣∫ dx

∫
|θ−η|>ε

dθ (−∇2
x)M [P(x, τθ)φ(x)]ψ̂u(τθ)

× |θ − η|−2Me iτx·(θ−η)
∣∣∣

≤ Cτ n+m−2M

m being the order of P . Thus the first integral is
rapidly decreasing in τ .



For the second integral, note that
|θ − η| ≤ ε⇒ θ ∈ Ξ, per the defn of Ξ′. Since
X × Ξ is disjoint from the wavefront set of u, for a
sequence of constants CN , |ψ̂u(τθ)| ≤ CNτ

−N

uniformly for θ in the (compact) domain of
integration, whence the second integral is also
rapidly decreasing in τ . Q. E. D.

And that’s why migration works, at least in the
simple geometric optics regime.



An Example

In what sense can this work with “bandlimited”
(w 6= δ) data?

F [v ]∗F [v ]r then does not have any singularities,
even if r does, so no wave front set.

Answer: “ghost of departed wavefront set”: as
w → δ, F [v ]∗F [v ]r → a distribution with wavefront
set ⊂ WF (r).



An Example
Marmousi c2

williamsymes, Tue Aug  6 08:11



An Example
Marmousi v 2

williamsymes, Tue Aug  6 08:10



An Example
Marmousi δ(c2) = 2vr

williamsymes, Wed Aug  7 06:53



An Example
Marmousi F [v ]∗F [v ]r

williamsymes, Tue Aug  6 08:42



Symbol and Spectrum

Recall that for p(x ,D) of order m, φ ∈ C∞0 (Rn),

p(x, ξ)φ(x) = e ix·ξp(x,D)e−ix·ξφ(x) + O(|ξ|m−1)

Exercise: give a proof in case p(x ,D) is differential
op of order m

Double Bonus Exercise: give a proof



Symbol and Spectrum

Exercise: Write an application using Pysit to
approximate the symbol of F [v ]∗F [v ] at
(x, ξ) ∈ T ∗X



Symbol and Spectrum

Special class of symbols: those with asymptotic
expansions

p(x, ξ) =
∑
l∈N

pm−l(x, ξ)

in which pk is a symbol, positively homogeneous in
ξ of order k .

Consequence of a theorem of Borel: any such
asymptotic series defines a symbol



Symbol and Spectrum

Fact: F [v ]∗F [v ] is a ΨDO whose symbol has an
asymptotic expansion (assuming simple ray
geometry)

Principal symbol = leading order term pm

p is microlocally elliptic in a open conic nbhd Γ of
(x0, ξ0) if pm 6= 0 in Γ: in any closed subnbhd
Γ0 ⊂ Γ, there is K > 0 so that for (x, ξ) ∈ Γ0,

|pm(x, ξ)| ≥ K |ξ|m



Symbol and Spectrum

Assume p microlocally elliptic at (x0, ξ0),
φ ∈ C∞0 (Rd) supported near x0 - then

p(x,D)e−ix·ξ0φ(x) = pm(x, ξ0)e−ix·ξ0φ(x)+O(|ξ0|m−1)

and remainder is rel. small for large ξ0 ⇒ localized
oscillatory “approximate eigenfunction”

Much more precise results available (eg.
Demanet-Ying) - connect principal symbol to
spectra of operators defined by ΨDO



Asymptotic Prestack Inversion

Recall: in layered case,

F [v ]r(h, t) ' A(z(h, t), h)
1

2

dr

dz
(z(h, t))

F [v ]∗d(z) ' − ∂

∂z

∫
dh A(z , h)

∂t

∂z
(z , h)d(t(z , h), h)

F [v ]∗F [v ] = − ∂

∂z

[∫
dh

dt

dz
(z , h)A2(z , h)

]
∂

∂z

In particular, the normal operator F [v ]∗F [v ] is an
elliptic PDO.



⇒ normal operator is asymptotically invertible

approximate least-squares solution to F [v ]r = d :

r̃ ' (F [v ]∗F [v ])−1F [v ]∗d

Relation between r and r̃ : difference is smoother
than either. Thus difference is small if r is
oscillatory - consistent with conditions under which
linearization is accurate.



Analogous construction in prestack simple
geometric optics case: due to Beylkin (1985).

Complication: F [v ]∗F [v ] cannot be invertible -
WF (F [v ]∗F [v ]r) generally quite a bit “smaller”
than WF (r).



Inversion aperture

Γ[v ] ⊂ R3 × R3 \ {0}:

WF (r) ⊂ Γ[v ] ⇒ WF (F [v ]∗F [v ]r) = WF (r)

⇒ F [v ]∗F [v ] “acts invertible”

(x, ξ) ∈ Γ[v ] ⇔ F [v ]∗F [v ] microlocally elliptic at
(x, ξ)

Ray-geometric construction of Γ[v ] - later!



Inversion aperture

Beylkin: with proper choice of amplitude
b(xr , t; xs), the integral operator (modification of
the integral representation of F ∗)

F [v ]†d(x) =∫ ∫ ∫
dxr dxs dt b(xr , t; xs)δ(t−τ(x; xs)−τ(x; xr))

×d(xr , t; xs)

yields F [v ]†F [v ]r ' r if WF (r) ⊂ Γ[v ]



For details of Beylkin construction: Beylkin, 1985;
Miller et al 1989; Bleistein, Cohen, and Stockwell
2000; WWS Math Foundations, MGSS notes 1998.
All components are by-products of eikonal solution.

aliases for numerical implementation: Generalized
Radon Transform (“GRT”) inversion, Ray-Born
inversion, migration/inversion, true amplitude
migration,...



Many extensions, eg. to elasticity: Bleistein,
Burridge, deHoop, Lambaré,...

Apparent limitation: construction relies on simple
geometric optics (no multipathing) - how much of
this can be rescued?



An Example, cont’d

Apparently, quite a bit.

Marmousi (even smoothed v) generates many
conjugate points, multipaths, caustics...



An Example, cont’d
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An Example, cont’d
yet F [v ]∗F [v ]r is a good “image”...

williamsymes, Tue Aug  6 08:42



An Example, cont’d
of r

williamsymes, Wed Aug  7 06:53



An Example, cont’d

Of course F [v ]∗F [v ]r just an “image”

Computation of F [v ]†F [v ]r - not necessarily by
integral representation - should restore amplitudes



An Example, cont’d

Inversion by iterative solution of

minr‖F [v ]r − (d −F [v ])‖2

I 60 shots, 10 Hz Ricker; 96 receivers 25 m
spacing (classic IFP geometry, subsampled)

I 2-4 FD scheme, 24 m grid

I 50 conjugate gradient iterations

I reduces obj fcn to 20% of its initial value
(‖d −F [v ]‖2)



An Example, cont’d
reasonably good recovery...

williamsymes, Wed Aug  7 06:53



An Example, cont’d
of r (same grey scale!)

williamsymes, Wed Aug  7 06:53



0

500

1000

1500

2000

2500

D
ep

th
 in

 M
et

er
s 

0 200 400 600 800 1000 1200 1400
CDP 

 

Example of GRT Inversion (application of F [v ]†):
K. Araya (1995), “2.5D” inversion of marine
streamer data from Gulf of Mexico: 500 source
positions, 120 receiver channels, 750 Mb.
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