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(field seismogram from the Gulf of Mexico - thanks: Exxon.)
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Introduction

Main goal of these lectures: coherent mathematical view of
reflection seismic imaging, as practiced in petroleum industry

I imaging = approximate solution of inverse problem for wave
equation

I most practical imaging methods based on linearization
(“perturbation theory”)

I high frequency asymptotics (“microlocal analysis”) key to
understanding

I limitations of linearization lead to many open problems

Lots of mathematics - much yet to be created - with practical
implications!



Agenda
Seismic inverse problem: the sedimentary Earth, reflection seismic
measurements, the acoustic model, linearization, reflectors and
reflections idealized via harmonic analysis of singularities

High frequency asymptotics: why adjoints of modeling operators
are imaging operators (“Kirchhoff migration”). Beylkin-Rakesh-...
theory of high frequency asymptotic inversion

Adjoint state imaging with the wave equation: reverse time and
reverse depth

Geometric optics, Rakesh’s construction, and asymptotic inversion
w/ caustics and multipathing, imaging artifacts, and prestack
migration après Claerbout.

A step beyond linearization: a mathematical framework for velocity
analysis



Reflection seismology

aka active source seismology, seismic sounding/profiling

uses acoustic (sound) waves to probe the Earth’s sedimentary crust

main exploration tool of oil & gas industry, also used in
environmental and civil engineering (hazard detection, bedrock
profiling) and academic geophysics (structure of crust and mantle)

highest resolution imaging technology for deep Earth exploration,
in comparison with static (gravimetry, resistivity) or diffusive
(active source EM) techniques - works because

waves transfer space-time resolved information from one place to
another with (relatively) little loss



Reflection seismology
Three components:

I energy/sound source - creates wave traveling into subsurface

I receivers - record waves (echoes) reflected from subsurace

I recording and signal processing instrumentation



Reflection seismology

Three components:

I energy/sound source - creates wave traveling into subsurface

I receivers - record waves (echoes) reflected from subsurace

I recording and signal processing instrumentation

Survey consists of many experiments = shots

Each shot = use of one source, localized in time and space -
position xs

Simultaneous recording of reflections as many localized receivers,
positions xs , time interval = 0− O(10)s after initiation of source.



Reflection seismology
Marine reflection seismology:

I typical energy source: airgun array - releases (array of)
supersonically expanding bubbles of compressed air, generates
sound pulse in water

I typical receivers: hydrophones (waterproof microphones) in
one or more 5-10 km flexible streamer(s) - wired together 500
- 30000 groups

I survey ships - lots of recording, processing capacity

hydrophone streamer
acoustic source
(airgun array)x xr sh

Land acquisition similar, but acquisition and processing are more
complex. Vast bulk (90%+) of data acquired each year is marine.



Reflection seismology

Marine seismic data parameters:

I time t - 0 ≤ t ≤ tmax, tmax = 5− 15s

I source location xs - 100 - 100000 distinct values

I receiver location xr

I typically the same range of offsets = xr − xs for each shot -
half offset h = xr−xs

2 , h = |h|: 100 - 500000 values (typical:
5000)

I data values: microphone output (volts), filtered version of
local pressure (force/area)



Reflection seismology

Idealized marine “streamer” geometry: xs and xr lie roughly on
constant depth plane, source-receiver lines are parallel → 3 spatial
degrees of freedom (eg. xs , h): codimension 1. [Other geometries
are interesting, eg. ocean bottom cables, but streamer surveys still
prevalent.]

How much data? Contemporary surveys may feature

I Simultaneous recording by multiple streamers (up to 12!)

I Many (roughly) parallel ship tracks (“lines”)

I Recent development: Wide Angle Towed Streamer (WATS)
survey - uses multiple survey ships for areal sampling of source
and receiver positions

I single line (“2D”) ∼ Gbytes; multiple lines (“3D”) ∼ Tbytes;
WATS ∼ Pbytes



Distinguished data subsets

I traces = data for one source, one receiver: t 7→ d(xr , t; xs) -
function of t, time series, single channel

I gathers or bins = subsets of traces, extracted from data after
acquisition. Characterized by common value of an acquisition
parameter

Examples:

I shot (or common source) gather: traces w/ same shot
location xs (previous expls)

I offset (or common offset) gather: traces w/ same half offset h

I ...



Shot gather, Mississippi Canyon
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Shot gather, Mississippi Canyon
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Lightly processed - bandpass filter 4-10-25-40 Hz, mute. Most
striking visual characteristic: waves = coherent space-time
structures (“reflections”)



Shot gather, Mississippi Canyon

1.0

1.5

2.0

2.5

3.0

-2.5 -2.0 -1.5 -1.0 -0.5

What features in the subsurface structure cause reflections? How
to model?



Well logs: a “direct” view of the subsurface
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Blocked logs from well in North Sea (thanks: Mobil R & D). Solid:
p-wave velocity (m/s), dashed: s-wave velocity (m/s), dash-dot:
density (kg/m3). “Blocked” means “averaged” (over 30 m
windows). Original sample rate of log tool < 1 m.



Well logs: a “direct” view of the subsurface
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You see:

I Trends = slow increase in velocities, density - scale of km

I Reflectors = jumps in velocities, density - scale of m or 10s
of m



The Modeling Task

A useful model of the reflection seismology experiment must

I predict wave motion

I produce reflections from reflectors

I accomodate significant variation of wave velocity, material
density,...

A really good model will also accomodate

I multiple wave modes, speeds

I material anisotropy

I attenuation, frequency dispersion of waves

I complex source, receiver characteristics



The Acoustic Model

Not really good, but good enough for this week and basis of most
contemporary processing.

Relates ρ(x)= material density, λ(x) = bulk modulus, p(x, t)=
pressure, v(x, t) = particle velocity, f(x, t)= force density (sound
source):

ρ
∂v

∂t
= −∇p + f,

∂p

∂t
= −λ∇ · v (+ i.c.′s,b.c.′s)

(compressional) wave speed c =
√

λ
ρ



The Acoustic Model

acoustic field potential u(x, t) =
∫ t
−∞ ds p(x, s):

p =
∂u

∂t
, v =

1

ρ
∇u

Equivalent form: second order wave equation for potential

1

ρc2

∂2u

∂t2
−∇ · 1

ρ
∇u =

∫ t

−∞
dt∇ ·

(
f

ρ

)
≡ f

ρ

plus initial, boundary conditions.



The Acoustic Model

Further idealizations:

I density ρ is constant,

I source force density is isotropic point radiator with known
time dependence (“source pulse” w(t), typically of compact
support)

f (x, t; xs) = w(t)δ(x− xs)

⇒ acoustic potential, pressure depends on source location xs also.



Homogeneous acoustics

Suppose also that

I velocity c is constant

(“homogeneous” acoustic medium - same stress-strain relation
everywhere)

Explicit causal ( = vanishing for t << 0) solution for 3D:

u(x, t) =
w(t − r/c)

4πr
, r = |x− xs |

[Proof: exercise!]

Nomenclature: expanding or outgoing spherical wave



Homogeneous acoustics

Also explicit solution (up to quadrature) in 2D - a bit more
complicated (Poisson’s formula - exercise: find it! eg. in Courant
and Hilbert)

Looks like expanding circular wavefront for typical w(t)
[SIMULATION]

Observe: no reflections!!! [SIMULATION]

Upshot: if acoustic model is at all appropriate, must use
non-constant c to explain observations.

Natural mathematical question: how nonconstant can c be and
still permit “reasonable” solutions of wave equation?



Heterogeneous acoustics

Weak solution of Dirichlet problem in Ω ⊂ R3 (similar treatment
for other b. c.’s):

u ∈ C 1([0,T ]; L2(Ω)) ∩ C 0([0,T ]; H1
0 (Ω))

satisfying for any φ ∈ C∞0 ((0,T )× Ω),∫ T

0

∫
Ω

dt dx

{
1

ρc2

∂u

∂t

∂φ

∂t
− 1

ρ
∇u · ∇φ+

1

ρ
f φ

}
= 0

Theorem (Lions, 1972) Suppose that log ρ, log c ∈ L∞(Ω),
f ∈ L2(Ω× R). Then weak solutions of Dirichlet problem exist;
initial data

u(·, 0) ∈ H1
0 (Ω),

∂u

∂t
(·, 0) ∈ L2(Ω)

uniquely determine them.



Key Ideas in Proof

1. Conservation of energy: first assume that f ≡ 0, set

E [u](t) =
1

2

∫
Ω

(
1

ρc2
p(·, t)2 + ρ|v(·, t)|2

)
= elastic strain energy (potential + kinetic)

=
1

2

∫
Ω

(
1

ρc2

(
∂u

∂t
(·, t)

)2

+
1

ρ
|∇u(·, t)|2

)

Then if u is smooth enough that integrations by parts and
differentiations under integral sign make sense, easy to see that

dE [u]

dt
= 0



Key Ideas in Proof

General case (f 6= 0): with help of Cauchy-Schwarz ≤,

dE [u]

dt
(t) ≤ const.

(
E [u](t) +

∫ t

0
ds

∫
Ω

dx f 2(x, s)

)
whence for 0 ≤ t ≤ T ,

E [u](t) ≤ const.
(

E [u](0) +

∫ t

0
ds

∫
Ω

dx f 2(x, s)

)
(Gronwall’s ≤)

const on RHS bounded by T , ‖ log ρ‖L∞(Ω), ‖ log c‖L∞(Ω)



Key Ideas in Proof

Poincaré’s ≤ ⇒ “a priori estimate”∥∥∥∥∂u

∂t
(·, t)

∥∥∥∥
L2(Ω)2

+ ‖u(·, t)‖2
H1(Ω)

≤ const.

(∥∥∥∥∂u

∂t
(·, 0)

∥∥∥∥
L2(Ω)2

+ ‖u(·, 0)‖2
H1(Ω) +

∫ t

−∞
ds

∫
Ω

dx f 2(x, s)

)
Derivation presumed more smoothness than weak solutions have,
ex def. First serious result:

Weak solutions obey same a priori estimate

Proof via approximation argument.

Corollary: Weak solutions uniquely determined by t = 0 data



Key Ideas in Proof

2. Galerkin approximation: Pick increasing sequence of subspaces

W 0 ⊂W 1 ⊂W 2 ⊂ ... ⊂ H1
0 (Ω)

so that
∪∞n=0W n dense in L2(Ω)

Typical example: piecewise linear Finite Element subspaces on
sequence of meshes, each refinement of preceding.

Galerkin principle: find un ∈ C 2([0,T ],W n) so that for any
φn ∈ C 1([0,T ],W n),∫ T

0

∫
Ω

dt dx

{
1

ρc2

∂un

∂t

∂φn

∂t
− 1

ρ
∇un · ∇φn +

1

ρ
f φn

}
= 0



Key Ideas in Proof

In terms of basis {φn
m : m = 0, ...,Nn} of W n, write

un(t, x) =
Nn∑

m=0

Un
m(t)φn

m(x)

Then integration by parts in t ⇒ coefficient vector
Un(t) = (Un

0 (t), ...,Un
Nn)T satisfies ODE

Mn d2Un

dt2
+ KnUn = F n

where

Mn
i ,j =

∫
Ω

1

ρc2
φn

i φ
n
j , Kn

i ,j =

∫
Ω

1

ρ
∇φn

i · ∇φn
j

and sim for F n



Key Ideas in Proof

Assume temporarily that f ∈ C 0([0,T ], L2(Ω)) ⊂ L2([0,T ]× Ω) -
then F n ∈ C 0([0,T ],W n), so...

basic theorem on ODEs ⇒ existence of Galerkin approximation un.

Energy estimate for Galerkin approximation -

E [un](t) ≤ const.
(

E [un](0) +

∫ t

0
‖f (·, t)‖2

L2(Ω)

)
constant independent of n.

Alaoglu Thm ⇒ {un} weakly precompact in L2([0,T ],H1
0 (Ω)),

{∂un/∂t} weakly precompact in L2([0,T ], L2(Ω)), so can select
weakly convergent sequence, limit u ∈ L2([0,T ],H1

0 (Ω)),
{∂u/∂t} ∈ L2([0,T ], L2(Ω)).



Key Ideas in Proof

Final cleanup of Galerkin existence argument:

I u is weak solution (necessarily the weak solution!)

I remove regularity assumption on f via density of
C 0([0,T ], L2(Ω)) in L2([0,T ]× Ω), energy estimate

More time regularity of f ⇒ more time regularity of u. If you want
more space regularity, then coefficients must be more regular!
(examples later)

See Stolk 2000 for details, Blazek et al. 2008 for similar results re
symmetric hyperbolic systems



Reflection seismic inverse problem

Forward map S = time history of pressure for each source
location xs at receiver locations xr , as function of c

Reality: xs samples finitely many points near surface of Earth
(z = 0), active receiver locations xr may depend on source
locations and are also discrete

but: sampling is reasonably fine (see plots!) so...

Idealization: (xs , xr ) range over 4-diml closed submfd with
boundary Σ, source and receiver depths constant.



Reflection seismic inverse problem

(predicted seismic data), depends on velocity field c(x):

F [c] = p|Σ×[0,T ]

Inverse problem: given observed seismic data d ∈ L2(Σ× [0,T ]),
find c so that

F [c] ' d

This inverse problem is

I large scale - Tbytes of data, Pflops to simulate forward map

I nonlinear

I yields to no known direct attack (no “solution formula”)



Linearization

Almost all useful technology to date relies on linearization (aka
perturbation theory, Born approximation,...): write c = v(1 + r)
and treat r as relative first order perturbation about v , resulting in
perturbation of presure field δp = ∂δu

∂t = 0, t ≤ 0, where(
1

v 2

∂2

∂t2
−∇2

)
δu =

2r

v 2

∂2u

∂t2

Define linearized forward map F by

F [v ]r = δp|Σ×[0,T ]

Analysis of F [v ] is the main content of contemporary reflection
seismic theory.



Linearization in theory

Recall Lions-Stolk result: if log c ∈ L∞(Ω) (ρ = 1!) and
f ∈ L2(Ω× [0,T ]), then weak solution has finite energy, i.e.

u = u[c] ∈ C 1([0,T ], L2(Ω)) ∩ C 0([0,T ],H1
0 (Ω))

Suppose δc ∈ L∞(Ω), define δu by solving perturbational problem:
set v = c , r = δc/c .



Linearization in theory

Stolk (2000): for small enough h ∈ R,

‖u[c + hδc]− u[c]− δu‖C0([0,T ],L2(Ω)) = o(h)

Note “loss of derivative”: error in Newton quotient is o(1) in
weaker norm than that of space of weak solns

Implication for F [c]: under suitable circumstances (c = const.
near Σ - “marine” case),

‖F [c]‖L2(Σ×[0,T ]) = O(‖w‖L2(R))

but

‖F [v(1 + r)]−F [v ]− F [v ]r‖L2(Σ×[0,T ]) = O(‖w‖H1(R))

and these estimates are both sharp



Linearization in practice

Physical intuition, numerical simulation, and not nearly enough
mathematics: linearization error

F [v(1 + r)]−F [v ]− F [v ]r

I small when v smooth, r rough or oscillatory on wavelength
scale - well-separated scales

I large when v not smooth and/or r not oscillatory - poorly
separated scales

Illustration: 2D finite difference simulation: shot gathers with
typical marine seismic geometry. Smooth (linear) v(x , z),
oscillatory (random) r(x , z) depending only on z(“layered
medium”). Source wavelet w(t) = bandpass filter.
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Left: Total velocity c = v(1 + r) with smooth (linear) background
v(x , z), oscillatory (random) r(x , z). Std dev of r = 5%.
Right: Simulated seismic response (F [v(1 + r)]), wavelet =
bandpass filter 4-10-30-45 Hz. Simulator is (2,4) finite difference
scheme.
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(left, v(x , z)) plus rough perturbation (right, r(x , z)).
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Left: Simulated seismic response of smooth model (F [v ]),
Right: Simulated linearized response, rough perturbation of
smooth model (F [v ]r)



0

0.2

0.4

0.6

0.8

t (
s)

0 0.2 0.4 0.6 0.8 1.0
x_r (km)

.

0

0.2

0.4

0.6

0.8

t (
s)

0 0.2 0.4 0.6 0.8 1.0
x_r (km)

Left: Simulated seismic response of rough model (F [0.95v + r ]),
Right: Simulated linearized response, smooth perturbation of
rough model (F [0.95v + r ]((0.05v)/(0.95v + r)))
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Summary

For the same pulse w ,

I v smooth, r oscillatory ⇒ F [v ]r approximates primary
reflection = result of one-time wave-material interaction
(single scattering); error = multiple reflections, “not too
large” if r is “not too big”

I v nonsmooth, r smooth ⇒ error = time shifts - very large
perturbations since waves are oscillatory.

For typical oscillatory w (‖w‖H1 >> ‖w‖L2), tends to imply that
in scale-separated case, effectively no loss of derivative!

Math. justification available only in 1D (Lewis & S., 1991)



Velocity Analysis and Imaging

Velocity analysis problem = partially linearized inverse problem:
given d find v , r so that

F [v ] + F [v ]r ' d

Linearized inversion problem: given d and v , find r so that

F [v ]r ' d −F [v ]

Imaging problem - relaxation of linearized inversion: given d and
v , find an image r of “reality” = solution of linearized inversion
problem



Velocity Analysis and Imaging

Last 20 years:

I much progress on imaging

I lots of progress on linearized inversion

I much less on velocity analysis

Interesting question: what’s an image?

“...I know it when I see it.” - Associate Justice Potter
Stewart, 1964



Aymptotic assumption

Linearization is accurate ⇔ length scale of v >> length scale of
r ' wavelength, properties of F [v ] dominated by those of Fδ[v ] (=
F [v ] with w = δ). Implicit in migration concept (eg. Hagedoorn,
1954); explicit use: Cohen & Bleistein, SIAM JAM 1977.

Key idea: reflectors (rapid changes in r) emulate singularities;
reflections (rapidly oscillating features in data) also emulate
singularities.

NB: “everybody’s favorite reflector”: the smooth interface across
which r jumps. But this is an oversimplification - reflectors in the
Earth may be complex zones of rapid change, pehaps in all
directions. More flexible notion needed!!



Wave Front Sets

Paley-Wiener characterization of local smoothness for distributions:
u ∈ D′(Rn) is smooth at x0 ⇔ for some nbhd X of x0, any
χ ∈ C∞0 (X ) and N ∈ N, any ξ ∈ Rn, |ξ| = 1,

|(̂χu)(τξ)| = O(τ−N), τ →∞

Proof (sketch): smooth at x0 means: for some nbhd X ,
χu ∈ C∞0 (Rn) for any χ ∈ C∞0 (X ) ⇔ .

χ̂u(ξ) =

∫
dx e iξ·xχ(x)u(x)



Wave Front Sets

=

∫
dx (1 + |ξ|2)−p[(I −∇2)pe iξ·x]χ(x)u(x)

= (1 + |ξ|2)−p

∫
dx e iξ·x[(I −∇2)pχ(x)u(x)]

whence
|χ̂u(ξ)| ≤ const.(1 + |ξ|2)−p

where the const. depends on p, χ and u. For any N, choose p
large enough, replace ξ ← τξ, get desired ≤.



Wave Front Sets

Harmonic analysis of singularities, après Hörmander: the wave
front set WF (u) ⊂ Rn × Rn \ 0 of u ∈ D′(Rn) - captures
orientation as well as position of singularities - microlocal
smoothness

(x0, ξ0) /∈WF (u) ⇔, there is open nbhd X × Ξ ⊂ Rn × Rn \ 0 of
(x0, ξ0) so that for any χ ∈ C∞0 (Rn), suppχ ⊂ X , N ∈ N, all
ξ ∈ Ξ so that |ξ| = |ξ0|,

|χ̂u(τξ)| = O(τ−N)



Housekeeping chores

(i) note that the nbhds Ξ may naturally be taken to be cones

(ii) WF (u) is invariant under chg. of coords if it is regarded as a
subset of the cotangent bundle T ∗(Rn) (i.e. the ξ components
transform as covectors).

(iii) The standard example: if u jumps across the interface
φ(x) = 0, otherwise smooth, then
WF (u) ⊂ Nφ = {(x, ξ) : φ(x) = 0, ξ||∇φ(x)} (normal bundle of
φ = 0)

[Good refs for basics on WF: Duistermaat, 1996; Taylor, 1981;
Hörmander, 1983]



Housekeeping chores

Proof of (ii): follows from

(iv) Basic estimate for oscillatory integrals: suppose that
ψ ∈ C∞(Rn),∇ψ(x0) 6= 0, (x0,∇ψ(x0)) /∈WF (u). Then for any
χ ∈ C∞0 (Rn) supported in small enough nbhd of x0, and any
N ∈ N, ∫

dx e iτψ(x)χ(x)u(x) = O(τ−N)



Housekeeping chores

Proof of (iv): choose nbhd X × Ξ of (x0,∇ψ(x0)) as in definition.

Choose a ∈ C∞(Rn \ {0}) homogeneous of degree 0
(a(ξ) = a(ξ/|ξ|)) for |ξ| > 1 so that a(ξ) = 0 if ξ /∈ Ξ or
|ξ| ≤ 1/2, a(ξ) = 1 if |ξ| > 1 and ξ ∈ Ξ1 ⊂ Ξ, another conic nbhd
of ∇ψ(x0).

Pick χ1 ∈ C∞0 (Rn) st χ1 ≡ 1 on suppχ, and write

χ(x)u(x) = χ1(x)(2π)−n

∫
dξ e ix·ξχ̂u(ξ)

= χ1(x)(2π)−n

∫
dξ e ix·ξg1(ξ) + χ1(x)(2π)−n

∫
dξ e ix·ξg2(ξ)

in which g1 = aχ̂u, g2 = (1− a)χ̂u



Housekeeping chores

So∫
dx e iτψ(x)χ(x)u(x) =

∑
j=1,2

∫
dx

∫
dξ e i(τψ(x)+x·ξ)χ1(x)gj(ξ)

For ξ ∈ supp(1− a) (excludes a conic nbhd of ∇ψ(x0)), can write

e i(τψ(x)+x·ξ) = [−i |τ∇ψ(x) + ξ|−2(τ∇ψ(x) + ξ) · ∇]pe i(τψ(x)+x·ξ)

Can guarantee that |τ∇ψ(x) + ξ| > 0 by choosing suppχ1 suff.
small, so that in dom. of integration ∇ψ(x) is close to ∇ψ(x0). In
fact, for ξ ∈ supp(1− a), suppχ1 small enough, and x ∈ suppχ1,

|τ∇ψ(x) + ξ| > Cτ

for some C > 0. Exercise: prove this!



Housekeeping chores
Substitute and integrate by parts, use above estimate to get∣∣∣∣∫ dx

∫
dξ e i(τψ(x)+x·ξ)χ1(x)g2(ξ)

∣∣∣∣ ≤ const.τ−N

for any N.

Note that for ξ ∈ suppa,

|χ̂u(ξ)| ≤ const.|ξ|−p

for any p (with p-dep. const, of course!). Follows that

h(bx) =

∫
dξ e ix·ξg1(ξ)

converges absolutely, also after differentiating any number of times
under the integral sign, therefore h ∈ C∞(Rn), whence∫

dx

∫
dξ e i(τψ(x)+x·ξ)χ1(x)g1(ξ) =

∫
dx e iτψ(x)χ1(x)h(x)



Housekeeping chores

with integrand supported as near as you like to x0. Since
∇ψ(x0) 6= 0, same is true of suppχ1 provided this is chosen small
enough; now use

e iτψ(x) = τ−p(−i |∇ψ(x)|−2∇ψ(x) · ∇)pe iτψ(x)

and integration by parts again to show that this term is also
O(τ−N) any N.



Housekeeping chores

Proof of (ii), for u integrable (Exercise: formulate and prove
similar statement for distributions)

Equivalent statement: suppose that F : U → Rn is a
diffeomorphism on an open U ⊂ Rn, suppu ⊂ F (U), x0 ∈ U,
y0 = F (x0), and (y0, η0) /∈WF (u).

Claim: then (x0, ξ0) /∈WF (u ◦ F ), where ξ0 = DF (x0)Tη0.



Housekeeping chores

Need to show that if χ ∈ C∞0 (Rn), x0 ∈ suppχ and small enough,

then χ̂u ◦ F (τξ) = O(τ−N) any N for ξ conically near ξ0. From
the change-of-variables formula

χ̂u ◦ F (τξ) =

∫
dxχ(x)(u ◦ F )(x)e iτx·ξ

=

∫
dy (χ ◦ F−1)(y)u(y)e iτξ·F−1(y) det D(F−1)(y)

Set j = χ ◦ F−1detD(F−1). Note: j ∈ C∞0 (Rn) supported in nbhd
V of y0 if χ supported in F−1(V).



Housekeeping chores

MVT: for y close enough to y0,

F−1(y) = x0 +

∫ 1

0
dσDF−1(y0 + σ(y − y0))(y − y0)

Insert in exponent to get

χ̂u ◦ F (τξ) = e iτx0·ξ
∫

dy j(y)u(y)e
iτψξ(y)

where

ψξ(y) = (y − y0) ·
∫ 1

0
dσDF−1(y0 + σ(y − y0))Tξ

Since
∇ψξ(y0) = DF−1(y0)ξ

claim now follows from basic thm on oscillatory integrals.



Housekeeping chores

Proof of (iii): Function of compact supp, jumping across φ = 0

u = χH(φ)

with χ smooth, H = Heaviside function (H(t) = 1, t > 0 and
H(t) = 0, t < 0).

Pick x0 with φ(x0) = 0. Surface φ = 0 regular near x0 if
∇φ(x0) 6= 0 - assume this.

Suffices to consider case of χ ∈ C∞0 (Rn) of small support cont’g
x0. Inverse Function Thm ⇒ exists diffeo F mapping nbhd of x0

to nbhd of 0 so that F (x0) = 0 and F1(x) = φ(x). Fact (ii) ⇒
reduce to case φ(x) = x1 - Exercise: do this!



Wavefront set of a jump discontinuity

H(

)=0

φ

φ

=0φ

φ)=1

>0

<0

φH(

ξ
x

WF (H(φ)) = {(x, ξ) : φ(x) = 0, ξ||∇φ(x)}



Formalizing the reflector concept

Key idea, restated: reflectors (or “reflecting elements”) will be
points in WF (r). Reflections will be points in WF (d).

These ideas lead to a usable definition of image: a reflectivity
model r̃ is an image of r if WF (r̃) ⊂WF (r) (the closer to equality,
the better the image).

Idealized migration problem: given d (hence WF (d)) deduce
somehow a function which has the right reflectors, i.e. a function r̃
with WF (r̃) 'WF (r).

NB: you’re going to need v ! (“It all depends on v(x,y,z)” - J.
Claerbout)



Agenda
Seismic inverse problem: the sedimentary Earth, reflection seismic
measurements, the acoustic model, linearization, reflectors and
reflections idealized via harmonic analysis of singularities

High frequency asymptotics: why adjoints of modeling operators
are imaging operators (“Kirchhoff migration”). Beylkin-Rakesh-...
theory of high frequency asymptotic inversion

Adjoint state imaging with the wave equation: reverse time and
reverse depth

Geometric optics, Rakesh’s construction, and asymptotic inversion
w/ caustics and multipathing, imaging artifacts, and prestack
migration après Claerbout.

A step beyond linearization: a mathematical framework for velocity
analysis



Microlocal property of differential operators

Suppose u ∈ D′(Rn), (x0, ξ0) /∈WF (u), and P(x,D) is a partial
differential operator:

P(x,D) =
∑
|α|≤m

aα(x)Dα

D = (D1, ...,Dn), Di = −i
∂

∂xi

α = (α1, ..., αn), |α| =
∑

i

αi ,

Dα = Dα1
1 ...Dαn

n

Then (x0, ξ0) /∈WF (P(x,D)u) [i.e.: WF (Pu) ⊂WF (u)].



Proof

Choose X × Ξ as in the definition, φ ∈ D(X ) form the required
Fourier transform ∫

dx e ix·(τξ)φ(x)P(x,D)u(x)

and start integrating by parts: eventually

=
∑
|α|≤m

τ |α|ξα
∫

dx e ix·(τξ)φα(x)u(x)

where φα ∈ D(X ) is a linear combination of derivatives of φ and
the aαs. Since each integral is rapidly decreasing as τ →∞ for
ξ ∈ Ξ, it remains rapidly decreasing after multiplication by τ |α|,
and so does the sum. Q. E. D.



Integral representation of linearized operator

With w = δ, acoustic potential u is same as Causal Green’s
function G (x, t; xs) = retarded fundamental solution:(

1

v 2

∂2

∂t2
−∇2

)
G (x, t; xs) = δ(t)δ(x− xs)

and G ≡ 0, t < 0. Then (w = δ!) p = ∂G
∂t , δp = ∂δG

∂t , and(
1

v 2

∂2

∂t2
−∇2

)
δG (x, t; xs) =

2

v 2(x)

∂2G

∂t2
(x, t; xs)r(x)

Simplification: from now on, define F [v ]r = δG |x=xr
- i.e. lose a

t-derivative. Duhamel’s principle ⇒

δG (xr , t; xs) =

∫
dx

2r(x)

v(x)2

∫
ds G (xr , t − s; x)

∂2G

∂t2
(x, s; xs)



Add geometric optics...

Geometric optics approximation of G should be good, as v is
smooth. Local version: if x “not too far” from xs , then

G (x, t; xs) = a(x; xs)δ(t − τ(x; xs)) + R(x, t; xs)

where the traveltime τ(x; xs) solves the eikonal equation

v |∇τ | = 1

τ(x; xs) ∼ |x− xs |
v(xs)

, x→ xs

and the amplitude a(x; xs) solves the transport equation

∇ · (a2∇τ) = 0



Simple Geometric Optics

“Not too far” means: there should be one and only one ray of
geometric optics connecting each xs or xr to each x ∈ suppr .

Will call this the simple geometric optics assumption.

(y,x )+  (y,x )ττt=

x x

y

s

r s

r



An oft-forgotten detail

All of this is meaningful only if the remainder R is small in a
suitable sense: energy estimate (Exercise!) ⇒

∫
dx

∫ T

0
dt |R(x, t; xs)|2 ≤ C‖v‖C4



Numerics, and a caution

Numerical solution of eikonal, transport: ray tracing (Lagrangian),
various sorts of upwind finite difference (Eulerian) methods. See
eg. Sethian book, WWS 1999 MGSS notes (online) for details.

For “random but smooth” v(x) with variance σ, more than one
connecting ray occurs as soon as the distance is O(σ−2/3). Such
multipathing is invariably accompanied by the formation of a
caustic (White, 1982).

Upon caustic formation, the simple geometric optics field
description above is no longer correct (Ludwig, 1966).



A caustic example (1)
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sin1: velocity field

2D Example of strong refraction: Sinusoidal velocity field
v(x , z) = 1 + 0.2 sin πz

2 sin 3πx



A caustic example (2)
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sin1: rays with takeoff angles in range 1.41372 to 1.72788

Rays in sinusoidal velocity field, source point = origin. Note
formation of caustic, multiple rays to source point in lower center.



The linearized operator as Generalized Radon Transform

Assume: supp r contained in simple geometric optics domain (each
point reached by unique ray from any source or receiver point).

Then distribution kernel K of F [v ] is

K (xr , t, xs ; x) =

∫
ds G (xr , t − s; x)

∂2G

∂t2
(x, s; xs)

2

v 2(x)

'
∫

ds
2a(xr , x)a(x, xs)

v 2(x)
δ′(t − s − τ(xr , x))δ′′(s − τ(x, xs))



=
2a(x, xr )a(x, xs)

v 2(x)
δ′′(t − τ(x, xr )− τ(x, xs))

provided that

∇xτ(x, xr ) +∇xτ(x, xs) 6= 0

⇔ velocity at x of ray from xs not negative of velocity of ray from
xr ⇔ no forward scattering. [Gel’fand and Shilov, 1958 - when is
pullback of distribution again a distribution?].



Q: What does ' mean?

A: It means “differs by something smoother”.

In theory, can complete the geometric optics approximation of the
Green’s function so that the difference is C∞ - then the two sides
have the same singularities, ie. the same wavefront set.

In practice, it’s sufficient to make the difference just a bit
smoother, so the first term of the geometric optics approximation
(displayed above) suffices (can formalize this with modification of
wavefront set defn).

These lectures will ignore the distinction.



GRT = “Kirchhoff” modeling

So: for r supported in simple geometric optics domain, no forward
scattering ⇒

δG (xr , t; xs) '

∂2

∂t2

∫
dx

2r(x)

v 2(x)
a(x, xr )a(x, xs)δ(t − τ(x, xr )− τ(x, xs))

That is: pressure perturbation is sum (integral) of r over reflection
isochron {x : t = τ(x, xr ) + τ(x, xs)}, w. weighting, filtering. Note:
if v =const. then isochron is ellipsoid, as τ(xs , x) = |xs − x|/v !

(y,x )+  (y,x )ττt=

x x

y

s

r s

r



Zero Offset data and the Exploding Reflector

Zero offset data (xs = xr ) is seldom actually measured (contrast
radar, sonar!), but routinely approximated through NMO-stack (to
be explained later).

Extracting image from zero offset data, rather than from all
(100’s) of offsets, is tremendous data reduction - when
approximation is accurate, leads to excellent images.

Imaging basis: the exploding reflector model (Claerbout, 1970’s).



For zero-offset data, distribution kernel of F [v ] is

K (xs , t, xs ; x) =
∂2

∂t2

∫
ds

2

v 2(x)
G (xs , t − s; x)G (x, s; xs)

Under some circumstances (explained below), K ( = G
time-convolved with itself) is “similar” (also explained) to G̃ =
Green’s function for v/2. Then

δG (xs , t; xs) ∼ ∂2

∂t2

∫
dx G̃ (xs , t, x)

2r(x)

v 2(x)

∼ solution w of (
4

v 2

∂2

∂t2
−∇2

)
w = δ(t)

2r

v 2

Thus reflector “explodes” at time zero, resulting field propagates in
“material” with velocity v/2.



Explain when the exploding reflector model “works”, i.e. when G
time-convolved with itself is “similar” to G̃ = Green’s function for
v/2. If supp r lies in simple geometry domain, then

K (xs , t, xs ; x) =

∫
ds

2a2(x, xs)

v 2(x)
δ(t − s − τ(xs , x))δ′′(s − τ(x, xs))

=
2a2(x, xs)

v 2(x)
δ′′(t − 2τ(x, xs))

whereas the Green’s function G̃ for v/2 is

G̃ (x, t; xs) = ã(x, xs)δ(t − 2τ(x, xs))

(half velocity = double traveltime, same rays!).



Difference between effects of K , G̃ : for each xs scale r by smooth
fcn - preserves WF (r) hence WF (F [v ]r) and relation between
them. Also: adjoints have same effect on WF sets.

Upshot: from imaging point of view (i.e. apart from amplitude,
derivative (filter)), kernel of F [v ] restricted to zero offset is same
as Green’s function for v/2, provided that simple geometry
hypothesis holds: only one ray connects each source point to each
scattering point, ie. no multipathing.

See Claerbout, IEI, for examples which demonstrate that
multipathing really does invalidate exploding reflector model.



Standard Processing

Inspirational interlude: the sort-of-layered theory =“Standard
Processing”

Suppose were v ,r functions of z = x3 only, all sources and
receivers at z = 0. Then the entire system is translation-invariant
in x1, x2 ⇒ Green’s function G its perturbation δG , and the
idealized data δG |z=0 are really only functions of t and half-offset
h = |xs − xr |/2. There would be only one seismic experiment,
equivalent to any common midpoint gather (“CMP”).

This isn’t really true - look at the data!!! However it is
approximately correct in many places in the world: CMPs change
very slowly with midpoint xm = (xr + xs)/2.



Standard processing: treat each CMP as if it were the result of an
experiment performed over a layered medium, but permit the layers
to vary with midpoint.

Thus v = v(z), r = r(z) for purposes of analysis, but at the end
v = v(xm, z), r = r(xm, z).

F [v ]r(xr , t; xs)

'
∫

dx
2r(z)

v 2(z)
a(x, xr )a(x, xs)δ′′(t − τ(x, xr )− τ(x, xs))

=

∫
dz

2r(z)

v 2(z)

∫
dω

∫
dxω2a(x, xr )a(x, xs)e iω(t−τ(x,xr )−τ(x,xs))



Since we have already thrown away smoother (lower frequency)
terms, do it again using stationary phase. Upshot (see 2000 MGSS
notes for details): up to smoother (lower frequency) error,

F [v ]r(h, t) ' A(z(h, t), h)R(z(h, t))

Here z(h, t) is the inverse of the 2-way traveltime

t(h, z) = 2τ((h, 0, z), (0, 0, 0))

i.e. z(t(h, z ′), h) = z ′. R is (yet another version of) “reflectivity”

R(z) =
1

2

dr

dz
(z)

That is, F [v ] is a a derivative followed by a change of variable
followed by multiplication by a smooth function. Substitute t0

(vertical travel time) for z (depth) and you get “Inverse NMO”
(t0 → (t, h)). Will be sloppy and call z → (t, h) INMO.



Anatomy of an adjoint

∫
dt

∫
dh d(t, h)F [v ]r(t, h)

=

∫
dt

∫
dh d(t, h)A(z(t, h), h)R(z(t, h))

=

∫
dz R(z)

∫
dh

∂t

∂z
(z , h)A(z , h)d(t(z , h), h)

=

∫
dz r(z)(F [v ]∗d)(z)

so F [v ]∗ = − ∂
∂z SM[v ]N[v ], where

I N[v ] = NMO operator N[v ]d(z , h) = d(t(z , h), h)

I M[v ] = multiplication by ∂t
∂z A

I S = stacking operator Sf (z) =
∫

dh f (z , h)



F [v ]∗F [v ]r(z) = − ∂

∂z

[∫
dh

dt

dz
(z , h)A2(z , h)

]
∂

∂z
r(z)

Microlocal property of PDOs ⇒ WF (F [v ]∗F [v ]r) ⊂WF (r) i.e.
F [v ]∗ is an imaging operator.

If you leave out the amplitude factor (M[v ]) and the derivatives, as
is commonly done, then you get essentially the same expression -
so (NMO, stack) is an imaging operator!

It’s even easy to get an (asymptotic) inverse out of this - exercise
for the reader.

Now make everything dependent on xm and you’ve got standard
processing. (end of layered interlude).



Multioffset (“Prestack”) Imaging, après Beylkin

If d = F [v ]r , then
F [v ]∗d = F [v ]∗F [v ]r

In the layered case, F [v ]∗F [v ] is an operator which preserves wave
front sets. Whenever F [v ]∗F [v ] preserves wave front sets, F [v ]∗ is
an imaging operator.

Beylkin, JMP 1985: for r supported in simple geometric optics
domain,

I WF (Fδ[v ]∗Fδ[v ]r) ⊂WF (r)

I if Sobs = S [v ] + Fδ[v ]r (data consistent with linearized
model), then Fδ[v ]∗(Sobs − S [v ]) is an image of r

I an operator Fδ[v ]† exists for which Fδ[v ]†(Sobs − S [v ])− r is
smoother than r , under some constraints on r - an inverse
modulo smoothing operators or parametrix.



Outline of proof

Express F [v ]∗F [v ] as “Kirchhoff modeling” followed by “Kirchhoff
migration”; (ii) introduce Fourier transform; (iii) approximate for
large wavenumbers using stationary phase, leads to representation
of F [v ]∗F [v ] modulo smoothing error as pseudodifferential
operator (“ΨDO”):

F [v ]∗F [v ]r(x) ' p(x,D)r(x) ≡
∫

dξ p(x, ξ)e ix·ξ r̂(ξ)

in which p ∈ C∞, and for some m (the order of p), all multiindices
α, β, and all compact K ⊂ Rn, there exist constants Cα,β,K ≥ 0 for
which

|Dα
x Dβ

ξ
p(x, ξ)| ≤ Cα,β,K (1 + |ξ|)m−|β|, x ∈ K

Explicit computation of symbol p - for details, see Notes on Math
Foundations.



Microlocal Propertyof ΨDOs

if p(x ,D) is a ΨDO, u ∈ E ′(Rn) then
WF (p(x ,D)u) ⊂WF (u).

Will prove this, from which imaging property of prestack Kirchhoff
migration follows. First, a few other properties:

I differential operators are ΨDOs (easy - exercise)

I ΨDOs of order m form a module over C∞(Rn) (also easy)

I product of ΨDO order m, ΨDO order l = ΨDO order ≤ m + l ;
adjoint of ΨDO order m is ΨDO order m (much harder)

Complete accounts of theory, many apps: books of Duistermaat,
Taylor, Nirenberg, Treves, Hörmander.



Proof of Microlocal Property

Suppose (x0, ξ0) /∈WF (u), choose neighborhoods X , Ξ as in defn,
with Ξ conic. Need to choose analogous nbhds for P(x ,D)u. Pick
δ > 0 so that B3δ(x0) ⊂ X , set X ′ = Bδ(x0).

Similarly pick 0 < ε < 1/3 so that B3ε(ξ0/|ξ0|) ⊂ Ξ, and chose
Ξ′ = {τξ : ξ ∈ Bε(ξ0/|ξ0|), τ > 0}.

Need to choose φ ∈ E ′(X ′), estimate F(φP(x,D)u). Choose
ψ ∈ E(X ) so that ψ ≡ 1 on B2δ(x0).

NB: this implies that if x ∈ X ′, ψ(y) 6= 1 then |x− y| ≥ δ.



Write u = (1− ψ)u + ψu. Claim: φP(x,D)((1− ψ)u) is smooth.

φ(x)P(x,D)((1− ψ)u))(x)

= φ(x)

∫
dξ P(x, ξ)e ix·ξ

∫
dy (1− ψ(y))u(y)e−iy·ξ

=

∫
dξ

∫
dy P(x, ξ)φ(x)(1− ψ(y))e i(x−y)·ξu(y)

=

∫
dξ

∫
dy (−∇2

ξ)MP(x, ξ)φ(x)(1−ψ(y))|x−y|−2Me i(x−y)·ξu(y)



using the identity

e i(x−y)·ξ = |x− y|−2
[
−∇2

ξe i(x−y)·ξ
]

and integrating by parts 2M times in ξ. This is permissible
because φ(x)(1− ψ(y)) 6= 0⇒ |x− y| > δ.

According to the definition of ΨDO,

|(−∇2
ξ)MP(x, ξ)| ≤ C |ξ|m−2M

For any K , the integral thus becomes absolutely convergent after
K differentiations of the integrand, provided M is chosen large
enough. Q.E.D. Claim.

This leaves us with φP(x,D)(ψu). Pick η ∈ Ξ′ and w.l.o.g. scale
|η| = 1.



Fourier transform:

F(φP(x,D)(ψu))(τη) =

∫
dx

∫
dξ P(x, ξ)φ(x)ψ̂u(ξ)e ix·(ξ−τη)

Introduce τθ = ξ, and rewrite this as

= τn

∫
dx

∫
dθ P(x, τθ)φ(x)ψ̂u(τθ)e iτx·(θ−η)

Divide the domain of the inner integral into {θ : |θ − η| > ε} and
its complement. Use

−∇2
xe iτx·(θ−η) = τ2|θ − η|2e iτx·(θ−η)



Integrate by parts 2M times to estimate the first integral:

τn−2M

∣∣∣∣∣
∫

dx

∫
|θ−η|>ε

dθ (−∇2
x)M [P(x, τθ)φ(x)]ψ̂u(τθ)

× |θ − η|−2Me iτx·(θ−η)
∣∣∣

≤ Cτn+m−2M

m being the order of P. Thus the first integral is rapidly
decreasing in τ .



For the second integral, note that |θ − η| ≤ ε⇒ θ ∈ Ξ, per the
defn of Ξ′. Since X × Ξ is disjoint from the wavefront set of u, for
a sequence of constants CN , |ψ̂u(τθ)| ≤ CNτ

−N uniformly for θ in
the (compact) domain of integration, whence the second integral is
also rapidly decreasing in τ . Q. E. D.

And that’s why Kirchhoff migration works, at least in the simple
geometric optics regime.



Asymptotic Prestack Inversion

Recall: in layered case,

F [v ]r(h, t) ' A(z(h, t), h)
1

2

dr

dz
(z(h, t))

F [v ]∗d(z) ' − ∂

∂z

∫
dh A(z , h)

∂t

∂z
(z , h)d(t(z , h), h)

F [v ]∗F [v ] = − ∂

∂z

[∫
dh

dt

dz
(z , h)A2(z , h)

]
∂

∂z

In particular, the normal operator F [v ]∗F [v ] is an elliptic PDO.



Thus normal operator is asymptotically invertible and you can
construct approximate least-squares solution to F [v ]r = d :

r̃ ' (F [v ]∗F [v ])−1F [v ]∗d

Relation between r and r̃ : difference is smoother than either. Thus
difference is small if r is oscillatory - consistent with conditions
under which linearization is accurate.

Analogous construction in simple geometric optics case: due to
Beylkin (1985).

Complication: F [v ]∗F [v ] cannot be invertible - because
WF (F [v ]∗F [v ]r) generally quite a bit “smaller” than WF (r).



Inversion aperture

Γ[v ] ⊂ R3 × R3 − 0:

if WF (r) ⊂ Γ[v ], then WF (F [v ]∗F [v ]r) = WF (r) and F [v ]∗F [v ]
“acts invertible”. [construction of Γ[v ] - later!]

Beylkin: with proper choice of amplitude b(xr , t; xs), the modified
Kirchhoff migration operator

F [v ]†d(x) =∫ ∫ ∫
dxr dxs dt b(xr , t; xs)δ(t − τ(x; xs)− τ(x; xr ))d(xr , t; xs)

yields F [v ]†F [v ]r ' r if WF (r) ⊂ Γ[v ]



For details of Beylkin construction: Beylkin, 1985; Miller et al
1989; Bleistein, Cohen, and Stockwell 2000; WWS Math
Foundations, MGSS notes 1998. All components are by-products
of eikonal solution.

aka: Generalized Radon Transform (“GRT”) inversion, Ray-Born
inversion, migration/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop,
Lambaré,...

Apparent limitation: construction relies on simple geometric optics
(no multipathing) - how much of this can be rescued? cf. Part III.
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Example of GRT Inversion (application of F [v ]†): K. Araya (1995),
“2.5D” inversion of marine streamer data from Gulf of Mexico:
500 source positions, 120 receiver channels, 750 Mb.



Agenda
Seismic inverse problem: the sedimentary Earth, reflection seismic
measurements, the acoustic model, linearization, reflectors and
reflections idealized via harmonic analysis of singularities

High frequency asymptotics: why adjoints of modeling operators
are imaging operators (“Kirchhoff migration”). Beylkin-Rakesh-...
theory of high frequency asymptotic inversion

Adjoint state imaging with the wave equation: reverse time and
reverse depth

Geometric optics, Rakesh’s construction, and asymptotic inversion
w/ caustics and multipathing, imaging artifacts, and prestack
migration après Claerbout.

A step beyond linearization: a mathematical framework for velocity
analysis



Wave Equation Migration

Techniques for computing F [v ]∗:

(i) Reverse time

(ii) Reverse depth



Reverse Time Migration, Zero Offset

Start with the zero-offset case - easier, but only if you replace it
with the exploding reflector model, which replaces F [v ] by

F̃ [v ]r(xs , t) = w(xs , t), xs ∈ Xs , 0 ≤ t ≤ T(
4

v 2

∂2

∂t2
−∇2

)
w = δ(t)

2r

v 2
, w ≡ 0, t < 0

To compute the adjoint, start with its definition: choose
d ∈ E(Xs × (0,T )), so that

< F̃ [v ]∗d , r >=< d , F̃ [v ]r >

=

∫
Xs

dxs

∫ T

0
dt d(xs , t)w(xs , t)



The only thing you know about w is that it solves a wave equation
with r on the RHS. To get this fact into play, (i) rewrite the
integral as a space-time integral:

=

∫
R3

dx

∫ T

0
dt

∫
Xs

dxs d(xs , t)δ(x− xs)w(x, t)

(ii) write the other factor in the integrand as the image of a field q
under the (adjoint of the) wave operator (it’s self-adjoint), that is,(

4

v 2

∂2

∂t2
−∇2

)
q(x, t) =

∫
Xs

dxs d(xs , t)δ(x− xs)

so

=

∫
R3

dx

∫ T

0
dt

[(
4

v 2(x)

∂2

∂t2
−∇2

)
q(x, t)

]
w(x, t)



(iii) integrate by parts

=

∫
R3

dx

∫ T

0
dt

[(
4

v 2(x)

∂2

∂t2
−∇2

)
w(x, t)

]
q(x, t)

which works if q ≡ 0, t > T (final value condition); (iv) use the
wave equation for w

=

∫
R3

dx

∫ T

0
dt

2

v(x)2
r(x)δ(t)q(x, t)

(v) observe that you have computed the adjoint:

=

∫
R3

dx r(x)

[
2

v(x)2
q(x, 0)

]
=< r , F̃ [v ]∗d >

i.e.

F̃ [v ]∗d =
2

v(x)2
q(x, 0)



Summary of the computation, with the usual description:

I Use that data as sources, backpropagate in time - i.e. solve
the final value (“reverse time”) problem(

4

v 2

∂2

∂t2
−∇2

)
q(x, t) =

∫
Xs

dxs d(xs , t)δ(x−xs), q ≡ 0, t > T

I read out the “image” (= adjoint output) at t = 0:

F̃ [v ]∗d =
2

v(x)2
q(x, 0)

Note: The adjoint (time-reversed) field q is not the physical field
(δu) run backwards in time, contrary to some imputations in the
literature.



Historical Remarks

I Known as “two way reverse time finite difference poststack
migration” in geophysical literature (Whitmore, 1982)

I uses full (two way) wave equation, propagates adjoint field
backwards in time, generally implemented using finite
difference discretization.

I Same as “adjoint state method”, Lions 1968, Chavent 1974
for control and inverse problems for PDEs - much earlier for
control of ODEs - Lailly, Tarantola ’80s.

I My buddy Tapia says: all you’re doing is transposing a matrix!
True (after discretization), but it’s important that these
matrices are triangular, so can be implemented by recursions -
forward for simulation, backwards for adjoint.



Reverse Time Migration, Prestack

A slightly messier computation computes the adjoint of F [v ] (i.e.
multioffset or prestack migration):

F [v ]∗d(x) = − 2

v(x)

∫
dxs

∫ T

0
dt

(
∂q

∂t
∇2u

)
(x, t; xs)

where adjoint field q satisfies q ≡ 0, t ≥ T and

(
1

v 2

∂2

∂t2
−∇2

)
q(x, t; xs) =

∫
dxr d(xr , t; xs)δ(x− xr )



Proof

< F [v ]∗d , r >=< d ,F [v ]r >

=

∫ ∫
dxs dxr

∫ T

0
dt d(xr , t; xs)

∂δu

∂t
(xr , t; xs)

=

∫
dxs

∫
dx

∫ T

0
dt

{∫
dxr d(xr , t; xs)δ(x− xr )

}
∂δu

∂t
(x, t; xs)

=

∫
dxs

∫
dx

∫ T

0
dt

[(
1

v 2

∂2

∂t2
−∇2

)
q

]
∂δu

∂t
(x, t; xs)



= −
∫

dxs

∫
dx

∫ T

0
dt

[(
1

v 2

∂2

∂t2
−∇2

)
δu

]
∂q

∂t
(x, t; xs)

(boundary terms in integration by parts vanish because (i)
δu ≡ 0, t << 0; (ii) q ≡ 0, t >> 0; (iii) both vanish for large x, at
each t)

= −
∫

dxs

∫
dx

∫ T

0
dt

(
2r

v 2

∂2u

∂t2

∂q

∂t

)
(x, t; xs)

= −
∫

dxs

∫
dx r(x)

2

v 2(x)

∫ T

0
dt

(
∂2u

∂t2

∂q

∂t

)
(x, t; xs)

=< r ,F [v ]∗d >

q.e.d.



Implementation

Algorithm: finite difference or finite element discretization in x,
finite difference time stepping.

I For each xs , solve wave equation for u forward in t, record
final (t=T) Cauchy data, also (for example) Dirichlet
boundary data.

I Step u and q backwards in time together; at each time step,
data serves as source for q (“backpropagate data”)

I During backwards time stepping, accumulate (approximations
to)

Q(x)+ =
2

v 2(x)

∫ T

0
dt

(
∂2u

∂t2

∂q

∂t

)
(x, t; xs)

(“crosscorrelate reference and backpropagated field”).

I next xs - after last xs , F [v ]∗d = Q.



Reverse Depth Migration, Zero Offset

aka: depth extrapolation, downward continuation, or simply “wave
equation migration”.

Introduced by Claerbout, early 70’s (“swimming pool equation”).
Again, assume exploding reflector model:

F̃ [v ]r(xs , t) = w(xs , t), xs ∈ Xs , 0 ≤ t ≤ T(
4

v 2

∂2

∂t2
−∇2

)
w = δ(t)

2r

v 2
, w ≡ 0, t < 0

Basic idea: 2nd order wave equation permits waves to move in all
directions, but waves carrying reflected energy are (mostly) moving
up. Should satisfy a 1st order equation for wave motion in one
direction.



Coming up...

For the moment use 2D notation x = (x , z) etc. Write wave
equation as evolution equation in z :

∂2w

∂z2
−
(

4

v 2

∂2

∂t2
− ∂2

∂x2

)
w = −δ(t)

2r

v 2

Suppose that you could take the square root of the operator in
parentheses - call it B. Then the LHS of the wave equation
becomes (

∂

∂z
− B

)(
∂

∂z
+ B

)
w = −δ(t)

2r

v 2

so setting w̃ =
(
∂
∂z + B

)
w you get(

∂

∂z
− B

)
w̃ = −δ(t)

2r

v 2



Some issues

This might be the required equation for upcoming waves.

Two major problems: (i) how the h–l do you take the square root
of a PDO?

(ii) what guarantees that the equation just written governs
upcoming waves?

Answers to be found in the theory of ΨDOs!



Classical ΨDOs

Important subclass of classical ΨDOs: those whose (“classical”)
symbols have asymptotic expansions:

p(x, ξ) ∼
∑
j≤m

pj(x, ξ), |ξ| → ∞

in which pj is homogeneous in ξ of degree j :

pj(x, τξ) = τ jpj(x, τξ), τ, |ξ| ≥ 1

The principal symbol is the homogeneous term of highest degree,
i.e. pm above.



Products of ΨDOs are ΨDOs.

Classical ΨDOs have more complete calculus, including
prescriptions for “computing” adjoints, products, and the like.
From now on unless otherwise stated, all ΨDOs are classical.

Product rule for ΨDOs: if p1, p2 are classical,

p1(x, ξ) =
∑
j≤m1

p1
j (x, ξ), p2(x, ξ) =

∑
j≤m2

p2
j (x, ξ)

then so is p1(x,D)p2(x,D), and its principal symbol is
p1
m1(x, ξ)p2

m2(x, ξ), and there is an algorithm for computing the
rest of the expansion.

In an open neighborhood X × Ξ of (x0, ξ0), symbol of
p1(x,D)p2(x,D) depends only on symbols of p1, p2 in X × Ξ.



Consequence: if a(x,D) has an asymptotic expansion and is of
order m ∈ R, and am(x0, ξ0) > 0 in P ⊂ Rn × Rn − 0, then there
exists b(x,D) of order m/2 with asymptotic expansion for which

(a(x,D)− b(x,D)b(x,D))u ∈ E(Rn)

for any u ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover, bm/2(x, ξ) =
√

am(x, ξ), (x, ξ) ∈ P. Will call b a
microlocal square root of a.

Similar construction: if a(x, ξ) 6= 0 in P, then there is c(x,D) of
order −m so that

c(x,D)a(x,D)u − u, a(x,D)c(x,D)u − u ∈ E(Rn)

for any u ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover, c−m(x, ξ) = 1/am(x, ξ), (x, ξ) ∈ P. Will call b a
microlocal inverse of a.



Application: the Square Root Operator

a(x , z ,Dt ,Dx) =
∂2

∂x2
− 4

v(x , z)2

∂2

∂t2
=

4

v(x , z)2
D2

t − D2
x

is

a(x , z , τ, ξ) =
4

v(x , z)2
τ2 − ξ2

For δ > 0, set

Pδ(z) =

{
(x , t, ξ, τ) :

4

v(x , z)2
τ2 > (1 + δ)ξ2

}



The SSR Operator

Then according to the last slide, there is an order 1 ΨDO-valued
function of z , b(x , z ,Dt ,Dx), with principal symbol

b1(x , z , τ, ξ) =

√
4

v(x , z)2
τ2 − ξ2 = τ

√
4

v(x , z)2
− ξ2

τ2
, (x , t, ξ, τ) ∈ Pδ(z)

for which a(x , z ,Dt ,Dx)u ' b(x , z ,Dt ,Dx)b(x , z ,Dt ,Dx)u if
WF (u) ⊂ Pδ(z).

b is the world-famous single square root (“SSR”) operator - see
Claerbout, IEI.



The SSR Assumption

To what extent has this construction factored the wave operator:

(
∂

∂z
− ib(x , z ,Dx ,Dt)

)(
∂

∂z
+ ib(x , z ,Dx ,Dt)

)
=

∂2

∂z2
+ b(x , z ,Dx ,Dt)b(x , z ,Dx ,Dt) +

∂b

∂z
(x , z ,Dx ,Dt)

SSR Assumption: For some δ > 0, the wavefield w satisfies

(x , z , t, ξ, ζ, τ) ∈WF (w) ⇒ (x , t, ξ, τ) ∈ Pδ(z) and ζτ > 0



This statement has a ray-theoretic interpretation (which will
eventually make sense): rays carrying significant energy are
nowhere horizontal. Along any such ray, z decreases as t increases
- coming up!

w̃(x , z , t) =

(
∂

∂z
+ ib(x , z ,Dx ,Dt)

)
w(x , z , t)

b(x , z ,Dx ,Dt)b(x , z ,Dx ,Dt)w '
(

4

v(x , z)2
D2

t − D2
x

)
w

with a smooth error, so(
∂

∂z
− ib(x , z ,Dx ,Dt)

)
w̃(x , z , t) = −2r(x , z)

v(x , z)2
δ(t)

+i

(
∂

∂z
b(x , z ,Dx ,Dt)

)
w(x , z , t)



(since b depends on z , the z deriv. does not commute with b). So
w̃ = w̃0 + w̃1, where

(
∂

∂z
− ib(x , z ,Dx ,Dt)

)
w̃0(x , z , t) = −2r(x , z)

v(x , z)2
δ(t)

(this is the SSR modeling equation)

(
∂

∂z
− ib(x , z ,Dx ,Dt)

)
w̃1(x , z , t) = i

(
∂

∂z
b(x , z ,Dx ,Dt)

)
w(x , z , t)

Claim: WF (w̃1) ⊂WF (w). Granted this ⇒ WF (w̃0) ⊂WF (w)
also.



Upshot: SSR modeling

F̃0[v ]r(xs , zs , t) = w̃0(xs , zs , t)

produces the same singularities (i.e. the same waves) as exploding
reflector modeling, so is as good a basis for migration.

SSR migration: assume that sources all lie on zs = 0.

< F̃0[v ]∗d , r >=< d , F̃0[v ]r >

=

∫
dxs

∫
dt d(xs , t)w̃0(xs , 0, t)



=

∫
dxs

∫
dt

∫
dz ¯d(xs , t)δ(z)w̃0(xs , z , t)

Define the adjoint field q by(
∂

∂z
− b(x , z ,Dx ,Dt)

)
q(x , z , t) = d(x , t)δ(z), q(x , z , t) ≡ 0, z < 0

which is equivalent to solving the initial value problem(
∂

∂z
− ib(x , z ,Dx ,Dt)

)
q(x , z , t) = 0, z > 0; , q(x , 0, t) = d(x , t)

Insert in expression for inner product, integrate by parts, use
self-adjointness of b, get

< d , F̃0[v ]r >=

∫
dx

∫
dz

2r(x , z)

v(x , z)2
q(x , z , 0)



whence

F̃0[v ]∗d(x , z) =
2

v(x , z)2
q(x , z , 0)

Standard description of the SSR migration algorithm:

I downward continue data (i.e. solve for q)

I image at t = 0.

The art of SSR migration: computable approximations to
b(x , z ,Dx ,Dt) - swimming pool operator, many successors.



Proof of the Claim

Unfinished business: proof of claim

Depends on celebrated Propagation of Singularities theorem of
Hörmander (1970).

Given symbol p(x, ξ), order m, with asymptotic expansion, define
bicharateristics as solutions (x(t), ξ(t)) of Hamiltonian system

dx

dt
=
∂p

∂ξ
(x, ξ),

dξ

dt
= −∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Suppose p(x,D)u = f , and suppose that for
t0 ≤ t ≤ t1, (x(t), ξ(t)) /∈WF (f ). Then either
{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂WF (u) or
{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ T ∗(Rn)−WF (u).



P of S has at least two distinct proofs:

I Nirenberg, 1972

I Hörmander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR operator are
just upcoming rays of geom. optics for wave equation. These pass
into t < 0 where RHS is smooth, also initial condn at large z is
smooth - so each ray has one “end” outside of WF (w̃1). If ray
carries singularity, must pass of WF of w , but then it’s entirely
contained by P of S applied to w . q. e. d.



Reverse Depth Migration, Prestack

Nonzero offset (“prestack”): starting point is integral
representation of the scattered field

F [v ]r(xr , t; xs) =
∂2

∂t2

∫
dx

2r(x)

v(x)2

∫
ds G (xr , t − s; x)G (xs , s; x)

By analogy with zero offset case, would like to view this as
“exploding reflectors in both directions”: reflectors propagate
energy upward to sources and to receivers.

However can’t do this because reflection location is same for both.



The “survey sinking” idea

Bold stroke: introduce a new space variable y (a “sunken source”,
think of x as a “sunken receiver”), define

F̃ [v ]R(xr , t; xs) =
∂2

∂t2

∫ ∫
dx dy R(x, y)

∫
ds G (xr , t−s; x)G (xs , s; y)

and note that F̃ [v ]R = F [v ]r if

R(x, y) =
2r

v 2

(
x + y

2

)
δ(x− y)



This trick decomposes F [v ] into two “exploding reflectors”:

F̃ [v ]R(xr , t; xs) = u(x, t; xs)|x=xr

where(
1

v(x)2

∂2

∂t2
−∇2

x

)
u(x, t; xs) =

∫
dy R(x, y)G (xs , t; y)

≡ ws(xs , t; x)

(“upward continue the receivers”),(
1

v(y)2

∂2

∂t2
−∇2

y

)
ws(y, t; x) = R(x, y)δ(t)

(“upward continue the sources”).



This factorization of F [v ] (r 7→ R 7→ F̃ [v ]R) leads to a reverse
time computation of adjoint F̃ [v ]∗ - will discuss this later.

It’s equally possible to continue the receivers first, then the
sources, which leads to(

1

v(y)2

∂2

∂t2
−∇2

y

)
u(xr , t; y) =

∫
dx R(x, y)G (xr , t; x)

≡ wr (xr , t; y)

(“upward continue the sources”),(
1

v(x)2

∂2

∂t2
−∇2

x

)
wr (x, t; y) = R(x, y)δ(t)

(“upward continue the receivers”).



The DSR Assumption

Apply reverse depth concept: as before, go 2D temporarily,
x = (x , zr ), y = (y , zs), all sources and receivers on z = 0.

Double Square Root (“DSR”) assumption: For some δ > 0, the
wavefield u satisfies

(x , zr , t, y , zs , ξ, ζs , τ, η, ζr ) ∈WF (u) ⇒

(x , t, ξ, τ) ∈ Pδ(zr ), (y , t, η, τ) ∈ Pδ(zs), and ζrτ > 0, ζsτ > 0,

As for SSR, there is a ray-theoretic interpretation: rays from source
and receiver to scattering point stay away from the vertical and
decrease in z for increasing t, i.e. they are all upcoming.



Since z will be singled out (and eventually R(x, y) will have a
factor of δ(x, y)), impose the constraint that

R(x , z , x , zs) = R̃(x , y , z)δ(z − zs)

Define upcoming projections as for SSR:

w̃s =

(
∂

∂zs
+ ib(y , zs ,Dy ,Dt)

)
ws ,

w̃r =

(
∂

∂zr
+ ib(x , zr ,Dx ,Dt)

)
wr ,

ũ =

(
∂

∂zs
+ ib(y , zs ,Dy ,Dt)

)(
∂

∂zr
+ ib(x , zr ,Dx ,Dt)

)
u



Except for lower order commutators which we justify throwing
away as before,(

∂

∂zs
− ib(y , zs ,Dy ,Dt)

)
w̃s = R̃δ(zr − zs)δ(t),

(
∂

∂zr
− ib(x , zr ,Dx ,Dt)

)
w̃r = R̃δ(zr − zs)δ(t),(

∂

∂zr
− ib(x , zr ,Dx ,Dt)

)
ũ = w̃s(

∂

∂zs
− ib(y , zs ,Dy ,Dt)

)
ũ = w̃r

Initial (final) conditions are that w̃r , w̃s , and ũ all vanish for large z
- the equations are to be solve in decreasing z (“upward
continuation”).



Simultaneous upward continuation:

∂

∂z
ũ(x , z , t; y , z) =

∂

∂zr
ũ(x , zr , t; y , z)|z=zr +

∂

∂zr
ũ(x , z , t; y , zs)|z=zs

= [ib(x , zr ,Dx ,Dt)ũ + w̃s + ib(y , zs ,Dy ,Dt)ũ + w̃r ]zr =zs=z

Since w̃s(y , z , t; x , z) = w̃r (x , z , t; y , z) = R̃(x , y , z)δ(t), ũ is seen
to satisfy the

DSR modeling equation:(
∂

∂z
− ib(x , z ,Dx ,Dt)− ib(y , z ,Dy ,Dt)

)
ũ(x , z , t; y , z) = 2R̃(x , y , z)δ(t)

F̃ [v ]R̃(xr , t; xs) = ũ(xr , 0, t; xs , 0)



DSR Migration

Computation of adjoint follows same pattern as for SSR, and leads
to

DSR migration equation: solve(
∂

∂z
− ib(x , z ,Dx ,Dt)− ib(y , z ,Dy ,Dt)

)
q̃(x , y , z , t) = 0

in increasing z with initial condition at z = 0:

q̃(xr , xs , 0, t) = d(xr , xs , t)

Then F̃ [v ]∗d(x , y , z) = q̃(x , y , z , 0)

The physical DSR model has R̃(x , y , z) = r(x , z)δ(x − y), so final
step in DSR computation of F [v ]∗ is adjoint of r 7→ R̃:

F [v ]∗d(x , z) = q̃(x , x , z , 0)



Standard description of DSR migration

(See Claerbout, IEI):

I downward continue sources and receivers (solve DSR
migration equation)

I image at t = 0 and zero offset (x = y)

Another moniker: “survey sinking”: DSR field q̃ is (related to) the
field that you would get by conducting the survey with sources and
receivers at depth z . At any given depth, the zero-offset, time-zero
part of the field is the instantaneous response to scatterers on
which source = receiver is sitting, therefore constitutes an image.

As for SSR, the art of DSR migration is in the approximation of
the DSR operator.



Remarks

Stolk and deHoop (2001) derived DSR modeling and migration via
a more systematic argument than that used here, involving ΨDO
matrix factorization of the wave equation written as a first order
evolution system in z . This idea goes back to Taylor (1975) who
used it to show that singularities propagating along
bicharacteristics reflect as expected at boundaries.

Stolk (2003) has also carried out a very careful global construction
of a family of SSR ΨDOs which are of non-classical type at
near-horizontal directions (“nearly evanescent waves”). This
construction should lead to more reliable discretizations.

The last part of the course will present the various apparently
ad-hoc “prestack modeling” ideas within a unified framework.



Agenda
Seismic inverse problem: the sedimentary Earth, reflection seismic
measurements, the acoustic model, linearization, reflectors and
reflections idealized via harmonic analysis of singularities

High frequency asymptotics: why adjoints of modeling operators
are imaging operators (“Kirchhoff migration”). Beylkin-Rakesh-...
theory of high frequency asymptotic inversion

Adjoint state imaging with the wave equation: reverse time and
reverse depth

Geometric optics, Rakesh’s construction, and asymptotic inversion
w/ caustics and multipathing, imaging artifacts, and prestack
migration après Claerbout.

A step beyond linearization: a mathematical framework for velocity
analysis



Why Beylkin isn’t enough

The theory developed by Beylkin and others cannot be the end of
the story:

I The “single ray” hypotheses generally fails in the presence of
strong refraction.

I B. White, “The Stochastic Caustic” (1982): For “random but
smooth” v(x) with variance σ, points at distance O(σ−2/3)
from source have more than one ray connecting to source,
with probability 1 - multipathing associated with formation of
caustics = ray envelopes.

I Formation of caustics invalidates asymptotic analysis on which
Beylkin result is based.



Why it matters

I Strong refraction leading to multipathing and caustic
formation typical of salt (4-5 km/s) intrusion into sedimentary
rock (2-3 km/s) (eg. Gulf of Mexico), also chalk tectonics in
North Sea and elsewhere - some of the most promising
petroleum provinces!



Escape from simplicity - the Canonical Relation

How do we get away from “simple geometric optics”, SSR, DSR,...
- all violated in sufficiently complex (and realistic) models? Rakesh
Comm. PDE 1988, Nolan Comm. PDE 1997: global description of
Fδ[v ] as mapping reflectors 7→ reflections.

Y = {xs , t, xr} (time × set of source-receiver pairs) submfd of R7

of dim. ≤ 5, Π : T ∗(R7)→ T ∗Y the natural projection

supp r ⊂ X ⊂ R3

Canonical relation CFδ[v ] ⊂ T ∗(X ) \ {0} × T ∗(Y ) \ {0} describes
singularity mapping properties of F :

(x, ξ, y, η) ∈ CFδ[v ] ⇔

for some u ∈ E ′(X ), (x, ξ) ∈WF (u), and (y, η) ∈WF (Fu)



Geometry of Reflection

Rays of geometric optics: solutions of Hamiltonian system

dX

dt
= ∇ΞH(X,Ξ),

dΞ

dt
= −∇XH(X,Ξ)

with H(X,Ξ) = 1− v 2(X)|Ξ|2 = 0 (null bicharacteristics).

Characterization of CF :

((x, ξ), (xs , t, xr , ξs, τ, ξr)) ∈ CFδ[v ] ⊂ T ∗(X )− {0} × T ∗(Y )− {0}

⇔ there are rays of geometric optics (Xs ,Ξs), (Xr ,Ξr ) and times
ts , tr so that

Π(Xs(0), t,Xr (t),Ξs(0), τ,Ξr (t)) = (xs , t, xr , ξs , τ, ξr ),

Xs(ts) = Xr (t − tr ) = x, ts + tr = t, Ξs(ts)− Ξr (t − tr )||ξ



Geometry of Reflection
Since Ξs(ts), −Ξr (t − tr ) have same length, sum = bisector ⇒
velocity vectors of incident ray from source and reflected ray from
receiver (traced backwards in time) make equal angles with
reflector at x with normal ξ.

(t−t )

X

s
Ξ (t )

s

X s

x

x x ξ rs, r,sξ,

Ξ s

ξ,

rΞr,

,

ΠΠ

−Ξr r 



Geometry of Reflection

Upshot: canonical relation of Fδ[v ] simply enforces the
equal-angles law of reflection.

Further, rays carry high-frequency energy, in exactly the fashion
that seismologists imagine.

Finally, Rakesh’s characterization of CF is global: no assumptions
about ray geometry, other than no forward scattering and no
grazing incidence on the acquisition surface Y , are needed.



Proof: Plan of attack

Recall that

F [v ]r(xr , t; xs) =
∂δu

∂t
(xr , t; xs)

where
1

v 2

∂2δu

∂t2
−∇2δu =

1

v 2

∂2u

∂t2
r

1

v 2

∂2u

∂t2
−∇2u = δ(t)δ(x− xs)

and u, δu ≡ 0, t < 0.

Need to understand (1) WF (u), (2) relation WF (r)↔WF (ru),
(3) WF of soln of WE in terms of WF of RHS (this also gives
(1)!).



Singularities of the Acoustic Potential Field

Main tool: Propagation of Singularities theorem of Hörmander
(1970).

Given symbol p(x, ξ), order m, with asymptotic expansion, define
null bicharateristics (= rays) as solutions (x(t), ξ(t)) of
Hamiltonian system

dx

dt
=
∂p

∂ξ
(x, ξ),

dξ

dt
= −∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Suppose p(x,D)u = f , and suppose that for
t0 ≤ t ≤ t1, (x(t), ξ(t)) /∈WF (f ). Then either
{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂WF (u) or
{(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ T ∗(Rn)−WF (u).



Source to Field

RHS of wave equation for u = δ function in x, t. WF set =
{(x, t, ξ, τ) : x = xs , t = 0} - i.e. no restriction on covector part.

⇒ (x, t, ξ, τ) ∈WF (u) iff a ray starting at (xs , 0) passes over
(x, t) - i.e. (x, t) lies on the “light cone” with vertex at (xs , 0).
Symbol for wave op is p(x, t, ξ, τ) = 1

2 (τ2 − v 2(x)|ξ|2), so
Hamilton’s equations for null bicharacteristics are

dX

dt
= −v 2(X)Ξ,

dΞ

dt
= ∇ log v(X)

Thus ξ is proportional to velocity vector of ray.

[(ξ, τ) normal to light cone.]



Singularities of Products

To compute WF (ru) from WF (r) and WF (u), use Gabor calculus
(Duistermaat, Ch. 1)

Here r is really (r ◦ π)u, where π(x, t) = x. Choose bump function
φ localized near (x, t)

̂φ(r ◦ π)u(ξ, τ) =

∫
dξ′ dτ ′φ̂r(ξ′)δ(τ ′)û(ξ − ξ′, τ − τ ′)

=

∫
dξ′φ̂r(ξ′)û(ξ − ξ′, τ)



This will decay rapidly as |(ξ, τ)| → ∞ unless (i) you can find
(x′, ξ′) ∈WF (r) so that x, x′ ∈ π(suppφ), ξ − ξ′ ∈WF (u), i.e.
(ξ, τ) ∈WF (r ◦π) + WF (u), or (ii) ξ ∈WF (r) or (ξ, τ) ∈WF (u).

Possibility (ii) will not contribute, so effectively

WF ((r ◦ π)u) = {(x, ts , ξ + Ξs(ts), ·) : (x, ξ) ∈WF (r), x = Xs(ts)

for a ray (Xs ,Ξs) with Xs(0) = xs , some τ .



Wavefront set of Scattered Field

Once again use propagation of singularities:
(xr , t, ξr , τr ) ∈WF (δu)⇔ on ray (Xr ,Ξr ) passing through
WF (ru). Can argue that time of intersection is t − tr < t.

That is,
Xr (t) = xr ,Xr (t − tr ) = Xs(ts) = x ,

t = tr + ts , and

Ξr (ts) = ξ + Ξs(ts)

for some ξ ∈WF (r). Q. E. D.



Rakesh’s Thesis

Rakesh also showed that F [v ] is a Fourier Integral Operator =
class of oscillatory integral operators, introduced by Hörmander
and others in the ’70s to describe the solutions of nonelliptic PDEs.

Phases and amplitudes of FIOs satisfy certain restrictive conditions.
Canonical relations have geometric description similar to that of
F [v ]. Adjoint of FIO is FIO with inverse canonical relation.

ΨDOs are special FIOs.

Composition of FIOs does not yield an FIO in general. Beylkin had
shown that F [v ]∗F [v ] is FIO (ΨDO, actually) under simple ray
geometry hypothesis - but this is only sufficient. Rakesh noted that
this follows from general results of Hörmander: simple ray
geometry ⇔ canonical relation is graph of ext. deriv. of phase
function.



The Shell Guys and TIC

Smit, tenKroode and Verdel (1998): provided that

I source, receiver positions (xs , xr ) form an open 4D manifold
(“complete coverage” - all source, receiver positions at least
locally), and

I the Traveltime Injectivity Condition (“TIC”) holds:
C−1

F [v ] ⊂ T ∗Y \ {0} × T ∗X \ {0} is a function - that is, initial
data for source and receiver rays and total travel time
together determine reflector uniquely.

then F [v ]∗F [v ] is ΨDO ⇒ application of F [v ]∗ produces image,
and F [v ]∗F [v ] has microlocal parametrix (“asymptotic inversion”).



TIC is a nontrivial constraint!

x x

x xs r

Symmetric waveguide: time (xs → x̄→ xr ) same as time
(xs → x→ xr ), so TIC fails.



Stolk’s Thesis

Stolk (2000): for dim=2, under “complete coverage” hypothesis, v
for which F [v ]∗F [v ] = [ΨDO + rel. smoothing op] open, dense set
in C∞(R2) (without assuming TIC!). Conjecture: same for dim=3.

Also, for any dim, v for which F [v ]∗F [v ] is FIO open, dense in
C∞(R2).



Operto’s Thesis

Application of F [v ]∗ involves accounting for all rays connecting
source and receiver with reflectors.

Standard practice still attempts imaging with single choice of ray
pair (shortest time, max energy,...).

Operto et al (2000) give nice illustration that all rays must be
included in general to obtain good image.



Nolan’s Thesis

Limitation of Smit-tenKroode-Verdel: most idealized data
acquisition geometries violate “complete coverage”: for example,
idealized marine streamer geometry (src-recvr submfd is 3D)

Nolan (1997): result remains true without “complete coverage”
condition: requires only TIC plus addl condition so that projection
CF [v ] → T ∗Y is embedding - but examples violating TIC are much
easier to construct when source-receiver submfd has positive
codim.

Sinister Implication: When data is just a single gather - common
shot, common offset - image may contain artifacts, i.e. spurious
reflectors not present in model.



Horrible Example

Synthetic 2D Example (see Stolk and WWS, Geophysics 2004 for
this and other horrible expls)

Strongly refracting acoustic lens (v) over horizontal reflector (r),
Sobs = F [v ]r .

(i) for open source-receiver set, F [v ]∗Sobs = good image of
reflector - within limits of finite frequency implied by numerical
method, F [v ]∗F [v ] acts like ΨDO;

(ii) for common offset submfd (codim 1), TIC is violated and
WF (F [v ]∗Sobs) is larger than WF (r).
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Gaussian lens velocity model, flat reflector at depth 2 km, overlain
with rays and wavefronts (Stolk & S. 2002 SEG).
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Image from common offset gather at h = 0.3 - all three ray pairs
belong to the same offset, midpoint, time, midpoint slowness - TIC
fails, image has “artifact” WF
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What it all means

Note that a gather scheme makes the scattering operator
block-diagonal: for example with data sorted into common offset
gathers h = (xr − xs)/2,

F [v ] = [Fh1 [v ], ...,FhN
[v ]]T , d = [dh1 , ..., dhN

]T

Thus F [v ]∗d =
∑

i Fhi
[v ]∗dhi

. Otherwise put: to form image,
migrate ith gather (apply migration operator Fhi

[v ]∗, then stack
individual migrated images.

Horrible Examples show that individual offset gather images may
contain nonphysical apparent reflectors (artifacts).

Smit-tenKroode-Verdel, Nolan, Stolk: if TIC holds, then these
artifacts are not stationary with respect to the gather parameter,
hence stack out (interfere destructively) in final image.



Agenda
Seismic inverse problem: the sedimentary Earth, reflection seismic
measurements, the acoustic model, linearization, reflectors and
reflections idealized via harmonic analysis of singularities

High frequency asymptotics: why adjoints of modeling operators
are imaging operators (“Kirchhoff migration”). Beylkin-Rakesh-...
theory of high frequency asymptotic inversion

Adjoint state imaging with the wave equation: reverse time and
reverse depth

Geometric optics, Rakesh’s construction, and asymptotic inversion
w/ caustics and multipathing, imaging artifacts, and prestack
migration après Claerbout.

A step beyond linearization: a mathematical framework for velocity
analysis



Velocity Analysis
Partially linearized seismic inverse problem (“velocity analysis”):
given observed seismic data d , find smooth velocity
v ∈ E(X ),X ⊂ R3 oscillatory reflectivity r ∈ E ′(X ) so that

F [v ]r ' d

Acoustic partially linearized model: acoustic potential field u and
its perturbation δu solve(

1

v 2

∂2

∂t2
−∇2

)
u = δ(t)δ(x− xs),

(
1

v 2

∂2

∂t2
−∇2

)
δu = 2r∇2u

plus suitable bdry and initial conditions.

F [v ]r =
∂δu

∂t

∣∣∣∣
Y

data acquisition manifold Y = {(xr , t; xs)} ⊂ R7, dimn Y ≤ 5
(many idealizations here!).



F [v ] : E ′(X )→ D′(Y ) is a linear map (FIO of order 1), but
dependence on v is quite nonlinear, so this inverse problem is
nonlinear.

Agenda:

I reformulation of inverse problem via extensions

I “standard processing” extension and standard VA

I the surface oriented extension and standard MVA

I the ΨDO property and why it’s important

I global failure of the ΨDO property for the SOE

I Claerbout’s depth oriented extension has the ΨDO property

I differential semblance



Extensions

Extension of F [v ]: manifold X̄ and maps χ : E ′(X )→ E ′(X̄ ),
F̄ [v ] : E ′(X̄ )→ D′(Y ) so that

F̄ [v ]
E ′(X̄ ) → D′(Y )

χ ↑ ↑ id
E ′(X ) → D′(Y )

F [v ]

commutes.

Invertible extension: F̄ [v ] has a right parametrix Ḡ [v ], i.e.
I − F̄ [v ]Ḡ [v ] is smoothing. [The trivial extension - X̄ = X , F̄ = F
- is virtually never invertible.] Also χ has a left inverse η.

Reformulation of inverse problem: given d , find v so that
Ḡ [v ]d ∈ R(χ) (implicitly determines r also!).



Example 1: Standard VA extension

Treat each CMP as if it were the result of an experiment performed
over a layered medium, but permit the layers to vary with midpoint.

Thus v = v(z), r = r(z) for purposes of analysis, but at the end
v = v(xm, z), r = r(xm, z).

F [v ]R(xm, h, t) ' A(xm, h, z(xm, h, t))R(xm, z(xm, h, t))

Here z(xm, h, t) is the inverse of the 2-way traveltime

t(xm, h, z) = 2τ(xm + (h, 0, z), xm)v=v(xm,z)

computed with the layered velocity v(xm, z), i.e.
z(xm, h, t(xm, h, z

′)) = z ′.



That is, F [v ] is a change of variable followed by multiplication by a
smooth function. NB: industry standard practice is to use vertical
traveltime t0 instead of z for depth variable.

Can write this as F [v ] = F̄ S∗, where F̄ [v ] = N[v ]−1M[v ] has right
parametrix Ḡ [v ] = M[v ]N[v ]:

N[v ] = NMO operator N[v ]d(xm, h, z) = d(xm, h, t(xm, h, z))

M[v ] = multiplication by A

S = stacking operator

Sf (xm, z) =

∫
dh f (xm, h, z), S∗r(xm, h, z) = r(x, z)



Identify as extension: F̄ [v ], Ḡ [v ] as above,
X = {xm, z},H = {h}, X̄ = X × H, χ = S∗, η = S - the invertible
extension properties are clear.

Standard names for the Standard VA extension objects: F̄ [v ] =
“inverse NMO”, Ḡ [v ] = “NMO” [often the multiplication op M[v ]
is neglected]; η = “stack”, χ = “spread”

How this is used for velocity analysis: Look for v that makes
Ḡ [v ]d ∈ R(χ)

So what is R(χ)? χ[r ](xm, z , h) = r(xm, z) Anything in range of χ
is independent of h. Practical issues ⇒ replace “independent of”
with “smooth in”.



Flatten them gathers!

Inverse problem reduced to: adjust v to make Ḡ [v ]dobs smooth in
h, i.e. flat in z , h display for each xm (NMO-corrected CMP).

Replace z with t0, v with vRMS em localizes computation:
reflection through xm, t0, 0 flattened by adjusting vRMS(xm, t0) ⇒
1D search, do by visual inspection.

Various aids - NMO corrected CMP gathers, velocity spectra, etc.

See: Claerbout: Imaging the Earth’s Interior

WWS: MGSS 2000 notes
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Left: part of survey (d) from North Sea (thanks: Shell Research),
lightly preprocessed.
Right: restriction of Ḡ [v ]d to xm = const (function of depth,
offset): shows rel. sm’ness in h (offset) for properly chosen v .



Example 2: Surface oriented or standard MVA extension

. This only works where Earth is “nearly layered”. Where this fails,
replace NMO by prestack migration.

Shot version: Σs = set of shot locations, X̄ = X × Σs ,
χ[r ](x, xs) = r(x).

F̄ [v ]r̄(xr , t, xs) =
∂2

∂t2

∫
dx r̄(x, xs)

∫
ds G (xr , t − s; x)G (xs , s; x)

Offset version (preferred because it minimizes truncation artifacts):
Σh = set of half-offsets in data, X̄ = X × Σh, χ[r ](x,h) = r(x).

F̄ [v ]r̄(xs , t,h) =
∂2

∂t2

∫
dx r̄(x,h)

∫
ds G (xs+h, t−s; x)G (xs , s; x)

[Parametrize data with source location xs , time t, offset h.] NB:
note that both versions are “block diagonal” - family of operators
(FIOs) parametrized by xs or h.



Properties of SOE

Beylkin (1985), Rakesh (1988): if ‖v‖C2(X ) “not too big”, then

I F̄ has the ΨDO property: F̄ F̄ ∗ is ΨDO

I singularities of F̄ F̄ ∗d ⊂ singularities of d

I straightforward construction of right parametrix Ḡ = F̄ ∗Q, Q
= ΨDO, also as generalized Radon Transform - explicitly
computable.

Range of χ (offset version): r̄(x,h) independent of h ⇒
“semblance principle”: find v so that Ḡ [v ]dobs is independent of h.
Practical limitations ⇒ replace “independent of h” by “smooth in
h”.



Industrial MVA

Application of these ideas = industrial practice of migration
velocity analysis.

Idea: twiddle v until Ḡ [v ]dobs is smooth in h.

Since it is hard to inspect Ḡ [v ]dobs(x , y , z , h), pull out subset for
constant x , y = common image gather (“CIG”): display function
of z , h for fixed x , y . These play same role as NMO corrected CMP
gathers in layered case.

Try to adjust v so that selected CIGs are flat - just as in Standard
VA. This is much harder, as there is no RMS velocity trick to
localize the computation - each CIG depends globally on v .

Description, some examples: Yilmaz, Seismic Data Processing.



Bad news
Nolan (1997): big trouble! In general, standard extension does not
have the ΨDO property. Geometric optics analysis: for ‖v‖C2(X )

“large”, multiple rays connect source, receiver to reflecting points
in X ; block diagonal structure of F̄ [v ]⇒ info necessary to
distinguish multiple rays is projected out.
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Example (Stolk & WWS, 2001): Gaussian lens over flat reflector
at depth z (r(x) = δ(x1 − z), x1 = depth).
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Left: Const. h slice of Ḡ d : several refl. points corresponding to
same singularity in dobs.
Right: CIG (const. x , y slice) of Ḡ d : not smooth in h!



Example 3: Claerbout’s depth oriented extension

Standard MVA extension only works when Earth has simple ray
geometry. Claerbout proposed alternative extension:

Σd = somewhat arbitrary set of vectors near 0 (“offsets”),
X̄ = X × Σd , χ[r ](x,h) = r(x)δ(h), η[r̄ ](x) = r̄(x, 0)

F̄ [v ]r̄(xs , t, xr ) =
∂2

∂t2

∫
dx

∫
Σd

dh r̄(x,h)

∫
ds G (xs , t−s; x+2h)G (xr , s; x)

=
∂2

∂t2

∫
dx

∫
x+2Σd

dy r̄(x, y − x)

∫
ds G (xs , t − s; y)G (xr , s; x)

NB: in this formulation, there appears to be too many model
parameters.



Shot record modeling

for each xs solve

F̄ [v ]r̄(xr , t; xs) = u(x, t; xs)|x=xr

where(
1

v(x)2

∂2

∂t2
−∇2

x

)
u(x, t; xs) =

∫
x+2Σd

dy r̄(x, y)G (y, t; xs)

(
1

v(y)2

∂2

∂t2
−∇2

y

)
G (y, t; xs) = δ(t)δ(xs − y)

Finite difference scheme: form RHS for eqn 1, step u, G forward in
t.



Computing Ḡ [v ]

Instead of parametrix, be satisfied with adjoint.

Reverse time adjoint computation - specify adjoint field as in
standard reverse time prestack migration:(

1

v(x)2

∂2

∂t2
−∇2

x

)
w(x, t; xs) =

∫
dxr d(xr , t; xs)δ(x− xr )

with w(x, t; xs) = 0, t >> 0. Then

F̄ [v ]∗d(x,h) =

∫
dxs

∫
dt G (x + 2h, t; xs)w(x, t; xs)

i.e. exactly the same computation as for reverse time prestack,
except that crosscorrelation occurs at an offset 2h.



Nomenclature

NB: the “usual computation” of Ḡ [v ] is either DSR or a variant of
shot record computation of previous slide using depth
extrapolation. h is usually restricted to be horizontal, i.e. h3 = 0.

Common names: shot-geophone or survey-sinking migration (with
DSR), or shot record migration.

“Downward continue sources and receivers, image at t = 0, h = 0”

These are what is typically meant by “wave equation migration”!



What should be the character of the image when the velocity is
correct?

Hint: for simulation of seismograms, the input reflectivity had the
form r(x)δ(h).

Therefore guess that when velocity is correct, image is
concentrated near h = 0.

Examples: 2D finite difference implementation of reverse time
method. Correct velocity ≡ 1. Input reflectivity used to generate
synthetic data: random! For output reflectivity (image of F̄ [v ]∗),
constrain offset to be horizontal: r̄(x,h) = r̃(x, h1)δ(h3). Display
CIGs (i.e. x1 =const. slices).
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Two way reverse time horizontal offset S-G image gathers of data
from random reflectivity, constant velocity. From left to right:
correct velocity, 10% high, 10% low.



Stolk and deHoop, 2001

Claerbout extension has the ΨDO
property, at least when restricted to r̄ of the form
r̄(x,h) = R(x, h1, h2)δ(h3), and under DSR assumption.

Sketch of proof (after Rakesh, 1988):

This will follow from injectivity of wavefront or canonical relation
CF̄ ⊂ T ∗(X̄ )− {0} × T ∗(Y )− {0} which describes singularity
mapping properties of F̄ :

(x,h, ξ, ν, y, η) ∈ CFδ[v ] ⇔

for some u ∈ E ′(X̄ ), (x,h, ξ, ν) ∈WF (u), and (y, η) ∈WF (F̄ u)



Characterization of CF̄

((x,h, ξ, ν), (xs , t, xr , ξs, τ, ξr)) ∈ CF̄ [v ] ⊂ T ∗(X̄ )−{0}×T ∗(Y )−{0}

⇔ there are rays of geometric optics (Xs ,Ξs), (Xr ,Ξr ) and times
ts , tr so that

Π(Xs(0), t,Xr (0),Ξs(0), τ,Ξr (0)) = (xs , t, xr , ξs , τ, ξr ),

Xs(ts) = x,Xr (tr ) = x + 2h, ts + tr = t,

Ξs(ts) + Ξr (tr )||ξ,Ξs(ts)− Ξr (tr )||ν
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Proof

Uses wave equations for u,G and

I Gabor calculus: computes wave front sets of products,
pullbacks, integrals, etc. See Duistermaat, Ch. 1.

I Propagation of Singularities Theorem

and that’s all! [No integral representations, phase functions,...]



Note intrinsic ambiguity: if you have a ray pair, move times ts , tr
resp. t ′s , t

′
r , for which ts + tr = t ′s + t ′r = t then you can construct

two points (x,h, ξ, ν), (x′,h′, ξ′, ν ′) which are candidates for
membership in WF (r̄) and which satisfy the above relations with
the same point in the cotangent bundle of T ∗(Y ).

No wonder - there are too many model parameters!

Stolk and deHoop fix this ambiguity by imposing two constraints:

I DSR assumption: all rays carrying significant reflected energy
(source or receiver) are upcoming.

I Restrict F̄ to the domain Z ⊂ E ′(X̄ )

r̄ ∈ Z ⇔ r̄(x,h) = R(x, h1, h2)δ(h3)



If r̄ ∈ Z, then (x,h, ξ, ν) ∈WF (r̄)⇒ h3 = 0. So source and
receiver rays in CF̄ must terminate at same depth, to hit such a
point.

Because of DSR assumption, this fixes the traveltimes ts , tr .

Restricted to Z, CF̄ is injective.

⇒ CF̄∗F̄ = I

⇒ F̄ ∗F̄ is ΨDO when restricted to Z.
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Lens data, shot-geophone migration [B. Biondi, 2002]
Left: Image via DSR. Middle: Ḡ [v ]d - well-focused (at h = 0), i.e.

in range of χ to extent possible. Right: Angle CIG.



Quantitative VA

Suppose W : E ′(X̄ )→ D′(Z ) annihilates range of χ:

χ W
E ′(X ) → E ′(X̄ ) → D′(Z ) → 0

and moreover W is bounded on L2(X̄ ). Then

J[v ; d ] =
1

2
‖W Ḡ [v ]d‖2

minimized when [v , ηḠ [v ]d ] solves partially linearized inverse
problem.

Construction of annihilator of R(F [v ]) (Guillemin, 1985):

d ∈ R(F [v ])⇔ Ḡ [v ]d ∈ R(χ)⇔W Ḡ [v ]d = 0



Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

I W = (I −∆)−
1
2∇h (“differential semblance” - WWS, 1986)

I W = I − 1
|H|
∫

dh (“stack power” - Toldi, 1985)

I W = I − χF [v ]†F̄ [v ] ⇒ minimizing J[v , d ] equivalent to least
squares.

For Claerbout extension, differential semblance W = h.



But not many are good for much...

Since problem is huge, only W giving rise to differentiable
v 7→ J[v , d ] are useful - must be able to use Newton!!! Once
again, idealize w(t) = δ(t).

Theorem (Stolk & WWS, 2003): v 7→ J[v , d ] smooth ⇔ W
pseudodifferential.

i.e. only differential semblance gives rise to smooth optimization
problem, uniformly in source bandwidth.

NB: Least squares embedded in larger family of optimization
formulations, some (others) of which are tractable.

Numerical examples using synthetic and field data: WWS et al.,
Chauris & Noble 2001, Mulder & tenKroode 2002. deHoop et al.
2004.



Beyond Born

Nonlinear effects not included in linearized model: multiple
reflections. Conventional approach: treat as coherent noise,
attempt to eliminate - active area of research going back 40+
years, with recent important developments.

Why not model this “noise”?

Proposal: nonlinear extensions with F [v ]r replaced by F [c].
Create annihilators in same way (now also nonlinear), optimize
differential semblance.

Nonlinear analog of Standard Extended Model appears to be
invertible - in fact extended nonlinear inverse problem is
underdetermined.

Open problems: no theory. Also must determine w(t) (Lailly SEG
2003).



And so on...

I Elasticity: theory of asymptotic Born inversion at smooth
background in good shape (Beylkin & Burridge 1988, deHoop
& Bleistein 1997). Theory of extensions, annihilators,
differential semblance partially complete (Brandsberg-Dahl et
al 2003).

I Anisotropy - work of deHoop (Brandsberg-Dahl et al 2003).

I Anelasticity - in the sedimentary section, Q = 100− 1000,
lower in gassy sediments and near surface. No mathematical
results, but some numerics - Minkoff & WWS 1997, Blanch et
al 1998.

I Source determination - actually always an issue. Some success
in casting as an inverse problem - Minkoff & WWS 1997,
Routh et al SEG 2003.

I ...
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