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Full Waveform Inversion

M = model space, D = data space

F : M → D forward model

Least squares inversion (“FWI”): given d ∈ D, find m ∈ M to
minimize

JLS [m] = ‖F [m]− d‖2[+ regularizing terms]

(‖ · ‖2 = mean square)



Full Waveform Inversion

+ accommodates any modeling physics, data geometry, spatial
variation on all scales (Bamberger, Chavent & Lailly 79,...)

+ close relation to prestack migration via local optimization
(Lailly 83, Tarantola 84)

+ gains in hard/software, algorithm efficiency ⇒ feasible data
processing method

++ some spectacular successes with 3D field data (keep listening!)

± with regularizations pioneered by Pratt and others, applicable
surface data if sufficient (i) low frequency s/n and (ii) long
offsets

- reflection data still a challenge



Full Waveform Inversion

Why are

I low frequencies important?

I long offsets (diving waves, transmission) easier than short
offsets (reflections)?

What alternatives to Standard FWI = output least squares?

I different error measures, domains - time vs. Fourier vs.
Laplace, L1, logarithmic - other talks today, survey Virieux &
Operto 09

I model extensions - migration velocity analysis as a
linearization, nonlinear MVA
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Nonlinear Challenges: Why low frequencies are important

Well-established observation, based on heuristic arguments (“cycle
skipping”), numerical evidence :forward modeling operator is more
linear [objective function is more quadratic] at lower frequencies

Leads to widely-used frequency continuation strategy (Kolb,
Collino, & Lailly 86)

Why?



Nonlinear Challenges: Why low frequencies are important
Visualizing the shape of the objective: scan from model m0 to
model m1

f (h) = JLS [(1− h)m0 + hm1]

Expl: data = simulation of Marmousi data (Versteeg & Gray 91),
with bandpass filter source.
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Nonlinear Challenges: Why low frequencies are important
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Nonlinear Challenges: Why low frequencies are important

Origin of this phenomenon in math of symmetric hyperbolic
systems:

A
∂u

∂t
+ Pu = f

u = dynamical field vector, A = symm. positive operator, P =
skew-symm. differential operator in space variables, f = source

Example: for acoustics, u = (p, v)T , A = diag(1/κ, ρ), and

P =

(
0 div

grad 0

)



Nonlinear Challenges: Why low frequencies are important

Theoretical development, including non-smooth A: Blazek, Stolk
& S. 08, Stolk 00, after Bamberger, Chavent & Lailly 79, Lions 68.

Sketch of linearization analysis - after Lavrientiev, Romanov, &
Shishatski 79, also Ramm 86:

δu = perturbation in dynamical fields corresponding to
perturbation δA in parameters

A
∂δu

∂t
+ Pδu = −δA

∂u

∂t

and [
A
∂

∂t
+ P

](
∂u

∂t

)
=
∂f

∂t



Nonlinear Challenges: Why low frequencies are important

Similarly for linearization error - h > 0, uh = fields corresponding
to A + hδA,

e =
uh − u

h
− δu

A
∂e

∂t
+ Pe = −δA

∂

∂t
(uh − u)[

A
∂

∂t
+ P

](
∂

∂t
(uh − u)

)
= −hδA

∂2uh

∂t2[
(A + hδA)

∂

∂t
+ P

](
∂2uh

∂t2

)
=
∂2f

∂t2



Nonlinear Challenges: Why low frequencies are important

Use causal Green’s (inverse) operator:

δu = −
[

A
∂

∂t
+ P

]−1

δA

[
A
∂

∂t
+ P

]−1 ∂f

∂t

e = −h

[
A
∂

∂t
+ P

]−1

δA

[
A
∂

∂t
+ P

]−1

δA

[
(A + hδA)

∂

∂t
+ P

]−1 ∂2f

∂t2

pass to frequency domain:

δ̂u = −[−iωA + P]−1δA[−iωA + P]−1iωf̂

ê = −h[−iωA+P]−1δA[−iωA+P]−1δA[−iωA+P]−1(−iω)2f̂ +O(h2ω2)



Nonlinear Challenges: Why low frequencies are important

So for small ω,

δ̂u = iωP−1δAP−1f̂ + O(ω2)

ê = hω2P−1δAP−1δAP−1f̂ + O(ω3)

f̂ (0) 6= 0⇒ there exist δA for which

I P−1δAP−1f̂ 6= 0 - δA is resolved at zero frequency

⇒ for such δA

I (energy in e) < O(‖δA‖〈ω〉) (energy in δu)

So: linearization error is small ⇒ JLS is near-quadratic, for
sufficiently low frequency source and/or sufficiently small δA.

Further analysis: quadratic directions ∼ large-scale features



Linear Challenges: Why reflection is hard

Relative difficulty of reflection vs. transmission

I numerical examples: Gauthier, Virieux & Tarantola 86

I spectral analysis of layered traveltime tomography: Baek &
Demanet 11

Spectral analysis of reflection per se: Virieux & Operto 09



Linear Challenges: Why reflection is hard

Reproduction of “Camembert” Example (GVT 86) (thanks: Dong
Sun)

Circular high-velocity zone in 1km × 1km square background - 2%
∆v .

Transmission configuration: 8 sources at corners and side
midpoints, 400 receivers (100 per side) surround anomaly.

Reflection configuration: all 8 sources, 100 receivers on one side
(“top”).

Modeling details: 50 Hz Ricker source pulse, density fixed and
constant, staggered grid FD modeling, absorbing boundaries.



Linear Challenges: Why reflection is hard
Transmission inversion, 2% anomaly: Initial MS resid = 2.56×107;
Final after 5 LBFGS steps = 2.6×105
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Linear Challenges: Why reflection is hard
Reflection configuration: initial MS resid = 3629; final after 5
LBFGS steps = 254
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Linear Challenges: Why reflection is hard

Message: in reflection case, “the Camembert has melted”.

Small anomaly ⇒ linear phenomenon

Linear resolution analysis (eg. Virieux & Operto 09): narrow
aperture data does not resolve low spatial wavenumbers

Resolution analysis of phase (traveltime tomography) in layered
case: Baek & Demanet 11

I model 7→ traveltime map = composition of (i) increasing
rearangement, (ii) invertible algebraic tranformation, (iii)
linear operator

I factor (iii) has singular values decaying like n−1/2 for diving
wave traveltimes, expontially decaying for reflected wave
traveltimes.



Linear Challenges: Why reflection is hard
Putting it all together: “Large” Camembert (20% anomaly) with
0-60 Hz lowpass filter source. Continuation in frequency after
Kolb, Collino & Lailly 86 - 5 stages, starting with 0-2 Hz:
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Extended Models and Differential Semblance

Inversion of reflection data: difficulty rel. transmission is linear in
origin, so look to migration velocity analysis for useful ideas

Prestack migration as approximate inversion: fits subsets of data
with non-physical extended models (= image volume), so all data
matched - no serendipitous local matches!

Transfer info from small to large scales by demanding coherence of
extended models

Familiar concept from depth-domain migration velocity analysis -
independent models (images) grouped together as image gathers,
coherence ⇒ good velocity model

Exploit for automatic model estimation: residual moveout removal
(Biondi & Sava 04, Biondi & Zhang 12), van Leeuwen & Mulder 08
(data domain VA), differential waveform inversion (Chauris, poster
session), differential semblance (image domain VA) S. 86 ...



Extended Models and Differential Semblance

Differential semblance, version 1:

I group data d into gathers d(s) that can be fit perfectly (more
or less), indexed by s ∈ S (source posn, offset, slowness,...)

I extended models M̄ = {m̄ : S → M}
I extended modeling F̄ : M̄ → D by

F̄ [m̄](s) = F [m(s)]

I s finely sampled ⇒ coherence criterion is ∂m̄/∂s = 0.

The DS objective:

JDS = ‖F̄ [m̄]− d‖2 + σ2

∥∥∥∥∂m̄

∂s

∥∥∥∥2

+ ...



Extended Models and Differential Semblance

Continuation method (σ : 0→∞) - theoretical justification
Gockenbach, Tapia & S. ’95, limits to JLS as σ →∞.

“Starting” problem: σ → 0, minimizing JDS equivalent to

min
m̄

∥∥∥∥∂m̄

∂s

∥∥∥∥2

subj to F̄ [m̄] ' d

Relation to MVA:

I separate scales: m0 = macro velocity model (physical), δm =
short scale reflectivity model

I linearize: m̄ = m0 + δm̄, F̄ [m̄] ' F [m0] + DF̄ [m0]δm̄

I approximate inversion of δd = d − F [m0] by migration:
δm̄ = DF̄ [m0]−1(d − F [m0]) ' DF̄ [m0]T (d − F [m0])



Extended Models and Differential Semblance

⇒ MVA via optimization:

min
m0

∥∥∥∥ ∂∂s

[
DF̄ [m0]T (d − F [m0])]

]∥∥∥∥2

Many implementations with various approximations of DF̄T ,
choices of s: S. & collaborators early 90’s - present, Chauris-Noble
01, Mulder-Plessix 02, de Hoop & collaborators 03-07.

Bottom line: works well when hypotheses are satisfied:
linearization (no multiples), scale separation (no salt), simple
kinematics (no multipathing)



Nonlinear DS with LF control

Drop scale separation, linearization assumptions

Cannot use independent long-scale model as control, as in MVA:
“low spatial frequency” not well defined, depends on velocity.

However, temporal passband is well-defined, and lacks very low
frequency energy (0-3, 0-5,... Hz) with good s/n

Generally, inversion is unambiguous if data d is not band-limited
(good s/n to 0 Hz) - F̄ is nearly one-to-one - extended models m̄
fitting same data d differ by tradeoff between params, controllable
by DS term

So: find a way to supply the low-frequency data, as ersatz for
long-scale model - in fact, generate from auxiliary model!



Nonlinear DS with LF control

Define low-frequency source complementary to data passband,
low-frequency (extended) modeling op Fl (F̄l)

Given low frequency control model ml ∈ M, define extended model
m̄ = m̄[d ,ml ] by minimizing over m̄

JDS [m̄; d ,ml ] = ‖F̄ [m̄] + F̄l [m̄]− (d + Fl [ml ])]‖2 + σ2

∥∥∥∥∂m̄

∂s

∥∥∥∥2

Determine ml ⇒ minimize

JLF [d ,ml ] =

∥∥∥∥ ∂∂s
m̄[d ,ml ]

∥∥∥∥2

(NB: nested optimizations!)



Nonlinear DS with LF control

min
ml

JLF [d ,ml ] =

∥∥∥∥ ∂∂s
m̄[d ,ml ]

∥∥∥∥2

ml plays same role as migration velocity model, but no
linearization, scale separation assumed

m̄[d ,ml ] analogous to prestack migrated image volume

Initial exploration: Dong Sun PhD thesis, SEG 12, plane wave 2D
modeling, simple layered examples, steepest descent with quadratic
backtrack.

Greatest challenge: efficient and accurate computation of gradient
= solution of auxiliary LS problem



Example: DS Inversion with LF control, free surface
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Example: DS Inversion with LF control, free surface
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Example: DS Inversion with LF control, free surface
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Example: DS Inversion with LF control, free surface

0

0.1

0.2

0.3

0.4

0.5

z 
(k

m
)

-0.09-0.08-0.06-0.04-0.02 0.00 0.02 0.04 0.06 0.08
sign(p)*p^2  (s^2/km^2)

0.2 0.4 0.6 0.8 1.0 1.2
x104

MPa

Inverted gather m̄[d ,ml ], ml = homogeneous model, x = 1.5 km



Example: DS Inversion with LF control, free surface



Example: DS Inversion with LF control, free surface

Inverted gather m̄[d ,ml ], 3rd DS iteration, x = 1.5 km



Example: DS Inversion with LF control, free surface
Standard FWI using stack of optimal DS m̄ as initial data
(one-step homotopy σ = 0→∞)

153 L-BFGS iterations, final RMS error = 6%, final gradient norm
< 1 % of original



Space Shift DS

Defect in version 1 of DS already known in MVA context:

Image gathers generated from individual surface data
bins may not be flat, even when migration velocity is
optimally chosen (Nolan & S, 97, Stolk & S 04)

Source of kinematic artifacts obstructing flatness: multiple ray
paths connecting sources, receivers with reflection points.

Therefore version 1 of DS only suitable for mild lateral
heterogeneity. Must use something else to identify complex
refracting structures



Space Shift DS

For MVA, remedy is known: use space-shift image gathers δm̄ (de
Hoop, Stolk & S 09)

Claerbout’s imaging principle (71): velocity is correct if energy in
δm̄(x,h) is focused at h = 0 (h = subsurface offset)

Quantitative measure of focus: choose P(h) so that P(0) = 0,
P(h) > 0 if h 6= 0, minimize∑

x,h

|P(h)δm̄[m0](x,h)|2

(e. g. P(h) = |h|).

MVA based on this principle by Shen, Stolk, & S. 03, Shen et al.
05, Albertin 06, 11, Kubir et al. 07, Fei & Williamson 09, 10, Tang
& Biondi 11, others - survey in Shen & S 08. Gradient issues: Fei
& Williamson 09, Vyas 09.



Space Shift DS

Extension to nonlinear problems - how is δm̄[x,h] the output of an
adjoint derivative?

Answer: Replace coefficients m in wave equation with operators m̄:
e. g. κ̄[u](x) =

∫
dhκ̄(x,h)u(x + h). Physical case: multiplication

operators κ̄(x,h) = κ(x)δ(h). Then

δm̄[m0] = DF̄ [m̄0]T (d − F [m])

for resulting extended fwd map F̄

⇒ Version 2 of nonlinear DS. Physical case =
no-action-at-a-distance principle of continuum mechanics =
nonlinear version of Claerbout’s imaging principle (S, 08).
Mathematical foundation: Blazek, Stolk & S. 08.
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Summary

I restriction to low frequency data makes FWI objective more
quadratic, just like you always thought

I transmission inversion is easier than reflection for linear
reasons, so MVA seems like a good place to look for reflection
inversion approaches

I extended modeling provides a formalism for expressing MVA
objectives that extend naturally to nonlinear FWI, via
continuation - provision of starting models, route to FWI
solution

I positive early experience with “gather flattening” nonlinear
differential semblance

I “survey sinking” NDS involves wave equations with operator
coefficients

I Patrick’s fingerprints are all over this subject
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