Nonlinear Inverse Scattering and
Velocity Analysis

William W. Symes

AIP, June 2005




Global vs. local, linear vs. nonlinear

e Contemporary inversion of active source reflection data gration + veloc-
ity analysis (“MVA") - give approximate solution of lineaed (“Born”, single
scattering) inverse problem - cf. Stolk, this session.

e MVA limited by Born assumption (no multiple scattering!) tlean creatéarge
velocity updates and move events many wavelengths to ¢doeations Hinearr,
global.

e Nonlinear least squares inversion (“NLS”) can includeeadittires of wave physics
(multiple scattering, elasticity, anelasticity,...) timeeds initial velocity “accu-
rate within a wavelength” to succeedenlinear, local

How to combindarge updateproperty of MVA with nonlinear physic®f NLS to
produce anonlinear, globalapproach to seismic inverse scattering?




Shot-geophone prestack migration

Claerbout (1971): given velocity field x, z) (ref. model), compute:

e source wavefield'(z,; z, 4, t) - continue the source at,, x,) to the “sunken
source” at(z, z,), z > 0 (i.e. solve wave eqn witeourceas source);

e receiver wavefiel®(z; z, T, t) - continue recorded data for the sourceatx;)
to the “sunken receiver” dt, z,) (solve wave eqgn witldataas source);

e image volumd (z, z,, T,) - time cross-correlaté and R at zero lag, same depth,
sum over sources:

I[(z,%,,%,) = /dxs/dtR(xS,z,xr,t)S(xS,z,xS,t)

e Claerbout’s imaging conditianextractimage!(z, ) where sunken source and
receiver coincidez, = z, = z (“zero offset”): I(z,z) = I(z,z,x) - related to
ordinary Born inversion.




Objective velocity analysis

Based orClaerbout’s focusing principleMelocity correct=- image volume![v]
focusesat zero (subsurface) half offset= (z, — z,)/2, i.e. exhibits essentially no
energy ath| > 0.

How to measure focusing at= 0: multiply by A! If product isbig RMS, image is
unfocused, velocity isvrong If product issmallRMS, image is focused, velocity

IS right.
focusing as an optimization problem: minimilze!/[v]||* overv (|| - || = L? norm).

Stolk & S., IP 2003: this is essentially the only nontrivialagiratic form in image
volume which (a) varies smoothly as function ©fand d, and (b) vanishes for

focused!.

First results: Shen et al, SEG 2003. Following example alsotd P. Shen.




Objective velocity analysis in Marmousi: initial

velocity, Image

L eft: Initial velocity Right: image ¢ = 0 section from volume)




Objective velocity analysis in Marmousi: final

velocity, Image

Left: Final estimated velocitRight: image ¢ = 0 section from image volume)
after 47 iterations of LMBFGS. Pretty good image - but inguBorn data!!!




MVA does not account for multiple reflections

Left: Three layer modeCenter: Data - source wavelet = 4-10-30-40 Hz bandpass.
Free surface multiple is about same size as second prifRagiit: S-G Migration
at goodv - note focused primary, defocused image of surface multiple




Nonlinear Least Squares Inversion

Modeling operator give by — D, whereD(xs; x,,t) = P(xs; 2,2, 1) .2 1a,
0°P
ot?
andu = v—? (square slowne$s

w(z, ) —==(xs 2, x,t) — Vsz(xS; z,x,t) =w(t)d(z — z5)0(x — xy)

Least squares inversion: given dd&@>, adjustv (or u) so that predicted dat@|u]
fits observed data as well as possible:

minimize, || D[u] — D°>||?
(some regularization usually a good idea).
Upshot of much work from 80’s on: LS inversion (i) handles tiplés, i.e. does

not produce artifact images due to multiples, but (ii) regsiia very good initial
estimate -domain of attractiorof global minimizer has small “measure”.




NLS does not make large velocity updates
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L eft: Data from three layer mod@&ight: Inversions (solid lines) from three initial
v's (dashed lines). 30-40 its of LMBFGS, redn in gradient kbrigy 102,




Nonlinearizing MVA, step 1

Get from linear to nonlinear in two steps:

(1) recognize that shot-geophone prestack migratio op I is adjoint of ex-
tended Born modeling ap— d; modeling op given byi(x; ., t) = p(xs; 2,7, 1) =0, 1z,
wherez, = recvr depth and

1 0% 5 _ T _

(this is best seen using Green'’s functions to representisog);

If I is physical= focusedat zero offset, i.e.I(z,2,7) = I(z,x)0(x — Z) with
I = 26v/v?, then extended Born modeling specializes to ordinary Bavdeting.




Nonlinearizing MVA, step 2

(2) recognize that preceding eqmperturbation equatiomf extended model

2
/dazU(z, T, x>%—§(%5 2,T,t) — Vi Pz z,2,t) = w(t)d(z — z,)0(z — x)

That is,replace velocity (or square slowness) with SPD boundedadper exis-
tence theory for such problems due to Lions, late 60’s.

If U(z,2,2) ~v(z,2)%0(x — )+ I(2,2,7), thenP(x,; z,xz,t) ~ S(...) + p(...).

In particular, ifU is physical= focusedat zero offset, i.eU(z,z,z) =
v2(z,2)0(x — ), then the extended model becomes the ordinary acousticlmode
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Extended NLS

Givenobserved dataD°™(z,, z,, t), find extended sqr slowness z, z, ) so that
predicted dataD|U|(zs; z,,t) = P(xs; 2,2,t).—., +—s, fits Observed dataD|U] ~
D°bs, [Formulate as least squares, use nonlinear optimizatiah, blah, blah....]

This problem isunderdeterminedcan fit data equally well with many extended sqr
slownesses.

BUT: physicalsqr slownessef®cuses at zero offsfTlaerbout redux!]:
U(z,2,7) ~v(z,2)%0(x — T)

Hypothesis. focusing of extended square slowness at zero offserrect kine-
matics for primary reflections (like MVA), multiple energysigned to primary
reflectors (“multiples suppressed in image”, like NLS).

Initial numerical exploration: layered modeis U is convolution op inc variables
= diagonalized by cosine transfors cheap!
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Model and data
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Left: Three layer modeRight: Data - source wavelet = 4-10-30-40 Hz bandpass.
Free surface multiple is about same size as second primary.
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Migration vs. Inversion

depth (km)
(=]

depth (km)
(=]

Left: Migration of three-layer data at = 1.5 km/s forz < 0.2km, else= 2.5
km/s. Right: inversion,~ 40 LMBFGS iterations beginning at migratian Note

disappearance of migrated multiple.
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Three extended NLS inversions

pth (km)

Different initial estimates of extended square slowrnégsame as for NLS exam-
ple), then LMBFGS until fit error reduced to 102 x [|D°"]].
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Resimulations (predicted data)

All three fit the data equally well...
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Images (filtered zero offset sections)
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But only focused extended velocity produces image withemdrreflector depths
and multiple energy assigned to primaries.
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Summary

e MV can be formulated as optimization problem amenable taida: can re-
cover from large initial errors in, but based on Born approximatien degraded
by nonlinear effects in data (multiple scattering).

e NLS accomodates any modeled physics, linear or nonlineaigdnnot recover
from large initial errors inv.

e Migration operator = adjoint textendedinearized modeling operator

e Focusing criterion fomonlinear extended modejeneralizes both MVA and
NLS.
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Outlook

Automation: apply focusing condition via constrained testgiares (as in MVA):

minimizey [|hAU || subject to || D[U] — D°|| < e

Two major obstacles to making this work (“research oppaotiest):

(1) simulation: can’t afford full matrix multiply in everyrhe step - must find basis

In which U Is sparse analog of cosine transform for layered models - windowed
Fourier / curvelets?

(2) optimization: in MVA, (smooth) velocity parametrizeslstions, allows effi-
cientreduced basigpproach, long steps within very curfgasible sebf models
fitting data. What is replacement in nonlinear setting?
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Thanks to...

National Science Foundation
Sponsors of The Rice Inversion Project
Biondo Biondi, Maarten de Hoop, Chris Stolk
Peng Shen and Total E&P USA for Marmousi expl.
The organizers, for inviting me
All of you, for listening

http://wwv. trip.caamrice. edu
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