Nonlinear Inverse Scattering and Velocity Analysis

William W. Symes

AIP, June 2005

Global vs. local, linear vs. nonlinear

- Contemporary inversion of active source reflection data = migration + velocity analysis ("MVA") - give approximate solution of linearized ("Born", single scattering) inverse problem - cf. Stolk, this session.
- MVA limited by Born assumption (no multiple scattering!) but can create *large* velocity updates and move events many wavelengths to correct locations *linear*, *global*.
- Nonlinear least squares inversion ("NLS") can include all features of wave physics (multiple scattering, elasticity, anelasticity,...), but needs initial velocity "accurate within a wavelength" to succeed *nonlinear, local*

How to combine *large update* property of MVA with *nonlinear physics* of NLS to produce a *nonlinear, global* approach to seismic inverse scattering?

Shot-geophone prestack migration

Claerbout (1971): given velocity field v(x, z) (ref. model), compute:

- source wavefield $S(x_s; z, \bar{x}_s, t)$ continue the source at (z_s, x_s) to the "sunken source" at $(z, \bar{x}_s), z > 0$ (i.e. solve wave eqn with source as source);
- receiver wavefield $R(x_s; z, \bar{x}_r, t)$ continue recorded data for the source at (z_s, x_s) to the "sunken receiver" at (z, \bar{x}_r) (solve wave eqn with *data* as source);
- *image volume* $\overline{I}(z, \overline{x}_r, \overline{x}_s)$ time cross-correlate S and R at zero lag, same depth, sum over sources:

$$\bar{I}(z,\bar{x}_s,\bar{x}_r) = \int dx_s \int dt R(x_s,z,\bar{x}_r,t) S(x_s,z,\bar{x}_s,t)$$

• *Claerbout's imaging condition*: extract *image* I(z, x) where sunken source and receiver coincide, $\bar{x}_r = \bar{x}_s = x$ ("zero offset"): $I(z, x) = \bar{I}(z, x, x)$ - related to ordinary Born inversion.

Objective velocity analysis

Based on *Claerbout's focusing principle:* Velocity correct \Rightarrow image volume $\overline{I}[v]$ focuses at zero (subsurface) half offset $h = (\overline{x}_r - \overline{x}_s)/2$, i.e. exhibits essentially no energy at |h| > 0.

How to measure focusing at h = 0: multiply by h! If product is *big* RMS, image is unfocused, velocity is *wrong*. If product is *small* RMS, image is focused, velocity is *right*.

focusing as an optimization problem: minimize $||h\bar{I}[v]||^2$ over $v (||\cdot|| = L^2 \text{ norm})$.

Stolk & S., IP 2003: this is essentially the only nontrivial quadratic form in image volume which (a) varies smoothly as function of v and d, and (b) vanishes for focused \overline{I} .

First results: Shen et al, SEG 2003. Following example also due to P. Shen.

Objective velocity analysis in Marmousi: initial velocity, image

Left: Initial velocity **Right:** image (h = 0 section from volume)

Objective velocity analysis in Marmousi: final velocity, image

Left: Final estimated velocity **Right:** image (h = 0 section from image volume) after 47 iterations of LMBFGS. Pretty good image - but input is Born data!!!

MVA does not account for multiple reflections

Left: Three layer model Center: Data - source wavelet = 4-10-30-40 Hz bandpass. Free surface multiple is about same size as second primary. **Right:** S-G Migration at good v - note focused primary, defocused image of surface multiple.

Nonlinear Least Squares Inversion

Modeling operator give by $v \to D$, where $D(x_s; x_r, t) = P(x_s; z, x, t)_{z=z_r, x=x_r}$

$$\begin{split} u(z,x)\frac{\partial^2 P}{\partial t^2}(x_s;z,x,t) - \nabla_{z,x}^2 P(x_s;z,x,t) &= w(t)\delta(z-z_s)\delta(x-x_s) \\ \text{and } u &= v^{-2} \text{ (square slowness).} \end{split}$$

Least squares inversion: given data D^{obs} , adjust v (or u) so that predicted data D[u] fits observed data as well as possible:

minimize_u
$$||D[u] - D^{\text{obs}}||^2$$

(some regularization usually a good idea).

Upshot of much work from 80's on: LS inversion (i) handles multiples, i.e. does not produce artifact images due to multiples, but (ii) requires a very good initial estimate - *domain of attraction* of global minimizer has small "measure".

NLS does not make large velocity updates

Left: Data from three layer model **Right:** Inversions (solid lines) from three initial v's (dashed lines). 30-40 its of LMBFGS, redn in gradient length by 10^{-2} .

,

Nonlinearizing MVA, step 1

Get from linear to nonlinear in two steps:

(1) recognize that shot-geophone prestack migration op $d \to \overline{I}$ is *adjoint* of *ex*tended Born modeling op $\overline{I} \to d$; modeling op given by $d(x_s; x_r, t) = p(x_s; z, x, t)_{z=z_r, x=x_r}$ where z_r = recvr depth and

$$\left(\frac{1}{v(z,x)^2}\frac{\partial^2 p}{\partial t^2} - \nabla_{z,x}^2 p\right)(x_s;z,x,t) = \int d\bar{x} S(x_s;z,\bar{x},t) \bar{I}(z,x,\bar{x})$$

(this is best seen using Green's functions to represent solutions);

If \overline{I} is *physical* = *focused* at zero offset, i.e. $\overline{I}(z, x, \overline{x}) = I(z, x)\delta(x - \overline{x})$ with $I = 2\delta v/v^3$, then extended Born modeling specializes to ordinary Born modeling.

Nonlinearizing MVA, step 2

(2) recognize that preceding eqn is *perturbation equation* of *extended model*

$$\int d\bar{x}U(z,x,\bar{x})\frac{\partial^2 P}{\partial t^2}(x_s;z,\bar{x},t) - \nabla_{z,x}^2 P(x_s;z,x,t) = w(t)\delta(z-z_s)\delta(x-x_s)$$

That is, *replace velocity (or square slowness) with SPD bounded operator* - existence theory for such problems due to Lions, late 60's.

If $U(z, x, \bar{x}) \simeq v(z, x)^{-2} \delta(x - \bar{x}) + \bar{I}(z, x, \bar{x})$, then $P(x_s; z, x, t) \simeq S(\dots) + p(\dots)$.

In particular, if U is *physical* = *focused* at zero offset, i.e. $U(z, x, \bar{x}) = v^{-2}(z, x)\delta(x - \bar{x})$, then the extended model becomes the ordinary acoustic model.

Extended NLS

Given observed data $D^{\text{obs}}(x_r, x_s, t)$, find extended sqr slowness $U(z, x, \bar{x})$ so that predicted data $D[U](x_s; x_r, t) = P(x_s; z, x, t)_{z=z_r, x=x_r}$ fits observed data: $D[U] \simeq D^{\text{obs}}$. [Formulate as least squares, use nonlinear optimization, blah, blah, blah....]

This problem is *underdetermined*: can fit data equally well with many extended sqr slownesses.

BUT: physical sqr slownesses focuses at zero offset [Claerbout redux!]: $U(z, x, \bar{x}) \simeq v(z, x)^{-2} \delta(x - \bar{x})$

Hypothesis: focusing of extended square slowness at zero offset \Leftrightarrow correct kinematics for primary reflections (like MVA), multiple energy assigned to primary reflectors ("multiples suppressed in image", like NLS).

Initial numerical exploration: layered models \Rightarrow U is convolution op in x variables \Rightarrow diagonalized by cosine transform \Rightarrow cheap!

Model and data

Left: Three layer model **Right**: Data - source wavelet = 4-10-30-40 Hz bandpass. Free surface multiple is about same size as second primary.

Migration vs. Inversion

Left: Migration of three-layer data at v = 1.5 km/s for z < 0.2km, else = 2.5 km/s. Right: inversion, ~ 40 LMBFGS iterations beginning at migration v. Note disappearance of migrated multiple.

Three extended NLS inversions

Different initial estimates of extended square slowness U (same as for NLS example), then LMBFGS until fit error reduced to $< 10^{-2} \times ||D^{\text{obs}}||$.

Resimulations (predicted data)

All three fit the data equally well...

Images (filtered zero offset sections)

But only focused extended velocity produces image with correct reflector depths and multiple energy assigned to primaries.

Summary

- MVA can be formulated as optimization problem amenable to Newton: can recover from large initial errors in v, but based on Born approximation ⇒ degraded by nonlinear effects in data (multiple scattering).
- NLS accomodates any modeled physics, linear or nonlinear, but cannot recover from large initial errors in v.
- Migration operator = adjoint to *extended* linearized modeling operator
- Focusing criterion for *nonlinear extended model* generalizes both MVA and NLS.

Outlook

Automation: apply focusing condition via constrained least squares (as in MVA): minimize_U $||hU||^2$ subject to $||D[U] - D^{obs}|| \le \epsilon$

Two major obstacles to making this work ("research opportunities"):

(1) simulation: can't afford full matrix multiply in every time step - must find basis in which U is *sparse*, analog of cosine transform for layered models - windowed Fourier / curvelets?

(2) optimization: in MVA, (smooth) velocity parametrizes solutions, allows efficient *reduced basis* approach, long steps within very curvy *feasible set* of models fitting data. What is replacement in nonlinear setting?

Thanks to...

National Science Foundation Sponsors of The Rice Inversion Project Biondo Biondi, Maarten de Hoop, Chris Stolk Peng Shen and Total E&P USA for Marmousi expl. The organizers, for inviting me All of you, for listening

http://www.trip.caam.rice.edu