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Global vs. local, linear vs. nonlinear

• Contemporary inversion of active source reflection data = migration + veloc-
ity analysis (“MVA”) - give approximate solution of linearized (“Born”, single
scattering) inverse problem - cf. Stolk, this session.

• MVA limited by Born assumption (no multiple scattering!) but can createlarge
velocity updates and move events many wavelengths to correct locations -linear,
global.

• Nonlinear least squares inversion (“NLS”) can include all features of wave physics
(multiple scattering, elasticity, anelasticity,...), but needs initial velocity “accu-
rate within a wavelength” to succeed -nonlinear, local

How to combinelarge updateproperty of MVA with nonlinear physicsof NLS to
produce anonlinear, globalapproach to seismic inverse scattering?
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Shot-geophone prestack migration

Claerbout (1971): given velocity fieldv(x, z) (ref. model), compute:

• source wavefieldS(xs; z, x̄s, t) - continue the source at(zs, xs) to the “sunken
source” at(z, x̄s), z > 0 (i.e. solve wave eqn withsourceas source);

• receiver wavefieldR(xs; z, x̄r, t) - continue recorded data for the source at(zs, xs)
to the “sunken receiver” at(z, x̄r) (solve wave eqn withdataas source);

• image volumēI(z, x̄r, x̄s) - time cross-correlateS andR at zero lag, same depth,
sum over sources:

Ī(z, x̄s, x̄r) =

∫

dxs

∫

dtR(xs, z, x̄r, t)S(xs, z, x̄s, t)

• Claerbout’s imaging condition: extractimageI(z, x) where sunken source and
receiver coincide,̄xr = x̄s = x (“zero offset”): I(z, x) = Ī(z, x, x) - related to
ordinary Born inversion.
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Objective velocity analysis

Based onClaerbout’s focusing principle:Velocity correct⇒ image volumeĪ [v]
focusesat zero (subsurface) half offseth = (x̄r − x̄s)/2, i.e. exhibits essentially no
energy at|h| > 0.

How to measure focusing ath = 0: multiply by h! If product isbig RMS, image is
unfocused, velocity iswrong. If product issmallRMS, image is focused, velocity
is right.

focusing as an optimization problem: minimize‖hĪ [v]‖2 overv (‖ · ‖ = L2 norm).

Stolk & S., IP 2003: this is essentially the only nontrivial quadratic form in image
volume which (a) varies smoothly as function ofv and d, and (b) vanishes for
focusedĪ.

First results: Shen et al, SEG 2003. Following example also due to P. Shen.
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Objective velocity analysis in Marmousi: initial

velocity, image

,

Left: Initial velocity Right: image (h = 0 section from volume)

4



Objective velocity analysis in Marmousi: final

velocity, image

,

Left: Final estimated velocityRight: image (h = 0 section from image volume)
after 47 iterations of LMBFGS. Pretty good image - but input is Born data!!!
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MVA does not account for multiple reflections
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Left: Three layer modelCenter: Data - source wavelet = 4-10-30-40 Hz bandpass.
Free surface multiple is about same size as second primary.Right: S-G Migration
at goodv - note focused primary, defocused image of surface multiple.
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Nonlinear Least Squares Inversion

Modeling operator give byv → D, whereD(xs; xr, t) = P (xs; z, x, t)z=zr,x=xr

u(z, x)
∂2P

∂t2
(xs; z, x, t) −∇2

z,xP (xs; z, x, t) = w(t)δ(z − zs)δ(x − xs)

andu = v−2 (square slowness).

Least squares inversion: given dataDobs, adjustv (or u) so that predicted dataD[u]
fits observed data as well as possible:

minimizeu ‖D[u] − Dobs‖2

(some regularization usually a good idea).

Upshot of much work from 80’s on: LS inversion (i) handles multiples, i.e. does
not produce artifact images due to multiples, but (ii) requires a very good initial
estimate -domain of attractionof global minimizer has small “measure”.
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NLS does not make large velocity updates
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Left: Data from three layer modelRight: Inversions (solid lines) from three initial
v’s (dashed lines). 30-40 its of LMBFGS, redn in gradient length by10−2.
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Nonlinearizing MVA, step 1

Get from linear to nonlinear in two steps:

(1) recognize that shot-geophone prestack migration opd → Ī is adjoint of ex-
tended Born modeling op̄I → d; modeling op given byd(xs; xr, t) = p(xs; z, x, t)z=zr,x=xr

wherezr = recvr depth and
(

1

v(z, x)2
∂2p

∂t2
−∇2

z,xp

)

(xs; z, x, t) =

∫

dx̄S(xs; z, x̄, t)Ī(z, x, x̄)

(this is best seen using Green’s functions to represent solutions);

If Ī is physical= focusedat zero offset, i.e.Ī(z, x, x̄) = I(z, x)δ(x − x̄) with
I = 2δv/v3, then extended Born modeling specializes to ordinary Born modeling.
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Nonlinearizing MVA, step 2

(2) recognize that preceding eqn isperturbation equationof extended model
∫

dx̄U (z, x, x̄)
∂2P

∂t2
(xs; z, x̄, t) −∇2

z,xP (xs; z, x, t) = w(t)δ(z − zs)δ(x − xs)

That is,replace velocity (or square slowness) with SPD bounded operator - exis-
tence theory for such problems due to Lions, late 60’s.

If U (z, x, x̄) ' v(z, x)−2δ(x − x̄) + Ī(z, x, x̄), thenP (xs; z, x, t) ' S(...) + p(...).

In particular, ifU is physical= focusedat zero offset, i.e.U (z, x, x̄) =

v−2(z, x)δ(x − x̄), then the extended model becomes the ordinary acoustic model.
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Extended NLS

Given observed dataDobs(xr, xs, t), find extended sqr slownessU (z, x, x̄) so that
predicted dataD[U ](xs; xr, t) = P (xs; z, x, t)z=zr,x=xr fits observed data:D[U ] '
Dobs. [Formulate as least squares, use nonlinear optimization,blah, blah, blah....]

This problem isunderdetermined: can fit data equally well with many extended sqr
slownesses.

BUT: physicalsqr slownessesfocuses at zero offset[Claerbout redux!]:
U (z, x, x̄) ' v(z, x)−2δ(x − x̄)

Hypothesis: focusing of extended square slowness at zero offset⇔ correct kine-
matics for primary reflections (like MVA), multiple energy assigned to primary
reflectors (“multiples suppressed in image”, like NLS).

Initial numerical exploration: layered models⇒ U is convolution op inx variables
⇒ diagonalized by cosine transform⇒ cheap!
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Model and data
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Left: Three layer modelRight: Data - source wavelet = 4-10-30-40 Hz bandpass.
Free surface multiple is about same size as second primary.
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Migration vs. Inversion
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Left: Migration of three-layer data atv = 1.5 km/s for z < 0.2km, else= 2.5

km/s. Right: inversion,∼ 40 LMBFGS iterations beginning at migrationv. Note
disappearance of migrated multiple.
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Three extended NLS inversions
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Different initial estimates of extended square slownessU (same as for NLS exam-
ple), then LMBFGS until fit error reduced to< 10−2 × ‖Dobs‖.
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Resimulations (predicted data)
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All three fit the data equally well...
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Images (filtered zero offset sections)
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But only focused extended velocity produces image with correct reflector depths
and multiple energy assigned to primaries.
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Summary

• MVA can be formulated as optimization problem amenable to Newton: can re-
cover from large initial errors inv, but based on Born approximation⇒ degraded
by nonlinear effects in data (multiple scattering).

• NLS accomodates any modeled physics, linear or nonlinear, but cannot recover
from large initial errors inv.

• Migration operator = adjoint toextendedlinearized modeling operator

• Focusing criterion fornonlinear extended modelgeneralizes both MVA and
NLS.
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Outlook

Automation: apply focusing condition via constrained least squares (as in MVA):

minimizeU ‖hU‖2 subject to ‖D[U ] − Dobs‖ ≤ ε

Two major obstacles to making this work (“research opportunities”):

(1) simulation: can’t afford full matrix multiply in every time step - must find basis
in which U is sparse, analog of cosine transform for layered models - windowed
Fourier / curvelets?

(2) optimization: in MVA, (smooth) velocity parametrizes solutions, allows effi-
cient reduced basisapproach, long steps within very curvyfeasible setof models
fitting data. What is replacement in nonlinear setting?
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Thanks to...

National Science Foundation
Sponsors of The Rice Inversion Project

Biondo Biondi, Maarten de Hoop, Chris Stolk
Peng Shen and Total E&P USA for Marmousi expl.

The organizers, for inviting me
All of you, for listening

http://www.trip.caam.rice.edu
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