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Agenda: explore prestack focussing properties of RT S-G migra-
tion, proper definition of image volume, using ray theory.

e "Standard” PSDM (CO, CS, CSA) exhibits kinematic arti-
facts in complex structure (TRIP,...): image gathers not flat
when velocity is correct.

e Stolk-deHoop '01: no artifacts in prestack S-G migration
(perfect focussing of offset image panels at zero offset, even
in complex velocity structures). Limitations: reflector dip
subhorizontal, rays do not turn (" DSR assumption’)

e RT formulation permits arbitrary reflector orientation, prop-
agation. Image volume combining horizontal, vertical offsets
focusses near zero offset.



Outline, Part I:

e Born approximation, extended models, common offset, angle
PSDM

e kinematic image artifacts: why image gathers may not be
flat at correct velocity

e double reflector model, double reflector PSDM,

e relation to S-G migration via DSR equation.

e reverse time adjoint computation



Outline, Part II:

e kinematics of double reflector model, horizontal offsets and
focussing property under DSR assumption

e wWhy horizontal offset is insufficient; combining horizontal and
vertical offset: filtered coordinate image volumes

e derivation of focussing property, limitation to small offset
corridor

e some implementation details: how to make RT S-G as fast
as standard RT



Born approximation = linearized seismic inverse problem,
acoustic version: given smooth velocity v(x,vy,z) = v(x), seis-
mic data d(xr,t;xs), find oscillatory reflectivity r(x) = dv(x)/v(x)
to fit the data:

Flv]lr ~d

Definition of Born modeling = acoustic forward operator F[v],
via PDEs: acoustic Green’s function G and its perturbation 6G
solve

1 82 2 1 82 2 27"
plus suitable bdry and initial conditions. Then
F[U]T(Xfr,t; Xs) — 5G(Xfr,t, Xs)

[Note: lots of things ignored - source, P-S conversion, anelastic-
ity,...]



Integral representation of Born modeling:

G (Xr,t; Xs) ——/dy/d 2£§§§

Insert asymptotic repn. of Green’s function:

G(y,t — 7:x,)G(y,T;xs5) (1)

G(x,t,xs) = A(X;x5)0(t — 7(x,X5))

gives Kirchhoff or Ray-Born or GRT approximation to linearized
fwd map:

3G tix) = o5 [ a5 Ay ) Ay 5813307550

BUT this is only valid for r concentrated near sources and re-
ceivers (no caustics!) - so we won't use it.




"Prestack’” or extended modeling, common offset: in integral
representation of 6G, permit r to depend on (half) offset h =
(xr — x5)/2, call it R(x,h):

Fv]R(xs 4 2h,t; xs) =

2R(y, h) . .
atQ/dy/dT 2y Gt = Tixs +2W)G(y, i xs)

Two things worth noting:

e Each offset bin is modeled independently.

e If R(x,h) is independent of h, i.e. R(x,h) = r(x), then this
is simply Born modeling - F[v]R = F[v]r - so R(x,h) is an
extended model.



Properties of common offset extended (or prestack) Born mod-
eling operator E'[v]:

e invertible in mild structure, i.e. absent caustics - asymptotic
inverse is also GRT [Beylkin, Rakesh, Bleistein, Burridge,
Miller, DeHoop, Spencer, tenKroode, Smit,...]

e asymptotic inverse is a true amplitude migration operator:
reflectors (local oscillatory plane wave components of R) cor-
rectly positioned with correct amplitude, with correct ampli-
tude, but low-frequency trends are not recovered.

e adjoint operator F[v]* IS also a migration operator, i.e. po-
sitions reflectors correctly but with possibly incorrect ampli-
tudes (again, absent caustics!):



Flo]*d(x, h) =

82

2
ath(Xs + 2h,t; xs)

v2(y)

[ das [ drGly,t—rixs+20)G(y, 7i %)

+ asymptotic Green’s function = Kirchhoff common offset depth
migration (with particular choice of amplitude).

The basis of velocity analysis:

If velocity is correct, then image volume F[v]*d has same reflec-
tors as true reflectivity

= independent of h = image gathers are flat



Bad News: If structure is sufficiently complex, so that caustics
and multipathing occur, the Kirchhoff PSDM operator F[v]* is
not an inverse (in the kinematic sense - except for amplitudes)
of F: apparent reflectors with nonzero dip appear - kinematic
image artifacts.

= common image gathers are not flat even when velocity is
correct.

Common shot migration: Nolan, 1996 SEG; common offset,
scattering angle (Kirchhoff) migration: Stolk & S. 2002 SEG.
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Example (data courtesy of G. Lambaré; migration computations
by C. Stolk):

" Canonical test case” (Xu et al, 2001): v = Marmousi model
smoothed by Gaussian, half-power radius = 150 m; r = two flat
reflectors, depths 2400, 2500 m.

Migration operator = multiarrival Kirchhoff, i.e. proper asymp-
totic approximation of integral representation of F[v]*, imple-

mented via dynamic ray tracing.

to appear in Geophysics
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receiver position (km)
5.2 5.6 6 6.4 6.8 7.2

time
)

Typical shot gather: much evidence of multipathing, caustic for-
mation.
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Typical common scattering angle image gather: note nonflat
event in box. This is kinematic, not a signal processing artifact:
it results from data event migrating along different ray pair than
that which produced it.
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X (km)
5.6 6 6.4 6.8 7.2 7.6

Z 12
(km)

Blue rays = energy path producing data event. Black rays: en-
ergy path for migration, resulting in displaced, angle-dependent
image artifact.
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S-G modeling - begin with a different extension of Born model-
ing:

Fv]R(xr,t,x5) =

02 2R(y, h) . .
ﬁ/dy/dh/ch 20y GO bt = mx) Gl — b Tixs)

Looks similar to common offset extension, BUT:

e " Offset” parameter h is not same as surface offset (x, —xs)/2
- two reflection points y =+ h - double reflector model

e cach output point (xr,t;xs) depends on all model points
(x,h)

e Same as Born modeling - F[v]R = F[v]r - when R(x,h) =
r(x)o(h), i.e. (double) reflectivity focussed at offset zero
(rather than flat as in common offset extension).
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An immediate difficulty - too many parameters.

e for common offset extension, h = surface offset, therefore
(essentially) horizontal, prestack model R(x,h) has same num-
ber of parameters as data - this is needed for invertibility.

e for double reflector model, h is not surface offset, therefore
not constrained by geometry of sources and receivers - can

be essentially arbitrary! Too many parameters, F[v] cannot
be invertible as defined.
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An obvious solution: mandate that h is horizontal, i.e. hy, = 0.

Good News: Suppose also that rays carrying significant energy
do not turn ("DSR assumption”), and that all shot, receiver
locations are present in data (" true 3D", "complete coverage’ ).
Then (i) F[v] is always invertible, regardless of multipathing; (ii)
the adjoint F[v]* focusses energy in image gathers at zero offset;
(iii) F[v]* is kinematically (except for amplitudes) identical to
Claerbout’'s S-G DSR migration operator (Stolk-DeHoop 2001).

The rest of this seminar:
e examples of S-G focussing in the presence of multipathing
e ray-theoretic analysis of focussing

e how and why to get rid of the DSR / horizontal offset as-
sumptions.
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Gaussian lens velocity model, flat reflector at depth 2 km, over

lain with rays and wavefronts (Stolk & S. 2002 SEG).



receiver position (km)
-2 -1 0

time
(s

Typical shot gather - lots of arrivals

1
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offset
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Offset common image gather (slice of F[v]*d), with kinematically
predicted reflector images overlain.
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Middle panel: S-G common image gather, horizontal offset (slice
of F[v]*d), courtesy B. Biondi.
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Relation with S-G migration via depth extrapolation (Claerbout
IEI 1985): begin by introducing source-receiver parametrization

R(yr,ys) = R(y,h) where y = (yr +ys)/2, h = (yr — ys)/2
("sunken” midpoint, offset). Rewrite

Fv]R(xr, t; x5) =

2R(yr,
8152 / WYr / dys / a7 v(zy(ry)}’S)G(yrat — 7, %Xr)G(ys, T Xs)

The LHS is the value at x = x, of a field u(x, t; xs) which satisfies

1 92
(U(X)Q atQ o v}2{> ’U,(X, t, XS) — / dyr R(X, YS>G(yS, t’ XS)
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Define the RHS of the last equation to be the field
= ws(X, t; Xs)

soO that

1 92 5
v(x)QatQ — VX U(X, t, Xs) — ws(X, t, Xs)

(“upward continue the receivers”), and note that ws(x,t; xs) is
the value at y = x5 of a field which satisfies

1 62 5 |
<"v(y)28t2 a vY) ws(x,t;y) = R(x,y)d(1)

( “upward continue the sources”) (w, defined similarly).
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Depth extrapolation begins with approximate factorization of the

wave operator. To keep notation under control, stick with 2D:

X = (x,2r),y = (v, 25),

52 1 92 92 o 5,
_ |~ — B B
Oz2 (v(w)zﬁtz 8332) ( r) ( + T)

similarly for wave operator in zs,y,t. That is

1 92 92 1 92 92
Br = 352 " g2 D5 2912 942
v(x)< 0ot ox v(y)< Ot Oy
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Good questions:

e wWhen is this possible - A: when the DSR assumption holds
(rays carrying significant energy do not turn);

e What does ~ mean - A: this is an asymptotic result;

e what sort of operator is B - A: see CIME notes on TRIP web
site;

e how do you compute B - A: see the depth extrapolation
industry.
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Upcoming projections:

= (4 m) (48]

aZr

N 0
Ws — ( + Bs) Ws,

823

(similar definition for w,). Since z will be singled out (and even-
tually R(x,y) will have a factor of §(x,y)), impose the constraint

that
R(ﬂ?, <y Y, ZS) — R(xaya 2)6(2 T ZS)

T hen

0 - -
< _BT) ’U,(QZ,ZT,t;y,ZS) :ws(xaz’l“at;yazs)
Ozy

a ~ ~
(32 B BS) Ws (@, 2r, 1, Y, 2s) = R(x,y, 2r)6(2zr — 25)0(1)
s
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Simultaneous upward continuation:

0 _ 0 _ 0
—a(z, z,t;y,2) = u(x, zr, t, Yy, 2)|2=2 +
0z 15,

Zr 2r

ﬂ’(aja 2 tr Y, ZS)|Z:Z3

= [Brii + Ws + Bst + W], —, —.

Since ws(y, z,t; z,2) = Wr(x, 2, t;y, 2) = R(x,y, 2)5(t), @ is seen to
satisfy the DSR modeling equation:

(82 _ B, - BS) i(z, 2,6y, 2) = 2B(x,y, 2)5(t)
4
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Since the u, the upcoming projection of u, has same events as
v (wrong amplitudes, dip-dep. filter), replace forward map F[v]
by

F[v]R(xr, t; zs) = @(xr,0,t; z5,0)

retaining same kinematics. Now easy task ("' adjoint state method",
see CIME notes) to show that adjoint of F[v] given by Claer-
bout’s DSR migration equation: solve

0
(_ T BT T BS) a(xayazﬂf) =0
in increasing z with initial condition at z = O:
(j(xr7 Ls, 07 t) — d(ﬂ?r, Ls, t)

(" downward continue sources and receivers”). Then EF[v]*d(z,y, 2) =
G(x,y,2,0) (" prestack image extracted at t =0").
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Back to 3D. Reverse time computation of adjoint:

F*[v]d(x, h) = —/ de/ dt (x—l—ht xs)V2G(x — h, £; X5)

where the adjoint state or backpropagated field g(x, t; xs) satisfies
q=0,t>1T and

2
(U(i)Qth B V%) Q(X’ L XS) — / dxr d(Xr, t, Xs)5<X — XT)

(" use data traces as time-reversed sources, add up')
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Points to note:

The Green’s function G and the adjoint field g are exactly the
same as the usual fields appearing in RT imaging (Whitmore,
Lailly, McMechan,...).

The only difference is the displacement of the correlation
point by the offset h.

The loop over h can be restricted to various subsets of 3D
offset space (eg. to be horizontal) - this only affects the
imaging (crosscorrelation) loop, all other computations re-
maining the same.

Implementation can use any accurate discretization of the
wave equation.

Derivation: another instance of the adjoint state method,
see eg. CIME notes.
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offset (km)
0

-0.2 01 01

depth (km)

Offset Image Gather, x=1km 0IG, x=1 km: vel 10% high 0IG, x=1 km: vel 10% low

2D RT horizontal offset S-G image gathers of data from ran-
dom reflectivity, constant velocity. Computation uses (4,2) FD
scheme. Synthetic FD data: 40 shots, fixed split spread. From
left to right: correct velocity, 10% high, 10% low. Note fo-
cussing at h = 0 for correct velocity, as predicted by theory.
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