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Agenda: explore prestack focussing properties of RT S-G migra-
tion, proper definition of image volume, using ray theory.

• ”Standard” PSDM (CO, CS, CSA) exhibits kinematic arti-
facts in complex structure (TRIP,...): image gathers not flat
when velocity is correct.

• Stolk-deHoop ’01: no artifacts in prestack S-G migration
(perfect focussing of offset image panels at zero offset, even
in complex velocity structures). Limitations: reflector dip
subhorizontal, rays do not turn (”DSR assumption”)

• RT formulation permits arbitrary reflector orientation, prop-
agation. Image volume combining horizontal, vertical offsets
focusses near zero offset.
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Outline, Part I:

• Born approximation, extended models, common offset, angle

PSDM

• kinematic image artifacts: why image gathers may not be

flat at correct velocity

• double reflector model, double reflector PSDM,

• relation to S-G migration via DSR equation.

• reverse time adjoint computation
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Outline, Part II:

• kinematics of double reflector model, horizontal offsets and

focussing property under DSR assumption

• why horizontal offset is insufficient; combining horizontal and

vertical offset: filtered coordinate image volumes

• derivation of focussing property, limitation to small offset

corridor

• some implementation details: how to make RT S-G as fast

as standard RT
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Born approximation = linearized seismic inverse problem,
acoustic version: given smooth velocity v(x, y, z) = v(x), seis-
mic data d(xr, t;xs), find oscillatory reflectivity r(x) ≡ δv(x)/v(x)
to fit the data:

F [v]r ' d

Definition of Born modeling = acoustic forward operator F [v],
via PDEs: acoustic Green’s function G and its perturbation δG
solve(

1

v2

∂2

∂t2
−∇2

)
G = δ(t)δ(x− xs),

(
1

v2

∂2

∂t2
−∇2

)
δu =

2r

v2
G

plus suitable bdry and initial conditions. Then

F [v]r(xr, t;xs) = δG(xr, t;xs)

[Note: lots of things ignored - source, P-S conversion, anelastic-
ity,...]
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Integral representation of Born modeling:

δG(xr, t;xs) =
∂2

∂t2

∫
dy

∫
dτ

2r(y)

v2(y)
G(y, t− τ ;xr)G(y, τ ;xs) (1)

Insert asymptotic repn. of Green’s function:

G(x, t;xs) = A(x;xs)δ(t− τ(x,xs))

gives Kirchhoff or Ray-Born or GRT approximation to linearized

fwd map:

δG(xr, t;xs) =
∂2

∂t2

∫
dy

2r(y)

v2(y)
A(y,xr)A(y,xs)δ(t−τ(y,xr)−τ(y,xs))

BUT this is only valid for r concentrated near sources and re-

ceivers (no caustics!) - so we won’t use it.
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”Prestack” or extended modeling, common offset: in integral
representation of δG, permit r to depend on (half) offset h =
(xr − xs)/2, call it R(x,h):

F̃ [v]R(xs + 2h, t;xs) ≡

=
∂2

∂t2

∫
dy

∫
dτ

2R(y,h)

v2(y)
G(y, t− τ ;xs + 2h)G(y, τ ;xs)

Two things worth noting:

• Each offset bin is modeled independently.

• If R(x,h) is independent of h, i.e. R(x,h) = r(x), then this
is simply Born modeling - F̃ [v]R = F [v]r - so R(x,h) is an
extended model.
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Properties of common offset extended (or prestack) Born mod-

eling operator F̃ [v]:

• invertible in mild structure, i.e. absent caustics - asymptotic

inverse is also GRT [Beylkin, Rakesh, Bleistein, Burridge,

Miller, DeHoop, Spencer, tenKroode, Smit,...]

• asymptotic inverse is a true amplitude migration operator:

reflectors (local oscillatory plane wave components of R) cor-

rectly positioned with correct amplitude, with correct ampli-

tude, but low-frequency trends are not recovered.

• adjoint operator F̃ [v]∗ is also a migration operator, i.e. po-

sitions reflectors correctly but with possibly incorrect ampli-

tudes (again, absent caustics!):
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F̃ [v]∗d(x,h) =

2

v2(y)

∫
dxs

∫
dτ G(y, t− τ ;xs + 2h)G(y, τ ;xs)

∂2

∂t2
d(xs + 2h, t;xs)

+ asymptotic Green’s function = Kirchhoff common offset depth

migration (with particular choice of amplitude).

The basis of velocity analysis:

If velocity is correct, then image volume F̃ [v]∗d has same reflec-

tors as true reflectivity

⇒ independent of h ⇒ image gathers are flat
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Bad News: If structure is sufficiently complex, so that caustics

and multipathing occur, the Kirchhoff PSDM operator F̃ [v]∗ is

not an inverse (in the kinematic sense - except for amplitudes)

of F̃ : apparent reflectors with nonzero dip appear - kinematic

image artifacts.

⇒ common image gathers are not flat even when velocity is

correct.

Common shot migration: Nolan, 1996 SEG; common offset,

scattering angle (Kirchhoff) migration: Stolk & S. 2002 SEG.
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Example (data courtesy of G. Lambaré; migration computations

by C. Stolk):

”Canonical test case” (Xu et al, 2001): v = Marmousi model

smoothed by Gaussian, half-power radius = 150 m; r = two flat

reflectors, depths 2400, 2500 m.

Migration operator = multiarrival Kirchhoff, i.e. proper asymp-

totic approximation of integral representation of F̃ [v]∗, imple-

mented via dynamic ray tracing.

to appear in Geophysics
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Typical shot gather: much evidence of multipathing, caustic for-

mation.
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Typical common scattering angle image gather: note nonflat
event in box. This is kinematic, not a signal processing artifact:
it results from data event migrating along different ray pair than
that which produced it.
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Blue rays = energy path producing data event. Black rays: en-
ergy path for migration, resulting in displaced, angle-dependent
image artifact.
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S-G modeling - begin with a different extension of Born model-
ing:

F̄ [v]R(xr, t;xs) =

∂2

∂t2

∫
dy

∫
dh

∫
dτ

2R(y,h)

v2(y)
G(y + h, t− τ ;xr)G(y − h, τ ;xs)

Looks similar to common offset extension, BUT:

• ”offset” parameter h is not same as surface offset (xr−xs)/2
- two reflection points y ± h - double reflector model

• each output point (xr, t;xs) depends on all model points
(x,h)

• Same as Born modeling - F̄ [v]R = F [v]r - when R(x,h) =
r(x)δ(h), i.e. (double) reflectivity focussed at offset zero
(rather than flat as in common offset extension).
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An immediate difficulty - too many parameters.

• for common offset extension, h = surface offset, therefore

(essentially) horizontal, prestack model R(x,h) has same num-

ber of parameters as data - this is needed for invertibility.

• for double reflector model, h is not surface offset, therefore

not constrained by geometry of sources and receivers - can

be essentially arbitrary! Too many parameters, F̄ [v] cannot

be invertible as defined.
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An obvious solution: mandate that h is horizontal, i.e. hz ≡ 0.

Good News: Suppose also that rays carrying significant energy
do not turn (”DSR assumption”), and that all shot, receiver
locations are present in data (”true 3D”, ”complete coverage”).
Then (i) F̄ [v] is always invertible, regardless of multipathing; (ii)
the adjoint F̄ [v]∗ focusses energy in image gathers at zero offset;
(iii) F̄ [v]∗ is kinematically (except for amplitudes) identical to
Claerbout’s S-G DSR migration operator (Stolk-DeHoop 2001).

The rest of this seminar:

• examples of S-G focussing in the presence of multipathing

• ray-theoretic analysis of focussing

• how and why to get rid of the DSR / horizontal offset as-
sumptions.
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predicted reflector images overlain.
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Middle panel: S-G common image gather, horizontal offset (slice

of F̄ [v]∗d), courtesy B. Biondi.
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Relation with S-G migration via depth extrapolation (Claerbout

IEI 1985): begin by introducing source-receiver parametrization

R̄(yr,ys) = R(y,h) where y = (yr + ys)/2, h = (yr − ys)/2

(”sunken” midpoint, offset). Rewrite

F̄ [v]R̄(xr, t;xs) =

∂2

∂t2

∫
dyr

∫
dys

∫
dτ

2R̄(yr,ys)

v2(y)
G(yr, t− τ ;xr)G(ys, τ ;xs)

The LHS is the value at x = xr of a field u(x, t;xs) which satisfies(
1

v(x)2
∂2

∂t2
−∇2

x

)
u(x, t;xs) =

∫
dyr R(x,ys)G(ys, t;xs)
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Define the RHS of the last equation to be the field

≡ ws(x, t;xs)

so that (
1

v(x)2
∂2

∂t2
−∇2

x

)
u(x, t;xs) = ws(x, t;xs)

(“upward continue the receivers”), and note that ws(x, t;xs) is

the value at y = xs of a field which satisfies(
1

v(y)2
∂2

∂t2
−∇2

y

)
ws(x, t;y) = R(x,y)δ(t)

(“upward continue the sources”) (wr defined similarly).
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Depth extrapolation begins with approximate factorization of the

wave operator. To keep notation under control, stick with 2D:

x = (x, zr),y = (y, zs),

∂2

∂z2
r
−
(

1

v(x)2
∂2

∂t2
−

∂2

∂x2

)
'
(

∂

∂zr
−Br

)(
∂

∂zr
+ Br

)

similarly for wave operator in zs, y, t. That is

Br '

√√√√ 1

v(x)2
∂2

∂t2
−

∂2

∂x2
, Bs '

√√√√ 1

v(y)2
∂2

∂t2
−

∂2

∂y2
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Good questions:

• when is this possible - A: when the DSR assumption holds

(rays carrying significant energy do not turn);

• what does ' mean - A: this is an asymptotic result;

• what sort of operator is B - A: see CIME notes on TRIP web

site;

• how do you compute B - A: see the depth extrapolation

industry.
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Upcoming projections:

ũ =
(

∂

∂zs
+ Bs

)(
∂

∂zr
+ Br

)
u

w̃s =
(

∂

∂zs
+ Bs

)
ws,

(similar definition for w̃r). Since z will be singled out (and even-
tually R(x,y) will have a factor of δ(x,y)), impose the constraint
that

R̄(x, z, y, zs) = R̃(x, y, z)δ(z − zs)

Then (
∂

∂zr
−Br

)
ũ(x, zr, t; y, zs) = w̃s(x, zr, t; y, zs)

(
∂

∂zs
−Bs

)
w̃s(x, zr, t; y, zs) = R̃(x, y, zr)δ(zr − zs)δ(t)
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Simultaneous upward continuation:

∂

∂z
ũ(x, z, t; y, z) =

∂

∂zr
ũ(x, zr, t; y, z)|z=zr +

∂

∂zr
ũ(x, z, t; y, zs)|z=zs

= [Brũ + w̃s + Bsũ + w̃r]zr=zs=z

Since w̃s(y, z, t;x, z) = w̃r(x, z, t; y, z) = R̃(x, y, z)δ(t), ũ is seen to

satisfy the DSR modeling equation:

(
∂

∂z
−Br −Bs

)
ũ(x, z, t; y, z) = 2R̃(x, y, z)δ(t)
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Since the ũ, the upcoming projection of u, has same events as

u (wrong amplitudes, dip-dep. filter), replace forward map F̄ [v]

by

F̂ [v]R̃(xr, t;xs) = ũ(xr,0, t;xs,0)

retaining same kinematics. Now easy task (”adjoint state method”,

see CIME notes) to show that adjoint of F̂ [v] given by Claer-

bout’s DSR migration equation: solve(
∂

∂z
−Br −Bs

)
q̃(x, y, z, t) = 0

in increasing z with initial condition at z = 0:

q̃(xr, xs,0, t) = d(xr, xs, t)

(”downward continue sources and receivers”). Then F̂ [v]∗d(x, y, z) =

q̃(x, y, z,0) (”prestack image extracted at t = 0”).
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Back to 3D. Reverse time computation of adjoint:

F̄ ∗[v]d(x,h) = −
∫

dxs

∫ T

0
dt

∂q

∂t
(x + h.t;xs)∇2G(x− h, t;xs)

where the adjoint state or backpropagated field q(x, t;xs) satisfies

q ≡ 0, t ≥ T and

(
1

v(x)2
∂2

∂t2
−∇2

x

)
q(x, t;xs) =

∫
dxr d(xr, t;xs)δ(x− xr)

(”use data traces as time-reversed sources, add up”)
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Points to note:

• The Green’s function G and the adjoint field q are exactly the
same as the usual fields appearing in RT imaging (Whitmore,
Lailly, McMechan,...).

• The only difference is the displacement of the correlation
point by the offset h.

• The loop over h can be restricted to various subsets of 3D
offset space (eg. to be horizontal) - this only affects the
imaging (crosscorrelation) loop, all other computations re-
maining the same.

• Implementation can use any accurate discretization of the
wave equation.

• Derivation: another instance of the adjoint state method,
see eg. CIME notes.
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2D RT horizontal offset S-G image gathers of data from ran-

dom reflectivity, constant velocity. Computation uses (4,2) FD

scheme. Synthetic FD data: 40 shots, fixed split spread. From

left to right: correct velocity, 10% high, 10% low. Note fo-

cussing at h = 0 for correct velocity, as predicted by theory.
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