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Agenda: explore prestack focussing properties of RT S-G migra-
tion, proper definition of image volume, using ray theory.

• ”Standard” PSDM (CO, CS, CSA) exhibits kinematic arti-
facts in complex structure (TRIP,...): image gathers not flat
when velocity is correct.

• Stolk-deHoop ’01: no artifacts in prestack S-G migration
(perfect focussing of offset image panels at zero offset, even
in complex velocity structures). Limitations: reflector dip
subhorizontal, rays do not turn (”DSR assumption”)

• RT formulation permits arbitrary reflector orientation, prop-
agation. Image volume combining horizontal, vertical offsets
focusses near zero offset.
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Outline, Part I:

• Born approximation, extended models, common offset, angle

PSDM

• kinematic image artifacts: why image gathers may not be

flat at correct velocity

• double reflector model, double reflector PSDM,

• relation to S-G migration via DSR equation.

• reverse time adjoint computation
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Outline, Part II:

• kinematics of double reflector model, horizontal offsets and

focussing property under DSR assumption

• why horizontal offset is insufficient; combining horizontal and

vertical offset: filtered coordinate image volumes

• derivation of focussing property, limitation to small offset

corridor

• some implementation details: how to make RT S-G as fast

as standard RT
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S-G modeling - begin with a extension of Born modeling, differ-

ent from extension underlying standard CO, CS, CSA migration:

F̄ [v]R(xr, t;xs) =

∂2

∂t2

∫
dy

∫
dh

∫
dτ

2R(y,h)

v2(y)
G(y + h, t− τ ;xr)G(y − h, τ ;xs)

Looks similar to common offset extension, BUT:

• ”offset” parameter h is not same as surface offset (xr−xs)/2

- two reflection points y ± h - double reflector model

• each output point (xr, t;xs) depends on all model points

(x,h)
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• Same as Born modeling - F̄ [v]R = F [v]r - when R(x,h) =

r(x)δ(h), i.e. (double) reflectivity focussed at offset zero

(rather than flat as in common offset extension).



Alternate representation: source-receiver parametrization R̄(yr,ys) =

R(y,h) where y = (yr + ys)/2, h = (yr − ys)/2 (”sunken” mid-

point, offset). Rewrite

F̄ [v]R̄(xr, t;xs) =

∂2

∂t2

∫
dyr

∫
dys

∫
dτ

2R̄(yr,ys)

v2(y)
G(yr, t− τ ;xr)G(ys, τ ;xs)

Adjoint operator (S-G migration):

F̄ ∗[v]d(ys,yr) =

2

v((ys + yr)/2)

∫
dxs

∫
dxr

∫
dt
∫

dτ G(yr, t−τ ;xr)G(ys, τ ;xs)d(xr, t;xs)

RT representation mentioned last time, later today.
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Kinematics: relation between (double) reflectors, reflection events

in data.

Phase space description: reflector has location (yr,ys) and dip

(kr,ks). Means: near (yr,ys) reflectivity R̄(y′r,y
′
s) has significant

energy in plane wave component exp i(y′r · kr + y′s · ks).

Similarly, reflection event in data at location (xr, t;xs) and dip

ω(pr,1;ps). Event slownesses pr,ps determined by data for ”true

3D”, otherwise many data-compatible slownesses (eg. for ideal-

ized streamer geometry).

Kinematic Relation of S-G modeling/migration: reflection event

(xr, t;xs), ω(pr,1;ps) occurs ⇔ reflector exists at yr,ys,kr,ks and
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• a ray begins at xs with takeoff slowness ps and reaches ys

with arrival slowness ks/ω, in time ts;

• a ray begins at xr with takeoff slowness pr and reaches yr

with arrival slowness kr/ω, in time tr;

• ts + tr = t
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Note: for any given reflection event in data, many corresponding

(double) reflectors: all points on rays from source, receiver with

correct total time.

⇒ gross imaging ambiguity

[Recall: double reflection model has too many parameters!]

The ”traditional” fix: (1) DSR assumption, i.e. no turning rays;

(2) ”sunken offset” vector horizontal
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Kinematic relation of S-G modeling/migration + DSR + hori-

zontal offset: NO IMAGING AMBIGUITY (Stolk-deHoop 2001)
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Recall: S-G modeling same as Born modeling when

R̄(yr,ys) = r

(
yr + ys

2

)
δ

(
yr − ys

2

)
i.e. reflector energy focussed at zero offset.

When (i) velocity is correct and data is noise free, and (ii) DSR

and horizontal offset assumptions are enforced, Stolk-deHoop ⇒
energy must focus at zero offset because (a) that is one of the

locations in reflectivity phase space corresponding to the event,

and (b) there can be only one such location!

Translation: no imaging artifacts in S-G migration under these

assumptions.
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Relation between double and ordinary reflectors: if

R̄(yr,ys) = r

(
yr + ys

2

)
δ

(
yr − ys

2

)
then plane wave components on LHS must come from RHS:

these have the form

eikm·(yr+ys) · eikh·(yr−ys)

⇒ km = ks + kr; ks,kr must have same length (both are ray

parameters at yr = ys!)

⇒ Snell’s law (but must also assume TIC: a physical reflector is

uniquely determined by the incident and reflected rays and the

total travel time.)
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Snell’s law - focussed case of S-G migration = usual reflection

kinematics

13



x x

x xs r

TIC can be a nontrivial assumption in complex velocity structure.
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How do you prove stuff like this?

Idea 1: use Green’s function representation, asymptotic repre-
sentation of Green’s function. Bad idea: rep. breaks down at
caustics, exactly where this gets intersting.

Idea 2: use PDE expression of S-G modeling: F̄ [v]R̄(xr, t;xs) =
u(xr, t;xs), (

1

v(x)2
∂2

∂t2
−∇2

x

)
u(x, t;xs) = ws(x, t;xs)

(
1

v(y)2
∂2

∂t2
−∇2

y

)
ws(x, t;y) = R̄(x,y)δ(t)

plus harmonic analysis of singularities - follows Rakesh’s 1988
analysis of ordinary reflection. See WWS, Stolk, Biondi, 2002
TRIP AR (www.trip.caam.rice.edu)
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Q. Why drop DSR? A. Because in complex structure, rays turn.

Q. Why drop horizontal offsets? A. Because reflectors structures

may be vertical or near-vertical, and then horizontal offset images

will be smeared (i.e. ambiguous reflector locations!)

Nonvertical reflector ⇒ total traveltime determines reflection

point uniquely when velocity is correct and horizontal offset as-

sumed.

Vertical reflector⇒many different (double) reflectors correspond

to single physical reflector, all having same traveltimes and hor-

izontal offset.
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Nonvertical reflector: tr+ ts = t′r+ t′s, but depths can only be the

same at one point (which must be the physical reflection point,

if velocity is correct, by S-deH).
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(Near) vertical reflector: tr + ts = t′r + t′s, and depths can be the

same at a continuum of points, besides the physical reflection

point ⇒ reflector is smeared, location ambiguous.
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How to admit non-horizontal offsets, 2D version (for 3D see

paper):

Define projector filters Πz,Πx, smooth functions of (kz, kx) sat-

isfying:

• 0 ≤ Πz,Πz ≤ 1, Πz + Πx ≡ 1

• Πz(0, kx) = 0, Πx(kz,0) = 0

Define injection operators in (midpoint, offset) coordinates:

Qzrz(y,h) = Πz[rz(y, hx)δ(hz)], Qxrx(y,h) = Πx[rx(y, hz)δ(hx)],

for horizontal offset and vertical offset reflectivity volumes

rz(y, hx), rx(y, hz) respectively.
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Define the bidirectional double reflection modeling operator F̄[v]
by

F̄[v](rz, rx) = F̄ [v]Qzrz + F̄ [v]Qxrx

• F̄[v] has a 1-1 kinematic relation - no imaging ambiguities -
when hx (for rz) and hz (for rx) are not too big.

• Double reflectivity volume (rz, rx) output by bidirection al DR
modeling operator

F̄[v]∗d = (Q∗zF̄ [v]∗d, Q∗xF̄ [v]∗d)

• Efficiency: Qz = EzΠ̂z where Ezrz(y,h) = rz(y, hx)δ(hz) and
Π̂z = filter on (y, hz), filters out components where the hori-
zontal offset wavenumber is too large relative to the midpoint
wavenumber, similar for rx.
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