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Summary

We analyze the amplitudes produced by shot-record mi-
gration by one-way wavefield extrapolation. By com-
paring these amplitudes with those produced by true-
amplitude Kirchhoff migration, we show the amplitude
and phase errors that come from a standard implemen-
tation of migration by one-way wavefield extrapolation.
Next, we present a new formulaton of shot-record migra-
tion that maintains its high fidelity in imaging complex
structures, has correct dynamic behavior at least for con-
stant velocity, and can be easily extended to v(z). This
formulation requires that we modify, in a straightforward
way, the wavefield that is being downward continued. Our
analysis applies equally to all migration methods based on
one-way wavefield extrapolators.

Introduction

Until recently, Kirchhoff migration has been used for most
3-D prestack migrations, primarily because of its versatil-
ity and efficiency. The demands of imaging increasingly
complex geological structures, however, have spurred a
demand for increased imaging fidelity. This has led to
the growing popularity of imaging methods that handle
more than the single arrival (e.g., maximum-energy) that
Kirchhoff migration is capable of handling conveniently.
Such methods include multi-arrival Kirchhoff migration,
which allows for several arrivals at each image location,
and finite-difference migration, which allows for an unlim-
ited number of arrivals at each image location. In this pa-
per, we concentrate on one-way wavefield extrapolation,
paying particular attention to its amplitude and phase
behavior.

The standard formulation of finite-difference migration
(Claerbout, 1985) consists of two parts. The first part
is the downward continuation of the wavefields from the
source and receiver locations using a “wave equation” that
splits the wavefields into downgoing and upgoing parts.
The second part is the application of an imaging condi-
tion, namely the division of the downward continued re-
ceiver wavefield by the downward continued source wave-
field at each image point. Unfortunately, the one-way
“wave equations” used in the downward continuation are
not equivalent to the acoustic wave equation whose behav-
ior they are designed to mimic. This lack of equivalence
leads to a migrated wavefield that lacks correct ampli-
tude and phase behavior, even though it is kinematically
correct. By expressing the downward continued wave-
fields asymptotically, we are able to compare the imaged
wavefield with the reflection coefficient of true amplitude
Kirchhoff migration. The latter is our benchmark for am-

plitude and phase. The former is the downward contin-
ued receiver wavefield divided by the downward continued
source wavefield. This comparison leads to a corrected
equation for the upgoing and downgoing wavefields which,
in turn, leads to a corrected expression for the wavefields
being downward continued. When these corrections are
applied, the migration produces images whose amplitudes
and phases agree with true-amplitude Kirchhoff migra-
tion. These corrections are essentially without cost, and
they do not compromise the migration’s structural imag-
ing fidelity, such as finite-difference migration.

Theory

We begin with a layered velocity (v(z)) earth and 3D
common-shot migration. Given an acoustic wave-field p
with source excitation at £ = (zs,¥s,0) and t = 0,
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, we record the surface data Q:

)
According to Bleistein et al.’s (2001) work on inversion,

the true-amplitude common shot Kirchhoff inversion for-
mula is (Zhang et al., 2000)
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where ¢ and o are in-plane and out-of-plane geometrical
spreading terms and as and ayo are surface angles at
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Fig. 1: Ray paths in a v(z) medium.
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Fig. 2: Left: 3-D phase-shift migrated impulse responses along the center inline. The shot is at crossline 121 and receiver at
crossline 141. Right: Amplitudes of the 3-D migrated impulse responses. The solid lines are theoretical predictions and symbols

are the peak amplitudes from the left.

shot and receivers, respectively (see Figure 1), and the
hat denotes temporal Fourier transform.

For conventional common-shot migration, we downward
continue both shot and receiver wavefields:

0
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and 5
(5.-4)u=0, 6
U(z,y,2=0;t) = Q(z,y;t)

where D and U are the downgoing and upgoing waves
(Claerbout, 1985), respectively, and
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is the square-root operator. To produce the image, we
use the imaging condition

U(z,y,2w)

R($7y7 Z) = dw. (6)

D(z,y,zw)

For a v(z) medium, Zhang et al. (2001) give an asymp-
totic expression for the one-way wave fields:
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Substituting (7) and (8) into (6), we obtain
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Comparing (9) with (3), we conclude that the algorithm
(4-6) cannot provide the true amplitude image; even the
phase term fw is missing.

To see why this happens, we observe that for constant
velocity, D and U are not components of the full wave
fields p, but rather they are related to p by (Zhang, 1993)
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and
D+ U = Ap.

Therefore from (1) and (2) we have
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Attaching physical meaning to D and U, we can re-
formulate (10) as follows:
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Noting that the symbol of A in the Fourier domain is
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Fig. 3: Flat reflectors along the center inlines after 3-D com-
mon shot migration.

we see that the modified initial condition for U gives an
additional phase shift iw. We also need to modify the
imaging condition to be

R(x,y,z)=/p7U($’y’z;w)dw

ﬁD(iL‘,y,z;UJ) (12)

Here pp and py are defined as

pp =A"'D, pu = AT,

which satisfy pp +py = p. It is easy to see py and pp are
downgoing and upgoing waves (p* and p~) introduced in
Wapenaar (1998). Noticing A = i%cosa and applying
stationary phase to (11) and (12), we obtain

R(z,y,2)~ ///cos Qro [COSCsts0s
Vo COoS Qr Yr Oy (13)
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For constant velocity, the splitting (10) is exact. There-
fore (11) and imaging condition (12) give the true-
amplitude result. This can be directly seen by comparing
(13) with (3) and setting aso = as, aro = a,. For the
v(z) case, we need to apply another correction term

COS Q50 COS Gy
COS Qs COSQiro

or
A30 A’I‘
s A7‘0 '
Research is currently in progress on modifying the dif-

ferential operators in (10) to include this factor in the
resulting D and U.

Numerical results

Figure 2 (left) shows the 3-D migrated impulse responses
along the center inline from a trace with three 7.5 Hz
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Fig. 4: Peak migrated amplitudes of the three reflectors in

Figure 3.

Ricker wavelets at depth 1000m, 2000m and 3000m, re-
spectively. The source is at crossline 121 and receiver at
crossline 141 and trace spacing is 50m in both inline and
crossline directions. The medium velocity is 2000m/s.
Unlike the kinematic behavior, the amplitudes of the im-
pulse responses are asymmetric, with a bias on the re-
ceiver side. The peak amplitudes along the impulse re-
sponses are in good agreement with the theoretical pre-
diction shown in Figure 2 (right).
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Fig. 5: Frequency spectrum of the migrated wavelets at inline
121 and crossline 121. The solid line is the spectrum of the
input 15 Hz Ricker wavelet. The overlay is nearly perfect.

Figure 3 is the center inline of the 3-D migrated result
from a single shot over three flat reflectors. The peak
amplitudes along the three migrated reflectors are shown
in Figure 4. Aside from the edge effects and small jitters
caused by interference with wraparound artifacts, the 3-
D common shot migration recovers the reflectivity accu-
rately. Figure 5 shows that the frequency content is pre-
served by the migration at the center trace location. How-
ever, the wavelet becomes progressively lower frequency
away from the center trace due to the effects of stretching
and anti-aliasing.

The next example is from the 3-D SEG-EAGE salt model.
The “area shot” dataset was selected over the marine
streamer C3-NA dataset because of size considerations.
However, this “area shot” dataset is known to produce
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Fig. 6: Inline 242 of the SEG-EAGE model:
single-arrival Kirchhoff migration algorithm (right).

Fig. 7: Inline 342 of the SEG-EAGE model:
single-arrival Kirchhoff migration algorithm (right).

relatively noisy results since it contains only 45 shots.
The hybrid finite-difference (Sun et al., 2001) migrated re-
sults at inlines 242 and 342, compared with results from
the “maximum energy” Kirchhoff migration, are shown
in Figures 6 and 7. The finite-difference migrated images
show much better imaged salt bottoms. The subsalt flat
event images are also significantly improved. Moreover,
the finite-difference images do not show the typical “ghost
smiles” routinely observed in Kirchhoff-migrated images.

Conclusions

Migrations beased on one-way wavefield extrapolation of-
fer the potential of greater structural imaging quality than
single-arrival Kirchhoff migration, but the standard for-
mulation of such migrations, e.g. finite-difference migra-
tion, produce incorrect migrated amplitudes. By com-
paring these amplitudes with those produced by true-
amplitude Kirchhoff migration, we have, in effect, cali-
brated these migration methods, correcting their ampli-
tude and phase behavior.

References

Bleistein, N., Cohen, J. K., and Stockwell, J. W., 2001,

migrated images from the optimized finite difference algorithm (left) and a

migrated images from the optimized finite difference algorithm (left) and a

Mathematics of multidimensional seismic inversion:
Springer.

Claerbout, J., 1985, Imaging the earth’s interior: Black-
well Scientific Publications, Inc.

Sun, J., Notfors, C., Gray, S., and Zhang, Y., 2001, 3-D
pre-stack common shot depth migration: a structure
adaptive implementation: submitted to SEG 2001.

Wapenaar, K., 1998, Reciprocity properties of one-way
propagators: Geophysics, 63, no. 4, 1795-1798.

Zhang, Y., Gray, S., and Young, J., 2000, Exact and ap-
proximate weights for Kirchhoff migration: 70th Ann.
Mtg., Soc. Expl. Geophys., Expanded Abstracts, II,
1036-1039.

Zhang, Y., Gray, S., and Young, J., 2001, True-amplitude
common-offset, common-azimuth v(z) migration: sub-
mitted to Journal of Seismic Exploration.

Zhang, G. Q., 1993, System of coupled equations for up-
going and down-going waves: Acta Math. Appl. Sinica,
16, no. 2, 251-263.



