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Abstract
One-way wave operators are powerful tools for use in forward modelling and
inversion. Their implementation, however, involves introduction of the square
root of an operator as a pseudo-differential operator. Furthermore, a simple
factoring of the wave operator produces one-way wave equations that yield the
same travel times as the full wave equation, but do not yield accurate amplitudes
except for homogeneous media and for almost all points in heterogeneous
media. Here, we present augmented one-way wave equations. We show
that these equations yield solutions for which the leading order asymptotic
amplitude as well as the travel time satisfy the same differential equations as
the corresponding functions for the full wave equation. Exact representations
of the square-root operator appearing in these differential equations are elusive,
except in cases in which the heterogeneity of the medium is independent of
the transverse spatial variables. Here, we address the fully heterogeneous case.
Singling out depth as the preferred direction of propagation, we introduce a
representation of the square-root operator as an integral in which a rational
function of the transverse Laplacian appears in the integrand. This allows us to
carry out explicit asymptotic analysis of the resulting one-way wave equations.
To do this, we introduce an auxiliary function that satisfies a lower dimensional
wave equation in transverse spatial variables only. We prove that ray theory
for these one-way wave equations leads to one-way eikonal equations and
the correct leading order transport equation for the full wave equation. We
then introduce appropriate boundary conditions at z = 0 to generate waves
at depth whose quotient leads to a reflector map and an estimate of the ray
theoretical reflection coefficient on the reflector. Thus, these true amplitude
one-way wave equations lead to a ‘true amplitude wave equation migration’
(WEM) method. In fact, we prove that applying the WEM imaging condition
to these newly defined wavefields in heterogeneous media leads to the Kirchhoff
inversion formula for common-shot data when the one-way wavefields are
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replaced by their ray theoretic approximations. This extension enhances the
original WEM method. The objective of that technique was a reflector map,
only. The underlying theory did not address amplitude issues. Computer
output obtained using numerically generated data confirms the accuracy of
this inversion method. However, there are practical limitations. The observed
data must be a solution of the wave equation. Therefore, the data over the
entire survey area must be collected from a single common-shot experiment.
Multi-experiment data, such as common-offset data, cannot be used with this
method as currently formulated. Research on extending the method is ongoing
at this time.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One-way wave equations provide fast tools for modelling and migration. These one-way
equations allow us to separate solutions of the wave equation into downgoing and upgoing
waves except in the limit of near-horizontal propagation. The original one-way wave equations
used for wave equation migration (WEM) (Claerbout 1971, 1985) were designed to produce
accurate travel times, but were never intended to produce accurate amplitudes, even at the level
of leading order asymptotic WKBJ or ray theoretic amplitudes. As such, that WEM provides a
reflector map consistent with the background propagation model, but with unreliable amplitude
information.

The objective of this paper is to describe a modification of those one-way wave equations
to produce equations that provide an accurate leading order WKBJ or ray theoretic amplitude
as well as an accurate travel time. The necessary modification of the basic one-way wave
equations can be motivated by considering depth dependent (v(z)) media. In this case, through
the use of Fourier transformation in time and transverse spatial coordinates (x, y), we reduce
the problem of modifying the one-way equations to the study of ordinary differential equations.
There, it is relatively simple to see how to modify the equations used by Claerbout in order
to obtain equations that provide leading order WKBJ amplitudes, as well. This leading order
amplitude is what we mean by ‘true amplitude’ for forward modelling.

For heterogeneous media, v = v(x, y, z), the same one-way wave equations still provide
true amplitudes. However, now the transverse wavevector (kx, ky) must be interpreted as
differentiations in the corresponding dual spatial variables. Further, our modified one-way
wave equations involve square roots and divisions by functions of this transverse wavevector.
We provide an interpretation of these operators through some basic ideas from the theory of
pseudo-differential operators.

We also provide a relatively simple representation of the one-way differential operators.
This, in turn, allows us to prove that the ray theoretic solutions of these equations satisfy the
separate eikonal equations for downgoing (increasing z) and upgoing waves, but the leading
order amplitudes also satisfy the same equation—the transport equation—as does the leading
order amplitude for the full wave equation. It is in this sense that we describe the solutions of
these one-way wave equations as ‘true amplitude’ solutions.

Having these true amplitude one-way equations allows us to develop a ‘true amplitude’
WEM for heterogeneous media. To date, we only have numerical checks on this method for
v(z) media, where the pseudo-differential operators revert to simple multiplications in the
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temporal/transverse spatial Fourier domain. However, we are able to prove that the reflection
amplitude agrees with the amplitudes generated by Kirchhoff inversion (true amplitude
Kirchhoff migration) as developed by one of the authors (Bleistein 1987, Bleistein et al 2001)
and colleagues. This proof is valid in heterogeneous media. Thus, at this time, the proof of
validity is ahead of the computer implementation in terms of generality and it anticipates a
reliable computer implementation in general heterogeneous media. It confirms that the output
of this method is a reflector map with the peak amplitude on the reflector being in known
proportion to an angularly dependent reflection coefficient at a specular reflection angle.

This type of inversion requires common-shot data with the receiver array covering the
entire domain of the survey. This is a serious obstacle for practical implementation; such data
gathers are still relatively rare. To date, we do not have an extension of this true amplitude
WEM to other source/receiver configurations.

In the next section, we provide motivation for the modification of the simple one-way
wave equations with the objective of developing true amplitude one-way equations for forward
modelling. We start from homogeneous media where the basic one-way equations do provide
the true amplitude. We then proceed to analysis of modelling for v(z) media. That leads to a
modification of the basic one-way equations in order to ensure that the appropriate transport
equation is satisfied, as well.

Following that, we introduce the idea of using the same equations for heterogeneous
media—v = v(x, y, z)—with functions of transverse wavevectors now reinterpreted as
pseudo-differential operators. It is for this new interpretation that we provide a confirmation
that these one-way wave equations provide true amplitude forward modelling. The proof of the
claim that this extension leads to the appropriate transport equation is provided in appendix A.
That extension and the proof were originally developed by the second author in Zhang (1993).
Here, we present an update of that proof with attention to the application to WEM.

Following the discussion of forward modelling, we develop true amplitude WEM. This
requires a modification of the basic one-way wave equations of Claerbout’s WEM and also a
modification of the boundary conditions of that WEM, which corrects the phase as well as the
amplitude of the downgoing wave used in WEM. We also show how to modify Claerbout’s
original WEM equations in order to turn those into true amplitude equations. There is a subtlety
of scaling by a pseudo-differential operator in the comparison. This leads to a slightly different
one-way wave equation for the downgoing waves in Claerbout’s approach when compared to
the one-way equation that we use in the new theory.

We then provide a proof that this new approach leads to the same common-shot Kirchhoff
inversion formula as is found in Bleistein (1987) and Bleistein et al (2001), as expressed by
Keho and Beydoun (1988).

Following that, we present our numerical check of true amplitude WEM. As noted above,
the examples that we present are for the case of a v(z) medium where implementation of
the pseudo-differential operators appearing in our method reduces to a multiplication in the
temporal/transverse-spatial domain.

Except for the proofs provided in the appendices and in section 5, our exposition is
mathematically informal and intuitive. It is our hope that this style will expand the readership
beyond the usual limited mathematical community that is conversant with pseudo-differential
operator theory.

2. Motivation

In this section we provide motivation for modifying the standard one-way wave equations
that are used in WEM. We do this by starting with the standard operator factoring scheme
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for the wave equation in homogeneous media, separating off the z-dependence so that we can
identify upgoing and downgoing waves. We identify the separate waves and confirm that they
are solutions of first-order wave equations obtained by factoring the operator. We then show
that the solutions of the derived one-way wave equations are no longer solutions of the full
(two-way) wave equation when the medium is allowed to depend on z; that is, v = v(z). In a
WKBJ solution in a v(z) medium, the amplitudes of the first-order equations do not agree with
the amplitudes of the two one-way solutions of the full wave equation. By modifying the one-
way wave equations, we obtain new equations whose eikonal and transport equations agree
with the eikonal and transport equations for the full wave equation; each one-way equation
governing one-way propagating waves of the two-way or full wave equation.

We begin by introducing the wave equation,

1

v2

∂2W

∂ t2
− ∇2W = 0. (1)

We will use the following definition of the Fourier transform:

F(x, y, z, t) = 1

(2π)3

∫
dkx dky dω F̃(kx, ky, z, ω) exp{i[ωt − kx x − ky y]}. (2)

In this equation, the wavenumber integration ranges over all space. The frequency domain
integral has the range −∞ < Re ω < ∞, with Im ω large enough that the contour of integration
passes below all singularities of the integrand in the complex ω-plane. Typically, this is
just below the real axis in ω, with the integrand defined on the axis only through analytic
continuation from below. Consequently, when viewed as an integral on the real ω-axis from
−∞ to ∞, we must interpret multi-valued functions, such as square roots, as if we had passed
under their singular points—branch points and poles—to go from one side of a branch point
to the other side.

Consistent with the Fourier transform in (2), when we write down WKBJ solutions, they
will take the form

W = A exp{i[ωt − �(x, y, z, ω)]}
or

W = A exp{iω[t − ϕ(x, y, z)]}
or

W = A exp{−iωϕ(x, y, z)},

(3)

depending on the context. In these forms, ∇� or ∇ϕ points in the direction of propagation
of the wavefronts. In particular, sgn(ω∂�/∂z) = 1 or sgn(∂ϕ/∂z) = 1 indicates waves
in the direction of increasing z; that is, downgoing. Of course, then, for upgoing waves
sgn(ω∂�/∂z) = −1 or sgn(∂ϕ/∂z) = −1. We could alternatively represent upgoing waves
by

W = A exp{i[ωt + �(x, y, z, ω)]}
or

W = A exp{iω[t + ϕ(x, y, z)]}
or

W = A exp{iωϕ(x, y, z)},
with sgn(ω∂�/∂z) = 1 or sgn(∂ϕ/∂z) = 1. Both alternatives for representing upgoing waves
are used in this paper and in the literature.
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For constant wave speed, we can rewrite this equation in the frequency/wavevectordomain
in the form

LW = ∂2W

∂z2
+ k2

z W =
[

∂

∂z
∓ ikz

][
∂

∂z
± ikz

]
W = 0. (4)

Here,

kz = sgn(ω)

√
ω2

v2
− k̄2 = ω

v

√
1 − (vk̄)2

ω2
, (5)

and k̄ is the transverse wavevector,

k̄ = (kx, ky), k̄2 = k2
x + k2

y. (6)

Further, the solutions of the full second-order wave equation are actually solutions of the two
one-way wave equations{

∂

∂z
± ikz

}
A± exp{∓ikzz} = 0, (7)

with the upper signs yielding a downgoing solution and the lower signs yielding an upgoing
solution.

We would like one-way wave equations for the heterogeneous case, as well, similarly
separating upward and downward propagating waves. For this generalization, we will content
ourselves with ray theoretic solutions that yield the same leading order amplitude as does the
two-way wave equation, using the leftmost expression in (4).

First consider the case where v = v(z) only and recast the leftmost differential operator
in (4) in a form that lends itself to ray theory analysis. To this end, we introduce the slowness
vector p̄ by setting

p̄ = k̄

ω
, pz = kz

ω
= 1

v(z)

√
1 − (v(z) p̄)2 (8)

and rewrite the wave equation in (4) as

∂2W

∂z2
+ ω2 p2

z W = 0. (9)

In equations (8) and (9), if (vk̄)2 exceeds ω2, pz is complex and the related solutions of (9)
are termed evanescent waves. However, throughout this paper we are only interested in the
propagation waves; that is, we focus on the solutions corresponding to ω2 > (vk̄)2. When we
substitute the standard form

W = A(z, p̄)e−iωϕ(z, p̄) (10)

into (9), we find{
−ω2

[[
dϕ

dz

]2

− p2
z

]
A − iω

[
2

dϕ

dz

d A

dz
+

d2ϕ

dz2
A

]
+ O(1)

}
e−iωϕ = 0. (11)

Here, O(1) is in order of powers of iω.
This last equation leads to the familiar eikonal and transport equations for the rays, except

that we are in a Fourier transform domain in the transverse slowness vector, (px, py). Those
equations are
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dϕ

dz

]2

= p2
z �⇒ dϕ

dz
= ±pz, and 2

dϕ

dz

d A

dz
+

d2ϕ

dz2
A = 0

or

±
[

2 pz
d A

dz
− 1

v3(z)pz

dv(z)

dz
A

]
= 0

or
d A

dz
− 1

2v3(z)p2
z

dv(z)

dz
A = 0.

(12)

Here, we think of the upper sign solution as the one for which sgn(pz) = 1. In this case, the
upper sign corresponds to the downgoing wave and the lower sign corresponds to the upgoing
wave. Note that the transport equation is the same for the two waves because only p2

z appears
in that equation.

Now consider the two one-way wave equations in (7) and corresponding WKBJ or ray
theoretic solutions. That is, consider[

∂

∂z
± iωpz

]
A±e−iωϕ± = iω

[
−dϕ±

dz
± pz

]
A±e−iωϕ± +

d A±
dz

e−iωϕ± = 0, (13)

with consequent eikonal and transport equations

dϕ±
dz

= ±pz and
d A±
dz

= 0. (14)

While the eikonal equations in (12) and (14) agree, the transport equations for amplitudes
do not. Thus, we must consider modifying the one-way wave equations in (13) if we are
to make the latter transport equation agree with the former, while keeping the same eikonal
equation in both. We can achieve this goal for the one-way wave equations if we modify them
by adding a term to the one-way operators appearing in the leftmost expression in (13). The
key to doing this comes from examining the last form of the transport equation in (12). That
is, we consider the new one-way wave equations{

∂

∂z
∓ iωpz − 1

2v3(z)p2
z

dv(z)

dz

}
W = 0. (15)

For these equations{
∂

∂z
± iωpz − 1

2v3(z)p2
z

dv(z)

dz

}
A±e−iωϕ±

= iω

[
−dϕ±

dz
± pz

]
A±e−iωϕ± +

[
d A±
dz

− 1

2v3(z)p2
z

dv(z)

dz
A±

]
e−iωϕ± = 0,

for which the transport equation in (14) is replaced by

d A±
dz

− 1

2v3(z)p2
z

dv(z)

dz
A± = 0 (16)

while the eikonal equation remains unchanged. We have already seen that this is equivalent to
the transport equation for the full wave equation. Hence, the one-way wave operators in (15)
will produce the upgoing and downgoing travel times and leading order amplitudes of the full
wave equation. In fact, these solutions are exact for the case of a medium that depends only
on z; that is, when v = v(z).

The question now arises as to how this insight can be extended to factoring the original
wave operator in (1) of a fully heterogeneous medium, where v = v(x, y, z). In this case,
the Fourier transverse transform technique used above will not provide an easy problem in
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the Fourier domain; the product in the first term leads to a convolution in the transverse
Fourier domain. Thus, we could not have derived a differential equation in z alone through
Fourier transformation. If we disregard this obstacle, we could still examine the one-way wave
equations in (15) with the hope of achieving a sensible interpretation. To that end, let us first
recast the one-way wave equations (15) in the original Fourier variables. Thus, we first rewrite
that equation as{

∂

∂z
± ikz − ω2

2v3(x, y, z)k2
z

∂v(x, y, z)

∂z

}
W = 0. (17)

For reasons that will become clear in the next section, we prefer writing the multiplier on this
additional term as follows:

ω2

2v3(x, y, z)k2
z

∂v(x, y, z)

∂z
= 1

2v(x, y, z)

∂v(x, y, z)

∂z

[
1 +

(v(x, y, z)k̄)2

ω2 − (v(x, y, z)k̄)2

]
and then rewrite (17) as{

∂

∂z
∓ ikz − 1

2v(x, y, z)

∂v(x, y, z)

∂z

[
1 +

(v(x, y, z)k̄)2

ω2 − (v(x, y, z)k̄)2

]}
W = 0. (18)

Let us now think of ω as a place-holder for the temporal derivative and −k̄ = −(kx, ky)

as a place-holder for a transverse gradient operator; that is,

iω ⇔ ∂/∂ t and i(kx , ky) ⇔ −(∂/∂x, ∂/∂y).

Then we could easily give meaning to the expression (v(x, y, z)k̄)2 as follows:

(v(x, y, z)k̄)2 ⇔ −(v(∂/∂x, ∂/∂y)) · (v(∂/∂x, ∂/∂y)).

However, symbolically, kz involves taking the square root of a differential operator, while
the division in the last term requires that we give meaning to the reciprocal of a differential
operator. Interpretation of such expressions is what the theory of pseudo-differential operators
is all about. Thus, in the next section we address the interpretation of these terms in fully
heterogeneous media where v = v(x, y, z). With an appropriate interpretation, it turns out that
these modified one-way wave equations provide an asymptotic solution for fully heterogeneous
media—v = v(x, y, z)—for which the resulting transport equations agree with the transport
equation for the full two-way wave equation.

3. True amplitude one-way wave propagation

Motivated by the discussion of the previous section, we introduce the same one-way
equations (18) for the heterogeneous medium in which v = v(x, y, z). Here, we will extend
the definition of differentiation through the use of pseudo-differential operators so that we can
give meaning to the pseudo-differential operator kz in (17) and thereby give meaning to those
one-wave equations themselves.

Couched in the language of pseudo-differential operator theory, we rewrite those one-way
wave equations (18) as

L±W =
[

∂

∂z
± �

]
W − �W = 0. (19)

Here, � and � are pseudo-differential operators with symbols λ and γ , respectively:

λ = ikz = iω

v

√
1 − (vk̄)2

ω2
,

γ = 1

2v

∂v

∂z

(
1 +

(vk̄)2

ω2 − (vk̄)2

)
= vz

2v

(
1 +

(vk̄)2

ω2 − (vk̄)2

)
,

ω2 > (vk̄)2. (20)
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In this last expression, the subscript in the variable vz denotes taking the derivative with
respect to z, in contrast to its use in kx, ky, kz where it distinguishes the three components of
the wavevector.

In (20), the notation (vk̄)2 is the symbolic representation for the operator

− (v∇T x)
2 = −(v( �ρ, z)∇T x)

2 = −
(
v( �ρ, z)

∂

∂x

)2

−
(

v( �ρ, z)
∂

∂y

)2

= −v2( �ρ, z)

[
∂2

∂x2
+

∂2

∂y2

]
− v( �ρ, z)

[
∂v( �ρ, z)

∂x

∂

∂x
+

∂v( �ρ, z)

∂y

∂

∂y

]
, (21)

where �ρ = (x, y). In the above definition of (v∇T x)
2, we have included the lower order

differential operator v(vx∂x + vy∂y). We do this intentionally for the purpose of making the
derived one-way wave equations (19) produce the same leading order asymptotic amplitude
as the full wave equation (1) does. As we have shown in section 2 for the v(z) case, in
order to preserve the amplitude, we need operators in one-way wave equations to be valid
up to two orders in ω in asymptotic expansions, rather than the usual leading order. For a
general heterogeneous medium v(x, y, z), since the exact operator decomposition is elusive,
we must be very careful to identify those terms in the operators that contribute to the leading
order amplitude and have to be retained. Other terms that only affect lower order amplitude
corrections which are outside our area of interest can be safely discarded. These issues will
arise in appendix A when we prove that the newly defined one-way wave equations actually
preserve the leading order amplitude. Readers are strongly recommended to read appendix A
in order to get the full picture of this work.

Returning to the discussion of �, its symbol λ has an exact representation (Zhang 1993)
in terms of a rational function of the argument inside the square root, that is,

λ = ikz = iω

v

{
1 − 1

π

∫ 1

−1

√
1 − s2

(vk̄)2

ω2 − s2(vk̄)2
ds

}
, ω2 > (vk̄)2. (22)

A proof of this identity using contour integration in the complex plane is provided in appendix B.
Such a proof shows that the above identity is also valid for waves defined in ω2 < (vk̄)2; this
corresponds to evanescent waves, ignored in our discussion.

It is fairly easy to think of the symbol ω2 − (vk̄)2 as representing the two-way wave
operator. That is,

− [ω2 − s2(vk̄)2] ⇔ LT (s; �ρ, z, t) = ∂2

∂ t2
− s2(v∇T x)

2, (23)

in which case, this operator appearing in the denominator of the symbols would represent
an inverse differential operator or convolution with a Green function for the adjoint of this
operator.

Further, if we neglect the transverse dependence in �, neglect the amplitude corrections
in � and revert to constant velocity for a moment, then the identity (22) used in the one-way
wave equations in (19) leads to the equations[

∂

∂z
± 1

v

∂

∂ t
+ · · ·

]
W = 0,

with solutions

W = F(z ∓ vt + · · ·).
That is, the choices of signs that we have made in the symbolic operators ensure the separation
into downgoing and upgoing waves that we intended.
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Symbolically then, we think of the operators � and � as follows:

� = 1

v

∂

∂ t

{
I − 1

π

∫ 1

−1

√
1 − s2L−1

T (s; �ρ, z, t)(v∇T x)
2 ds

}
,

� = vz

2v
(I + L−1

T (1; �ρ, z, t)(v∇T x)
2).

(24)

Now we can see that the representation (18) leads to the same inverse of the operator LT ,
evaluated at general s or s = 1 in the two pseudo-differential operator expressions used in our
one-way wave equations.

Let us introduce a function q(s; �ρ, z, t) that satisfies the equation

LT (s; �ρ, z, t)q =
{

∂2

∂ t2
− s2(v∇T x)

2

}
q(s; �ρ, z, t)

= (v∇T x)
2W ( �ρ, z; t) z > 0, t > 0. (25)

Using this function plus the identity (22) for kz , �W and �W can be expressed as

�W = 1

v

∂W

∂ t
− 1

πv

∂

∂ t

∫ 1

−1

√
1 − s2q(s; �ρ, z, t) ds, �W = vz

2v
[W + q(1; �ρ, z, t)].

(26)

Here, the arguments of W are ( �ρ, z, t). Furthermore, (19) can be rewritten in the expanded
form

L±W = ∂W

∂z
± 1

v

∂W

∂ t
∓ 1

πv

∂

∂ t

∫ 1

−1

√
1 − s2q(s; �ρ, z, t) ds +

vz

2v
[W + q(1; �ρ, z, t)] = 0.

(27)

We assume that boundary data

W ( �ρ, 0, t) = W0( �ρ, t), (28)

are given. Further, for the downgoing wave, we provide the initial condition W ( �ρ, z, 0) = 0,
while for the upcoming wave, we provide a final condition of zero. That is, W ( �ρ, z, t) = 0
for t greater than some finite time, t > T . For the inverse problem, we need both one-way
operators. The source propagates downward, subject to the wave equation (19) with upper
signs and a boundary value at z = 0 that is equivalent to an impulsive source. On the other
hand, the observed data are governed by the upward propagating one-way wave equation,
lower signs in (19) with the given data being the appropriate observed data at z = 0. That
is the subject of the next section. Here, we have only introduced the governing equations for
propagation.

It is for this expanded form of the one-way wave equations that the second author has
shown in Zhang (1993) that the transport equations for the one-way wave equations agree
with the transport equation for the full wave equation. Of course, this is in addition to the
agreement of the eikonal equations, except for the separation into downgoing and upgoing
provided explicitly by the one-way wave equations. A modified version of that proof is
provided in appendix A.

The above derivation of one-way wave equations is rather symbolic and intuitive. Some
issues regarding rigour have been addressed in Zhang (1993), in which the derivation was
based on wave operator decomposition by symbol calculus. To make the symbol calculus
in (20) valid, the velocity function v should belong to the symbol class S0 which is defined in
Treves (1980). However, for the existence of the solutions W and q in equations (27) and (25),
we can ease this restriction and only require v to be piecewise smooth.



1122 Y Zhang et al

4. True amplitude wave equation migration

In this section, we describe the application of these true amplitude one-way wave equations to
WEM. The objective is to derive a true amplitude WEM. We begin by introducing Claerbout’s
(1971, 1985) classic WEM and explain how we modify the governing equations and boundary
data to obtain our proposed true amplitude WEM.

The standard method uses the one-way propagators of (4), even for heterogeneous media.
More specifically, suppose that the reflected wavefield from a single source experiment is
observed at z = 0 for all time. Then the source and observed wavefields are assumed to be
solutions of the equations(

∂

∂z
+ �

)
D = 0,

D(x, y, z = 0; ω) = −δ(�x − �xs), �x = (x, y, z), �xs = (xs, ys, 0),

(29)

and (
∂

∂z
− �

)
U = 0,

U(�xs; ω) = Q(x, y; ω),

(30)

where D is the downgoing (source) wavefield and U is the upgoing (observed) wavefield. The
image is then produced as an impedance or reflectivity function at every image point defined by

R(x, y, z) = 1

2π

∫
U(�x; ω)

D(�x; ω)
dω. (31)

The key to this imaging method is that the constructive/destructive interference between the
phases of the two waves produces a large amplitude where the reflectors reside and a small
amplitude where they do not. While this result produces a reflector map, it does not provide
accurate amplitude information. To achieve that, we use the solutions of our modified true
amplitude one-way wave equations (19). That is, we introduce pD and pU as solutions of the
following problems:(

∂

∂z
+ � − �

)
pD(�x; ω) = 0,

pD(�xs; ω) = − 1
2 �−1δ(�x − �xs),

(32)

and (
∂

∂z
− � − �

)
pU (�x; ω) = 0,

pU (�xs; ω) = Q(x, y; ω).

(33)

Here, we have not only modified the governing one-way wave equations in accordance with
the discussion of the previous sections, but we have also modified the boundary term for the
downgoing wave from the source. The reason for this is that the boundary value only accounts
for the impulsive nature of the source in the transverse direction. In the z-direction, we must
account for an impulsive source by balancing the terms

∂2u

∂z2
and − δ(z)

or
∂u

∂z
and − H (z)

or

�u and 1.
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(In the second balance, H (z) is the Heaviside function.) We think of the impulsive source as
sending half its energy in each direction in z. Hence, in the positive z-direction we use half of
the balance in this last expression as the boundary value for the downgoing wave (33). Note
that this modification introduces a phase shift in this wave since � is imaginary and carries
the same sign as ω. See also Wapenaar (1990) for a more rigorous exposition of this point.

Also, we modify the imaging condition (31) to be the quotient of the wavefields pD and
pU :

R(�x) = 1

2π

∫
pU (�x; ω)

pD(�x; ω)
dω. (34)

See Zhang et al (2001, 2002).
The introduction of the operator �−1 in (32) requires that we give meaning to this pseudo-

differential operator, just as we did for � itself. We do this in appendix B.
As an alternative to dealing with �−1 in the boundary condition, it might be easier to

solve a modified version of (29) for D, after adjusting that equation to be equivalent to the true
amplitude equation (32) for pD . Let us therefore introduce a new D in (32):

D = 2�pD, or pD = 1
2�−1 D, (35)

for which the boundary data agree with the data for D in (29). Now, let us substitute this
choice into the differential equation (32) for pD:(

∂

∂z
+ � − �

)
�−1 D = �−1 ∂ D

∂z
− �−2 ∂�

∂z
D + D − ��−1 D = 0,

⇒ ∂ D

∂z
+ �D −

[
�−1 ∂�

∂z
+ ���−1

]
D = 0. (36)

We have omitted the constant factor of 2 throughout these manipulations. For the last two terms,
the leading order contributions contribute to the leading order amplitude and the corrections
affect only lower order amplitudes. Therefore we can set

���−1 ≈ �

�−1 ∂�

∂z
+ � ⇔ 1

kz

∂kz

∂z
− 1

2kz

∂kz

∂z
= −γ.

Consequently, the true amplitude equation for D is(
∂

∂z
+ � + �

)
D = 0. (37)

Within the factor of 2, this use of D agrees with the earlier papers cited in the references.
Thus, we can avoid applying a pseudo-differential operator to the two-dimensional Dirac delta
function in the boundary condition for pD in (32) by solving for D, instead, using this equation
and the boundary condition in (29). Of course, we could tie U and pU together in exactly the
same way. That is,

U = 2�pU ,

leading to the differential equation(
∂

∂z
− � + �

)
U = 0.

However, now the pseudo-differential operator would appear in the boundary data for U ; that
is,

U(�xs; ω) = 2�Q(x, y; ω).

Furthermore, the correct imaging condition now becomes

R(�x) = 1

2π

∫
pU

pD
dω = 1

2π

∫
�−1U

�−1 D
dω.
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5. Comparison of true amplitude WEM output and Kirchhoff inversion output

The previous section proposed the use of new one-way propagators for the surface data, a
modification of the data for the downgoing wave and a new imaging condition in equation (34)
to achieve true amplitude WEM. Here we show that the integration in this imaging condition
agrees with the integration for Kirchhoff inversion in Bleistein (1987) and Bleistein et al (2001).
Actually, we derive the representation of the Kirchhoff inversion formula as stated in Keho and
Beydoun (1988). In carrying out this comparison, we rely on the proof of appendix A of the
dynamic as well as the kinematic equivalence of the solutions of the one-way wave equations
and the solutions of the two-way wave equation.

We start by considering the problem for pD as defined by (32). Relying on the proof of
appendix A, we know that this function is dynamically equivalent to the downgoing (outward
radiating) Green function of the full wave equation. Therefore,

pD(�x, �xs; ω) = A(�x, �xs)e−iωϕ(�x,�xs ). (38)

Here, ϕ is the solution of the eikonal equation for the full wave equation (1) with ∂ϕ/∂z > 0
and A is the solution of the transport equation for the full wave equation. Equivalently, ϕ is a
solution of the eikonal equation

dϕ±
dz

=
√

1

v2(�x)
− p2

x − p2
y,

deduced from (18) with the upper sign, and A is a solution of the transport equation

2∇ϕ± · ∇ A± + A±�ϕ± = 0,

deduced from (18) with the upper sign. This is the essential conclusion of the proof of
appendix A.

To derive a representation of the function pU , we have to work a little harder. Again,
however, we rely on the equality between the leading order asymptotic solutions of the one-
way wave equation, (33), and the full wave equation. In appendix C, we show that the Green
function representation for pU is given by

pU (�x; ω) = 2iω
∫

cos αr

v(�xr )
A(�xr , �x)eiωϕ(�xr ,�x) dxr dyr , �xr = (xr , yr , 0). (39)

In this equation, again, ϕ and A are the phase and amplitude of the free space Green function
for the full wave equation. However, because pU is an upward (incoming) wave, we need the
inward propagating Green function. Hence the sign in the phase is opposite the sign of the
phase of pD defined by (38). Further, vr = v(�xr ) and αr is the emergence angle of the ray
with respect to the normal.

We use this last result and (38) in equation (34) for R and obtain

R(�x) = 2
∫ ∫

iω
cos αr

vr

A(�xr , �x)

A(�x, �xs)
eiω{ϕ(�xr ,�x)+ϕ(�x,�xs )} dxr dyr dω. (40)

This is the result in Bleistein (1987) and Bleistein et al (2001) as expressed by Keho and
Beydoun (1988).

This representation of the imaging condition for true amplitude WEM, being the same
as the inversion formula for Kirchhoff inversion, confirms the claim that this formulation
provides a true amplitude WEM. We can now be assured that the output of this new WEM will
provide a reflectivity map with peak amplitude on the reflector being a known multiple of
the geometrical optics reflection coefficient. The incidence angle in that reflection coefficient
is the angle defined by the specular pair of rays from a source/receiver pair. Note that this
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Figure 1. Input model data.
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Figure 2. Left: finite difference migration obtained using (31) for imaging. Right: peak amplitudes
along the four reflectors. The wide angle error decreases with the depth of the reflector.

result is confirmed for heterogeneous media—v = v(�x). Previous verifications, as presented
for example in Zhang et al (2001, 2002), were only for the case of depth dependent media—
v = v(z).

6. Numerical tests

To show how true amplitude common-shot migration works, we apply it to a 2D horizontal
reflector model in a medium with velocity v = 2000 + 0.3z. Recall from the theory that in
this case, the modelling and migration can be carried out in the transverse spatial and temporal
Fourier domains, with k̄ being the simple transverse part of the wavevector.

The input data (figure 1) is a single shot record over four horizontal reflectors from unit
density contrast.

Figure 2, left, shows the migrated shot record obtained using the conventional common-
shot migration algorithm (31). The peak amplitudes along the four migrated reflectors are
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Figure 3. Left: finite difference migration obtained using (34) for imaging. Right: peak amplitudes
along the four reflectors. The wide angle error decreases with the depth of the reflector.
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Figure 4. The shot record for the common-shot response from a dipping plane.

shown in figure 2 (right). This method has a phase error: note the multiplication by i in �

on the right side in (32) as opposed to the lack of such a phase shifting factor on the right
side of (29). The consequent phase error has been corrected during the migration. However,
the migrated amplitudes are poor, especially on the reflector at depth z = 1000 m along
which the ray directions vary over a wide range. The wide angle peak amplitudes decrease
monotonically with increasing depth. The greatest error occurs at wide angle, with the result
along the shallowest reflector being the worst. However, the error is zero at zero offset; in this
limit, k̄ = (0, 0) and cos αr = 1 in (40).

The scaling in the boundary condition in (32) provides directivity to the downgoing wave
in the solution of (32) that is lacking in the solution to (29).

Figure 3 (left) shows results of true amplitude common-shot migration (34). The peak
amplitudes along the reflectors are shown in figure 3 (right).

Using (40) as a guide, we see that the true amplitude output is proportional to the ratio of
amplitudes of the Green functions from source and receiver to the output point. Because of the
symmetry of this problem, the Green function amplitudes from the source and the receiver are
equal, with quotient equal to unity at the stationary point of the integral that produces the output.
In fact, the ratio of amplitudes obtained using the Claerbout migration equations is also equal
to one. Thus, the error in the Claerbout output depicted in figure 2 does not depend on the
difference between the amplitudes produced by the two methods and can only depend on the
difference between the scalings of the source wave in equations (29) and (32).
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Figure 5. A true amplitude WEM image for the dipping planar reflector.
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Figure 6. The peak amplitude along the migrated dipping reflector for three different WEMs.
The curve highest on the left (red, in the colour rendition) is the output from Claerbout’s WEM.
The curve next higher on the left (blue, in the colour rendition) arises when we set � = 0 in (32)
and (33). The curve lowest on the left (black, in the colour rendition) is the output of our true
amplitude WEM.

To further confirm this, we provide a second example in which the plane is dipping to the
right at 30◦. The data for this example are shown in figure 4. Here, the ratio of amplitudes
of the upgoing and downgoing Green functions is no longer equal to one at the reflector.
Again, we produce the reflection via a density contrast with reflection coefficient equal to one.
The output of our true amplitude WEM processing is shown in figure 5. The image for
Claerbout WEM is the same.

In figure 6, we show peak amplitudes for three different WEMs. The curve highest on
the left (red, in the colour rendition) is the output from Claerbout’s WEM using Claerbout’s
boundary condition for the source wavelet, (29). The curve next higher on the left (blue, in
the colour rendition) arises when we set � = 0 in (32) and (33). This is equivalent to using
Claerbout’s equations, but the source boundary condition of (32). The curve lowest on the
left (black, in the colour rendition) is the output of our true amplitude WEM in (32) and (33).
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It can be seen that, except for aperture affects, this curve is close to unity over the entire range
of the reflector. Thus, this test compares the proposed method to Claerbout’s method with and
without the additional scaling by (i�)−1 in the boundary condition. It is clear that the true
amplitude WEM produces the most accurate amplitude for this dipping plane example.

From these examples, we see that the true amplitude algorithm recovers the reflectivity
accurately, aside from the edge effects and small jitters caused by interference with wraparound
artifacts.

7. Conclusions

Common-shot migrations offer good potential for imaging complex structures, but the
conventional formulations of such migrations produce incorrect migrated amplitudes. Here,
we have described true amplitude one-way wave equations that allow us to extend the standard
method both for forward modelling and for wave equation migration. These modified one-
way wave operators are developed with the aid of pseudo-differential operator theory. We
have provided proofs that these new one-way wave equations provide solutions that agree
dynamically, as well as kinematically, with the solutions of the full wave equation. Further, we
have proposed a new approach to WEM, transforming it into a true amplitude process, meaning
that it produces an inversion output that agrees asymptotically with Kirchhoff inversion: it
produces a reflector map with peak amplitudes on the reflector in known proportion to the
geometrical optics reflection coefficient. We have provided a proof of this claim. With the aid
of a simple numerical example, we demonstrated that the migration method that we proposed
does calibrate common-shot migrations by correcting both their amplitude and phase behaviour
for an example in which the wave speed is depth dependent—v = v(z). The new method
actually builds a bridge between true amplitude common-shot Kirchhoff migration and the
migrations based on one-way wavefield extrapolation.
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Appendix A

In this appendix, we show that the one-way wave equations that we developed in this paper
provided the same travel time and amplitudes as the full wave equation (1). More specifically,
we start from the one-way wave equation for the downward propagating wave D defined
by (37) in two spatial dimensions (to make some of the calculations simpler to follow). That
equation is repeated here as[

∂

∂z
+ �

]
D(x, z; t) + �D = 0. (A.1)

Motivated by the source adjustment introduced in (32), we introduce the downgoing wave of
the inversion process through the scaling

pD = �−1 D ⇔ �pD = D. (A.2)
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Our objective is to prove that the eikonal equation of (A.1) is the downgoing branch of the
eikonal equation for the full wave equation (1) in heterogeneous media. This equations will be
specified below after we introduce our notation for this asymptotic analysis. Clearly, we could
define a corresponding function pU and carry out the same analysis for the upgoing wave.
Below, we will see that the eikonal equation for the downgoing wave chooses the sign of the
z-derivative of the travel time to agree with the sign of ω, guaranteeing downward propagation.
For pU , the sign of the z-derivative is opposite to the sign of ω and that is the only different in
the analysis provided here.

We will then show that the leading order amplitude of pD satisfies the same transport
equation as the amplitude of the full wave equation. Further, the sign of the z-derivative will
be a common multiplier of all terms of the derived transport equation, ensuring that the same
will be true for the solution pU .

We start from equation (27), specialized to downgoing waves in two spatial dimensions:

∂ D

∂z
+

1

v

∂ D

∂ t
− 1

πv

∂

∂ t

∫ 1

−1

√
1 − s2qD(s; x, z, t) ds +

vz

2v
[D + qD(1; x, z, t)] = 0. (A.3)

Here, D = D(x, z, t) and qD(s; ·) satisfies{
∂2

∂ t2
− s2

(
v

∂

∂x

)2}
qD(s; x, z; t) =

(
v

∂

∂x

)2

D(x, z; t). (A.4)

We use the definition of pD in (A.2) and the definition (26) for � to write

1

v

∂

∂ t
pD − 1

v

∂

∂ t

(
1

π

∫ 1

−1

√
1 − s2qp(s; x, z, t) ds

)
= D(x, z; t), (A.5)

where qp(s; ·) satisfies{
∂2

∂ t2
− s2

(
v

∂

∂x

)2}
qp(s; x, z; t) =

(
v

∂

∂x

)2

pD(x, z; t). (A.6)

A.1. High frequency asymptotic expansion

We consider only the downgoing wave equation (A.1). For the upgoing wave equation, all
results can be obtained by the same approach.

We seek the solution of (A.1) in the form of the following asymptotic expansion:

F(x, z; t) ∼ eiω(t−ϕ(x,z))
∑
j=0

A j(x, z)ω− j . (A.7)

A0 is simply written as A(F) (F can be either D or qD). We simply denote pD by p, to be
determined in the form

p(x, z; t) ∼ eiω(t−ϕ(x,z))
∑
j=0

A j+1ω−( j+1). (A.8)

By substituting these asymptotic expansions into (A.4), we find that

A(q(D))(s; ·) = v2ϕ2
x

1 − s2v2ϕ2
x

A(D) = e(s)A(D), (A.9)

with

e(s) = v2ϕ2
x

1 − s2v2ϕ2
x

. (A.10)

Now we substitute the asymptotic expansions into (A.5) and (A.6) to obtain

A(D) = E(D)A(p), (A.11)
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with

E(D) = 1

v
[1 − v2ϕ2

x ]1/2. (A.12)

For e(s) in (A.10), we will also have need of ∂e(s)/∂x . That result is

e(s)x = ∂

∂x

(
v2ϕ2

x

1 − s2v2ϕ2
x

)
= − 1

s2

∂

∂x

(
1 − 1

1 − s2v2ϕ2
x

)

= 1

s2

[
s2(v2ϕ2

x)x

(1 − s2v2ϕ2
x)

2

]
= (v2ϕ2

x)x

(1 − s2v2ϕ2
x)

2
. (A.13)

A.2. Asymptotic solution of the downgoing one-way wave equation

By substituting the equation (A.8) into equations (A.3) and (A.4), we have

iω

[
−

(
ϕz − 1

v

)
A(D) − 1

vπ

∫ 1

−1

√
1 − s2 A(qD(s; ·)) ds

]

+

[
A(D)z +

vz

2v
(A(D) + A(q(1; ·)))

]
+

1

iω
[· · ·] + · · · = 0, (A.14)

and

− ω2[(1 − s2v2ϕ2
x )A(qD(s; ·)) − v2ϕ2

x A(D)]

+ iω[s2 B(A(qD(s; ·))) + B(A(D))] + [· · ·] + · · · = 0, (A.15)

where

B(A) = 2v2ϕx Ax + A

(
v

∂

∂x

)2

ϕ. (A.16)

We will replace the integral operator on A(qD(s; ·)) in (A.14) by the same type of operator
on A(D) itself, since the latter is independent of s. To do so, we integrate (A.15) on the
interval s ∈ (−1, 1) with the weight

√
1 − s2/(vπ(1 − s2v2ϕ2

x )). Then, we add the result of
that integration to (A.14) multiplied by iω to obtain the equation for the asymptotic solution
of the equation for the downgoing one-way wave:

− ω2

[
−

(
ϕz − 1

v

)
A(D) − 1

vπ

∫ 1

−1

√
1 − s2

v2ϕ2
x ds

1 − s2v2ϕ2
x

A(D)

]

+ iω

[
A(D)z +

vz

2v
(A(D) + A(q(1; ·)))

+
1

vπ

∫ 1

−1

√
1 − s2

B(A(D)) + s2 B(A(qD(s; ·)))
1 − s2v2ϕ2

x

ds

]
+ [· · ·] + · · · = 0.

(A.17)

The following integrals are needed:

Jn(b
2) = 1

π

∫ 1

−1

√
1 − s2

ds

(1 − b2s2)n
. (A.18)

We have

J0 = 1
2 , J1(b

2) = 1 − (1 − b2)1/2

b2
,

J2(b
2) = 1

2(1 − b2)1/2
and J3(b

2) = 3(1 − b2) + 1

8(1 − b2)3/2
.
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Then we can obtain the following integrals:

I0 = 1

π

∫ 1

−1

√
1 − s2e(s) ds = 1

π

∫ 1

−1

√
1 − s2

v2ϕ2
x ds

1 − s2v2ϕ2
x

= v2ϕ2
x J1(v

2ϕ2
x), (A.19)

I1 = 1

π

∫ 1

−1

√
1 − s2

s2e(s) ds

1 − s2v2ϕ2
x

= J2(v
2ϕ2

x) − J1(v
2ϕ2

x), (A.20)

and

I2 = 1

π

∫ 1

−1

√
1 − s2

s2e(s)x ds

1 − s2v2ϕ2
x

= (v2ϕ2
x )x

v2ϕ2
x

[
1

π

∫ 1

−1

√
1 − s2

v2ϕ2
x ds

(1 − s2v2ϕ2
x)

3

]

= (v2ϕ2
x)x

v2ϕ2
x

[J3(v
2ϕ2

x) − J2(v
2ϕ2

x )] = (v2ϕ2
x)x

8(1 − v2ϕ2
x)

3/2
, (A.21)

with e(s) defined by (A.10).
Now we can proceed to simplify the various terms in (A.15). According to the definition

of B(A) in (A.16) and using (A.11), we have

B(A(D)) = 2v2ϕx A(D)x + A(D)

(
v

∂

∂x

)2

ϕ

= 2v2ϕx(E(D)A(p))x + E(D)A(p)

(
v

∂

∂x

)2

ϕ

= E(D)B(A(p)) + 2v2ϕx E(D)x A(p). (A.22)

Similarly, using (A.2), we find that

B(A(qD(s; ·))) = e(s)E(D)B(A(p)) + 2v2ϕx(e(s)E(D))x A(p). (A.23)

So, for the order-iω term in (A.15) we conclude that

B(A(D)) + s2 B(A(qD)) = E(D)B(A(p))(1 + s2e(s)) + 2v2ϕx A(p)[(1 + s2e(s))E(D)]x .

(A.24)

Now we can carry out the integration in the order-iω term in (A.17), using all of the
results (A.19)–(A.22). The result is

1

vπ

∫ 1

−1

√
1 − s2

B(A(D)) + s2 B(A(qD(s; ·)))
1 − s2v2ϕ2

x

ds

= 1

v

{
E(D)

[
B(A(p))

(
I0

v2ϕ2
x

+ I1

)

+ 2v2ϕx A(p)I2

]
+ 2v2ϕx E(D)x A(p)

[
I0

v2ϕ2
x

+ I1

]}

= 1

v
{E(D)[B(A(p))J2(v

2ϕ2
x) + 2v2ϕx A(p)I2] + 2v2ϕx E(D)x A(p)J2(v

2ϕ2
x)}.

(A.25)

A.3. Eikonal equation and transport equation for the restored downgoing wave

From the coefficient of ω2 in (A.17) we have[
−ϕz +

1

v

(
1 − 1

π

∫ 1

−1

√
1 − s2

v2ϕ2
x

1 − s2v2ϕ2
x

ds

)]
A(D) = 0. (A.26)



1132 Y Zhang et al

We seek a nontrivial asymptotic solution, so A(D) 
= 0. Therefore we conclude that[
−ϕz +

1

v

(
1 − 1

π

∫ 1

−1

√
1 − s2

v2ϕ2
x

1 − s2v2ϕ2
x

ds

)]
=

[
−ϕz +

1

v
[1 − v2ϕ2

x J1(v
2ϕ2

x )]

]

= − ϕz +
1

v
(1 − v2ϕ2

x)
1/2 = 0. (A.27)

This is the eikonal equation of the downgoing one-way wave equation (A.1). We can see that
this eikonal equation (A.27) is just the one of two branches of the eikonal equation for the full
wave equation (1) in 2D, namely,

ϕ2
x + ϕ2

z = 1

v2
. (A.28)

Clearly, except for details of computation, the derivation in 3D would follow along the same
lines.

By setting the coefficient of the order-iω term in (A.17) we obtain the transport equation
of the restored downgoing wave A(p). We consider two parts in this coefficient. One part is
an integral (A.25), restated and expanded upon here:

I = 1

vπ

∫ 1

−1

√
1 − s2

B(A(D)) + s2 B(A(qD(s; ·)))
1 − s2v2ϕ2

x

ds

= E(D)

v

{[
2v2ϕx A(p)x + A(p)

(
v

∂

∂x

)2

ϕ

]
J2(v

2ϕ2
x) + 2v2ϕx A(p)I2

}
+ 2vϕx E(D)x A(p)J2(v

2ϕ2
x)

= 2vϕx E(D)A(p)x J2(v
2ϕ2

x)

+

{
E(D)

v

[(
v

∂

∂x

)2

ϕ J2(v
2ϕ2

x) + 2v2ϕx I2

]

+ 2vϕx E(D)x J2(v
2ϕ2

x)

}
A(p). (A.29)

From (A.27), (A.12) and (A.21),

2vE(D)J2(v
2ϕ2

x ) = 2
√

1 − v2ϕ2
x J2(v

2ϕ2
x) = 1, (A.30)

E(D)

v
2v2ϕ2

x I2 = 2vE(D)ϕx
(v2ϕ2

x)x

8(1 − v2ϕ2
x)

3/2
= ϕx(v

2ϕ2
x)x

4(1 − v2ϕ2
x)

, (A.31)

2vϕx E(D)x J2(v
2ϕ2

x ) = vϕx E(D)x√
1 − v2ϕ2

x

= vϕx

2
√

1 − v2ϕ2
x

[
ϕzx − vϕxϕxx + vx/v

2√
1 − v2ϕ2

x

]
. (A.32)

Here, we derive E(D)x from (A.6):

E(D)x = 1

2

[
ϕz +

1

v

√
1 − v2ϕ2

x

]
x

= 1

2

[
ϕzx − vϕxϕxx + vx/v

2√
1 − v2ϕ2

x

]
.

By using these results, we can now simplify I in (A.29) as follows:

I = ϕx A(p)x + A(p)

{(
v ∂

∂x

)2
ϕ

2v2
+

ϕx(v
2ϕ2

x )x

4(1 − v2ϕ2
x)

+
vϕx

2
√

1 − v2ϕ2
x

[
ϕzx − vϕxϕxx + vx/v

2√
1 − v2ϕ2

x

]}

= ϕx A(p)x + A(p)

{
1

2v2
(vvxϕx + v2ϕxx ) +

vϕ2
x (vxϕx + vϕxx )

2(1 − v2ϕ2
x)
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+
vϕx

2
√

1 − v2ϕ2
x

[
ϕzx − vϕxϕxx + vx/v

2√
1 − v2ϕ2

x

]}

= ϕx A(p)x +
A(p)

2

{
ϕxx +

vxϕx

v
+

vxϕxv
2ϕ2

x

v(1 − v2ϕ2
x)

+
vϕxϕzx√
1 − v2ϕ2

x

− vxϕx

v(1 − v2ϕ2
x )

}

= ϕx A(p)x +
A(p)

2

[
ϕxx +

vϕxϕzx√
1 − v2ϕ2

x

]
. (A.33)

Another part in the coefficient of term iω in (A.17) is

II = E(D)z +
vz

2v
(A(D) + A(q(1; ·))). (A.34)

From (A.5), (A.6), (A.27) and (A.2) we have

II = E(D)A(p)z + E(D)z A(p) +
vz

2v

E(D)A(p)

1 − v2ϕ2
x

= ϕz A(p)z + A(p)

[
E(D)z +

vz E(D)

2v(1 − v2ϕ2
x)

]

= ϕz A(p)z +
A(p)

2

[(
ϕz +

1

v

√
1 − v2ϕ2

x

)
z

+
vz

v

√
1 − v2ϕ2

x

v(1 − v2ϕ2
x )

]

= ϕz A(p)z +
A(p)

2

[
ϕzz − vz/v

2 + vϕxϕxz√
1 − v2ϕ2

x

+
vz/v

2√
1 − v2ϕ2

x

]

= ϕz A(p)z +
A(p)

2

[
ϕzz − vϕxϕxz√

1 − v2ϕ2
x

]
. (A.35)

Consequently the coefficient of the term iω in (A.17) is

I + II = ϕx A(p)x +
A(p)

2

[
ϕxx +

vϕxϕxz√
1 − v2ϕ2

x

]

+ ϕz A(p)z +
A(p)

2

[
ϕzz − vϕxϕxz√

1 − v2ϕ2
x

]

= ∇ϕ · ∇ A(p) +
A(p)

2
�ϕ. (A.36)

This last expression, then, is the coefficient of the order-iω term in (A.17) and, therefore, must
be equal to zero. This leads to the first transport equation for the amplitude of the downgoing
wave; that is,

2∇ϕ · ∇ A(pD) + A(pD)�ϕ = 0. (A.37)

This is just the transport equation for the full wave equation (1). Because ϕ is the downgoing
travel time, the solution will be the amplitude for the downgoing wave.

A similar result can be derived for the upgoing one-way wave equation, starting again
from (27), but using the lower signs. In that case, we would find that

ϕz +
1

v

√
1 − v2ϕ2

x = 0. (A.38)

It is another branch of the eikonal equation (A.28) of the full wave equation (1). In the same
manner, we can obtain the same transport equation for the first amplitude of the restored
upcoming wave A(pU ):

2∇ϕ · ∇ A(pU ) + A(pU )�ϕ = 0. (A.39)
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This completes the proof.

Appendix B

In this appendix, we verify the integral identity (22) for λ = ikz . More to the point, let us
consider the integral

I = 1

π

∫ 1

−1

√
1 − s2

(vk̄)2

ω2 − s2(vk̄)2
ds. (B.1)

We view s as a complex variable and replace the ‘contour’ from −1 to 1 by the ‘barbell’
contour of figure B.1 extending from −1 + ε to 1 − ε, then passing around the branch point
at s = 1 in a clockwise direction, returning to −1 + ε encircling the branch point at s = −1
in a clockwise direction to complete a closed path of integration. The square root changes
sign when the path passes around the branch point at either end. Thus, when passing around
both branch points, the integrand returns to its original value; this justifies the claim that the
contour of integration is closed. On the other hand, after one change of sign passing around
the branch point at 1−ε, the integrand has changed sign compared to its previous value at each
s. However, the direction of the path of integration has reversed as well. Thus, the integral on
the path approximately between 1 − ε and −1 + ε after that first circumnavigation is the same
as the integral before. Further, it is standard in complex integration methodology to confirm
that the integrals on the circles of radius ε shrink to zero as ε → 0. Thus, calling this new
contour of integration C1, we need only introduce a factor of 1/2 to equate the integral on C1

to the original real integral on the interval (−1, 1):

I = 1

2π

∫
C1

√
1 − s2

(vk̄)2

ω2 − s2(vk̄)2
ds. (B.2)

We note that the integrand has two poles at s± = ±|ω|/(v|k̄|) > 1. We propose to
recast the integral as a sum of residues at these poles plus an integral on a circle of radius
r > |ω|/(v|k̄|). Since we will now be concerned with the region where |s| > 1, we prefer to
rewrite the integrand as√

1 − s2
(vk̄)2

ω2 − s2(vk̄)2
= −i

√
s2 − 1

(vk̄)2

ω2 − s2(vk̄)2
(B.3)

with √
s2 − 1 ≈ s

for |s| ‘large’. To confirm this, note that we passed over the branch point at s = 1 to pass
to the region of |s| > 1. In doing so, arg(1 − s) passed from zero to −π , in which case the
argument of this square root passed from zero to −π/2, which is the argument of −i; hence
the choice of sign in the redefined square root.

We are now prepared to recast I as an integral on the contour of radius r plus residues,
namely, the integral on the path C2 of figure B.1:

I = − i

2π

∫
C2

√
s2 − 1

(vk̄)2

ω2 − s2(vk̄)2
ds

= 1

2π i

∫
C2

√
s2 − 1

(vk̄)2

ω2 − s2(vk̄)2
ds

=
∑
±

(Residues, s = s±) − 1

2π i

∫
|s|=r

√
s2 − 1

(vk̄)2

ω2 − s2(vk̄)2
ds. (B.4)
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Figure B.1. Contours of integration. C1 is the barbell contour. Deformation outward leads to the
contour C2.

In the last line here, we have observed that the deformation of the contour onto the circle
leads to two anticlockwise contours around the poles. Further, in the last integral, we have
reverted to the default that an integral on a contour of prescribed radius is understood to be an
anticlockwise contour; hence, the change in sign on the integral from the sign in the previous
line, where the direction of C1 was clockwise and the direction of C2 is clockwise.

Now, ∑
±

(Residues, s = s±) =
∑
±

√
s2 − 1

(vk̄)2

−2s(vk̄)2

∣∣∣∣
s=s±

. (B.5)

Both the square root here and s itself change sign in the evaluation at s±. Consequently, these
two terms add to yield

∑
±

(Residues, s = s±) = −
√

1 − (vk̄)2

ω2
. (B.6)

Next, we must evaluate the integral over |s| = r in the limit as r → ∞. For large r , use√
s2 − 1 ≈ s and

(vk̄)2

ω2 − s2(vk̄)2
≈ − 1

s2

to obtain

− 1

2π i

∫
|s|=r

√
s2 − 1

(vk̄)2

ω2 − s2(vk̄)2
ds ≈ 1

2π i

∫
|s|=r

ds

s

= 1

2π i

∫ 2π

0
i dθ = 1, s = reiθ , ds = ireiθ dθ. (B.7)

Combining this result with (B.6) in (B.4) we conclude that

I = 1 −
√

1 − (vk̄)2

ω2
. (B.8)

We only need to substitute this result into (22) to confirm that identity, which is the first result
that we set out to verify in this appendix.
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Next, we turn to the issue of a corresponding representation for λ−1 in order to provide
an interpretation for the pseudo-differential operator, �−1.

Let

ξ = vk̄

ω
, (B.9)

and observe that

iω

v
λ−1 = 1√

1 − ξ2
=

√
1 − ξ2

1 − ξ2
= 1

1 − ξ2

(
1 − 1

π

∫ 1

−1

ξ2
√

1 − s2

1 − ξ2s2
ds

)

= 1 +
ξ2

1 − ξ2

(
1 − 1

π

∫ 1

−1

√
1 − s2

1 − ξ2s2
ds

)
. (B.10)

The last result on the first line here follows from (22), confirmed above. The last line arises
from writing

1

1 − ξ2
= 1 − ξ2 + ξ2

1 − ξ2
= 1 +

ξ2

1 − ξ2

and re-collecting terms in the previous result.
Since

1

π

∫ 1

−1

ds√
1 − s2

= 1,

we have

iω

v
λ−1 = 1 +

ξ2

1 − ξ2

1

π

∫ 1

−1

(
1√

1 − s2
−

√
1 − s2

1 − ξ2s2

)
ds

= 1 +
1

π

∫ 1

−1

ξ2

1 − ξ2

1√
1 − s2

(
1 − 1 − s2

1 − ξ2s2

)
ds

= 1 +
1

π

∫ 1

−1

ξ2

√
1 − s2

s2

1 − ξ2s2
ds

= 1 +
1

π

∫ 1

−1

s2

√
1 − s2

(vk̄)2

ω2 − s2(vk̄)2
ds. (B.11)

Now, in analogy to (24), we find that

1

v

∂

∂ t
�−1 =

{
I +

1

π

∫ 1

−1

s√
1 − s2

L−1
T (s; �ρ, z, t)(v∇T x)

2 ds

}
. (B.12)

Appendix C

In this appendix, we derive the representation (39) for pU . Because of the proof of appendix A,
we can use the full wave equation to find pU . That is, pU must satisfy the frequency domain
equation

Lω pU (�x; ω) = ∇2 pU +
ω2

v2
pU = 0, pU (x, y, 0; ω) = Q(x, y; ω). (C.1)

Furthermore, pU is an upward propagating wave and therefore it satisfies the inward
propagating Sommerfeld radiation conditions (Bleistein 1984),

r pU (�x; ω) bounded, r

[
∂pU

∂r
− iω

v
pU

]
→ 0, r → ∞, r = |�x |. (C.2)
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We introduce a Green function, G(�x, �x ′; ω) satisfying the following problem:

LωG = −δ(�x − �x ′), G(x, y, 0, �x ′) = 0. (C.3)

We also require that G satisfy the same radiation condition as pU , namely

r G(�x, �x ′; ω) bounded, r

[
∂G

∂r
− iω

v
G

]
→ 0. (C.4)

Now, we consider the integral

I =
∫

D
{pU (�x; ω)LωG(�x, �x ′; ω) − G(�x, �x ′; ω)Lω pU (�x; ω)} d3x . (C.5)

Here, D is a hemisphere of radius R centred at the origin, planar boundary at z = 0 and
extending down into the domain z > 0.

We use the wave equations in (C.1) and (C.3) to replace the differential operators in the
integral in (C.5) by the source terms and then conclude that

I = −pU(�x ′; ω). (C.6)

Now, we note that

pU (�x; ω)LωG(�x, �x ′; ω) − G(�x, �x ′; ω)Lω pU(�x; ω)

= pU (�x; ω)∇2G(�x, �x ′; ω) − G(�x, �x ′; ω)∇2 pU (�x; ω).

Next, we use Green theorem (Bleistein 1984) to recast the integral in (C.5) as one over the
boundary ∂ D of the domain D:

I =
∫

∂ D

{
pU (�x; ω)

∂G(�x, �x ′; ω)

∂n
− G(�x, �x ′; ω)

∂pU(�x; ω)

∂n

}
dS. (C.7)

Here, ∂/∂n is the normal derivative in the outward direction from ∂ D. This surface consists
of two pieces.

First, there is the hemisphere of radius R on which ∂/∂n = −∂/∂r . The second part
of ∂ D is the disc on the plane at z = 0 and of radius R, centred at the origin. On this disc,
∂/∂n = −∂/∂z. On the hemisphere, we write

� = pU (�x; ω)
∂G(�x, �x ′; ω)

∂n
− G(�x, �x ′; ω)

∂pU(�x; ω)

∂n

= pU (�x; ω)
∂G(�x, �x ′; ω)

∂r
− G(�x, �x ′; ω)

∂pU (�x; ω)

∂r

= pU (�x; ω)

{
∂G(�x, �x ′; ω)

∂r
− iω

v
G(�x, �x ′; ω)

}

− G(�x, �x ′; ω)

{
∂pU (�x; ω)

∂r
− iω

v
pU

}
.

Note that we can write dS = R2 d� in (C.7) for this hemisphere. Here, d� is the
differential solid angle on the unit sphere. We need to evaluate the last expression at r = R.
We can pair up a multiplier of R from the dS multiplication with each of the factors in this last
expression for �. Using the Sommerfeld conditions in (C.2) we conclude that

RpU (�x; ω)R

{
∂G(�x, �x ′; ω)

∂r
− iω

v
G(�x, �x ′; ω)

}∣∣∣∣
r=R

→ 0, R → ∞

RG(�x, �x ′; ω)R

{
∂pU (�x; ω)

∂r
− iω

v
pU

}∣∣∣∣
r=R

→ 0, R → ∞.
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Since the domain of integration is bounded (by 2π), we conclude that the surface integral
in (C.7) over the hemisphere must approach zero as the radius of the hemisphere approaches
infinity. Consequently, we are left with the surface integral over the plane z = 0 in that integral.

Here, we use the boundary data in (C.1) and (C.3) plus the fact that ∂/∂n = −∂/∂z to
conclude that

pU (�x ′; ω) =
∫

z=0
Q(x, y; ω)

∂G(�x, �x ′; ω)

∂z
dx dy. (C.8)

Now, we have to examine the Green function G more closely. Let us introduce the free
space Green function, Gs(�x, �x ′; ω), satisfying the same radiation conditions as G. Further,
let us introduce the image point �x∗ = (x, y, z). We claim that the solution G can then be
constructed by the ‘method of images’ as

G(�x, �x ′; ω) = Gs(�x, �x ′; ω) − Gs(�x∗, �x ′; ω). (C.9)

At z = 0, this solution is zero as required. Now, using ray theory, we can write

G(�x, �x ′; ω) = A(�x, �x ′)eiωϕ(�x,�x′) − A(�x∗, �x ′)eiωϕ(�x∗,�x′).

To leading order the z-derivative requires differentiation of the phases,only. In those phases, the
z-derivatives at z = 0 have opposite sign but are otherwise equal. Therefore, we conclude that

∂G(�x, �x ′; ω)

∂z

∣∣∣∣
z=0

∼ 2iω
∂ϕ

∂z
A(�x, �x ′)eiωϕ(�x,�x′ )

∣∣∣∣
z=0

. (C.10)

Now we use this result and (C.9) in (C.8) to conclude that

pU (�x ′; ω) = 2iω
∫

z=0
Q(x, y; ω)

∂ϕ

∂z
A(�x, �x ′)eiωϕ(�x,�x′)

∣∣∣∣
z=0

dx dy. (C.11)

To complete the story, we need to replace �x ′ by �x and replace �x at z = 0 by �xr . Furthermore,
we use the fact that ∂ϕ/∂z is the z-component of the travel time ϕ, which is a vector making
the angle αr with the vertical and having magnitude 1/v(�xr ). The result of these substitutions
is equation (39). This completes the verification of that equation.
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