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Abstract

One-way wave operators are powerful tools for forward
modeling and inversion. Their implementation, however,
involves introducing the square-root of an operator as a
pseudo-differential operator. A simple factoring of the
wave operator produces one-way wave equations that
yield the same traveltimes as the full wave equation, but
do not yield accurate amplitudes except for homogeneous
media. Here, we present augmented one-way wave
equations that yield solutions for which the leading
order asymptotic amplitude as well as the traveltime
satisfy the same differential equations as do the corre-
sponding functions for the full wave equation. Exact
representations of the square-root operator appearing in
these differential equations are elusive, except in cases in
which the heterogeneity of the medium is independent
of the transverse-spatial variables. Here, we introduce a
representation of the square-root operator as an integral
in which a rational function of the transverse Laplacian
appears in the integrand. This allows for an explicit
asymptotic analysis of the resulting one-way wave equa-
tions. We have proven that ray theory for these one-way
wave equations leads to one-way eikonal equations and
the correct leading order transport equation for the full
wave equation. By introducing appropriate boundary
conditions at z = 0 , we generate waves at depth whose
quotient leads to a reflector map and estimate of the
ray-theoretical reflection coefficient on the reflector.
Thus, these true amplitude one-way wave equations lead
to a “true amplitude wave equation migration (WEM)”
method when we use the same imaging condition as is
standardly used in WEM. We have proven that applying
the WEM imaging condition to these newly defined
wavefields in heterogeneous media leads to the Kirchhoff
inversion formula for common-shot data. Computer
output using numerically generated data confirms the
accuracy of this inversion method. However, there are
practical limitations. The observed data must be a
solution of the wave equation. Therefore, the data over
the entire survey area must be collected from a single
common-shot experiment.

Introduction

One-way wave equations provide fast tools for modeling
and migration. These one-way equations allow us to
separate solutions of the wave equation into downgoing
and upgoing waves except in the limit of near-horizontal
propagation. The original one-way wave equations used
for wave equation migration (WEM) [Claerbout, 1971,
1985] were designed to produce accurate traveltimes, but
were never intended to produce accurate amplitudes,
even at the level of leading order asymptotic WKBJ
or ray-theoretic amplitudes. As such, classic WEM

provides a reflector map consistent with the background
propagation model, but with unreliable amplitude
information.

Here we describe a modification of those one-way wave
equations to produce equations that provide accurate
leading order WKBJ or ray-theoretic amplitude as well
as accurate traveltime. The necessary modification of the
basic one-way wave equations is motivated by considering
depth-dependent (v(z)) medium. In that case, through
the use of Fourier transform in time and transverse spa-
tial coordinates (x,y), we reduce the problem to the study
of ordinary differential equations. There, it is relatively
simple to see how to modify Claerbout’s equations used
in order to obtain equations that provide leading order
WKBJ amplitudes, as well. This leading order amplitude
is what we mean by “true amplitude” for forward model-
ing.

For heterogeneous media, v = v(z,y, z), the same one-
way wave equations still provide true amplitudes. How-
ever, now the transverse wave vector (kz,ky) must be
interpreted as differentiations in the corresponding dual
spatial variables. Further, our modified one-way wave
equations involve square-roots and divisions by functions
of this transverse wave vector. We provide an interpreta-
tion of these operators through some basic ideas from the
theory of pseudo-differential operators.

We provide a relatively simple representation of the
one-way differential operators. This, in turn leads to
a proof [Zhang, 1993] that the ray-theoretic solutions
of these equations satisfy the separate eikonal equations
for downgoing and upgoing waves, but the leading order
amplitudes also satisfy the same equation—the transport
equation—as does the leading order amplitude for the full
wave equation.

Having these true amplitude one-way equations allows
us to develop a “true amplitude” WEM for heterogeneous
media. To date, we only have numerical checks on this
method for v(z) media, where the pseudo-differential op-
erators revert to simple multiplications in the temporal /-
transverse-spatial Fourier domain. However, we are able
to prove that the reflection amplitude agrees with the am-
plitudes generated by Kirchhoff inversion (true amplitude
Kirchhoff migration) as developed by one of the authors
[Bleistein, 1987, Bleistein et al, 2001] and colleagues. This
proof is valid in heterogeneous media.

This is a common-shot inversion, requiring data with the
receiver array covering the entire domain of the survey.

Dynamically correct one-way wave equations

We begin by considering the wave equation in three
spatial dimensions and time:
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Let us first consider this equation in a homogeneous

medium and apply Fourier transform in time and the
transverse spatial variables:
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and k is the transverse wave vector, k = (kz, ky) =
k2 + k2 For constant wavespeed, the separate one—way
equatlons implied in (2) have exact solutions that are so-
lutions of the two-way wave equation:
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Here, the A’s are constants.
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For wavespeed v(z), these solutions are no longer valid.
For (2) we would then content ourselves with asymptotic
WXKBJ solutions. Then, we would want the solutions of
the one-way equations to agree, at least asymptotically,
with those solutions of the two-way equation (1). For
the one-way operators in (4), the exact solutions have the
same traveltimes as the WKBJ solutions to the leftmost
operator equation in (2), but do not have the same am-
plitude. This leads us to look for ways to modify the two
one-way equations in (4), so that the new equations pro-
vide a transport equation that yields the same amplitude
as in (2). We are able to show that the correct modifica-
tion of the equations in (4) are
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For heterogenous media in which v = v(z,y, 2), the tra-
ditional WEM continues to use the one-way wave opera-
tors in (4). The transverse wave vectors in those equations
are interpreted as derivatives in the transverse directions
and various rational approximations are made to avoid
the square-root of differential operators implicit in the
representation. In fact, interpretation and manipulation
of such operators is a major component of the theory of
pseudo-differential operators. Through proper interpre-
tation, these operators can be analyzed rigorously. In G.
Q. Zhang [1993], the second author has done just this.
To explain, we think of the transverse wave vector and
frequency in (5) as being symbolic place-holders for dif-
ferentiations:
w & 0/0t ks, ky) &
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We think of ik, as a symbol for a differential operator.
More precisely, we rewrite (5) as

EiW=[%:l:A]W—PW=0, (6)

2

with A and T' being pseudo-differential operators with
symbols A and y given by
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Here, it is easy to check that the expression for + is exactly
the same as the last factor in (5).

G. Q. Zhang’s [1993] analysis of (6) was facilitated by
his identity
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With this identity, we see that essentially the same de-
nominator appears in the symbols A and v, namely We
view
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Then, we can view the inverse (—w +s ('uk) ) as
corresponding to the inverse of the differential operator
Lt(s). Such an inverse suggests solving the differential
equation or convolving with an appropriate Green’s func-
tion. This interpretation allows us to give meaning to
the pseudo-differential operators in (6), as follows. We
introduce an auxiliary function ¢(s;z,y, 2,t) through the
equation

Lr(s)q(s;--+) =

We then rewrite (6) as
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Through this device of introducing the identity in (8)
and the auxiliary function ¢ in (9), we are able to inter-
pret the pseudo-differential operators in (6) in terms of
traditional differential operators and solutions of tradi-
tional differential equations. The proof by G. Q. Zhang
[1993] that the correct eikonal equations and transport
equation arise from (6) is based on this interpretation of
that equation.

True amplitude wave equation migration

Here we describe our proposed true amplitude WEM
motivated by the dynamically correct one-way wave equa-
tions of the previous section. We introduce pp and py as
solutions of the following problems.

(5 +A-T)po(@w) =0,
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In these equations, £s = (zs,ys,0), pp is the downgoing
response to the impulsive boundary condition at z = 0
and py is the upgoing wave that must equal the observed
data, @ at the upper surface. In comparison with stan-
dard WEM, we have introduced the additional operator I"
into the differential equations and we have also modified
the boundary data for pp. (Standard WEM would use
only a delta function in the boundary data.) The reason
is that this is the proper data to model a point source for
the original wave equation. Note that this modification
involves both a scaling and phase shift because of the ¢
in the definition of A in (8). We use the solutions py and
pp in the standard imaging condition as follows.

R(®) =/’de

o (Tw) (13)

See Zhang et al. [2001, 2002].

Comparison of true amplitude WEM
and Kirchhoff inversion

Relying on G. Q. Zhang’s [1993] proof of the equivalence
of the solutions of the one-way wave equations with the so-
lutions of the full wave equation, we derive the asymptotic
form of (13) in terms of the traveltimes and amplitudes
of the full wave equation. That result is

2/iwcos ar A(?f’_,f)
v, A(E,Zs)

R(®) =
(14)

.eiw{w(ir,a'c')+¢(5c’,a'c's)}d$Tddew_

Here, v, is the wave speed at the receiver point and o
is the emergence angle of the ray from the image point
to the receiver point. Furthermore, the amplitudes and
phases are solutions of the eikonal and transport equa-
tions for the full wave equation. Their equivalence with
the solutions of the one-way wave equations is a conse-
quence of G. Q. Zhang’s proof. This is the formula for
common-shot Kirchhoff inversion in Bleistein [1987] and
Bleistein et al. [2001] as expressed by Hanitzsch [1997].

Numerical test

To show how true amplitude common-shot migration
works, we apply it to a 2-D horizontal reflector model
in a medium with velocity v = 2000 + 0.3z. Recall from
the theory that in this case, the modeling and migration
can be carried out in the transverse spatial and temporal
Fourier domains, with (kz, ky) being the simple transverse
part of the wave vector.

The input data (Figure 1) is a single shot record over
four horizontal reflectors from density contrast. Figure 2
left shows the migrated shot record using the conventional
common-shot migration algorithm with the label U/D
suggesting the standard upgoing and downgoing wave-
fields. The peak amplitudes along the four migrated re-
flectors are shown in Figure 2 right, normalized to the
geometrical optics reflection coefficient along the reflec-
tor. This method has a phase error because the standard
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Single shot record
Fig. 1: Input model data.

impulsive boundary data lacks the multiplication by ¢ in
A on the right side in (11). The consequent phase error
has been corrected during the migration. However, the
migrated amplitudes are poor, especially on the reflector
at depth z = 1000m along which the reflection angles vary
over a wide range. (This method has incorrect angular de-
pendence when compared to true amplitude reflectivity or
the geometrical optics reflection coefficient at each point.)
The wide angle peak amplitudes decrease monotonically
with increasing depth. The greatest error occurs at wide
angle, with the result along the shallowest reflector being
the worst.

Figure 3 left shows results of true amplitude common-
shot migration (13). The peak amplitudes along the re-
flectors are shown in Figure 3 right. From this plot, we
clearly see that the true amplitude algorithm recovers
the reflectivity accurately, aside from the edge effects and
small jitters caused by interference with wraparound ar-
tifacts.

Conclusions

Common-shot migrations offer good potential of imaging
complex structures, but the conventional formulations of
such migrations produce incorrect migrated amplitudes.
Here, we have described true-amplitude one-way wave
equations that allow us to extend the standard method
both for forward modeling and for wave equation migra-
tion. These modified one-way wave operators are devel-
oped with the aid of pseudo-differential operator theory.
We have proven that these new one-way wave equations
provide solutions that agree dynamically, as well as kine-
matically, with the solutions of the full wave equation.
Further, we have proposed a new approach to WEM,
transforming it into a true amplitude process, meaning
that it produces an inversion output that agrees asymp-
totically with Kirchhoff inversion: it produces a reflector
map with peak amplitudes on the reflector in known pro-
portion to the geometrical optics reflection coefficient. We
have proven this claim, as well. With the aid of a simple
numerical example, we demonstrated that the migration
method we proposed does calibrate common-shot migra-
tions by correcting both their amplitude and phase behav-
ior. We did this for an example in which the wave speed



True-amplitude Common-shot Migration

120 1£‘10 160 180 200

U
B

U/D imaging condition

15

g
o

Amplitude
R

hY
«—— depth=1000m
depth=2000m
depth=3000m

05 +—— depth=4000m il

0.0 . . . . . . . . .
51 61 71 81 91 101 111 121 131 141 151

Crossline

Fig. 2: Left: finite difference migration using classic WEM for imaging. Right: peak amplitudes along the four reflectors. The

wide angle error decreases with depth of the reflector.
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Fig. 3: Left: finite difference migration using (13) for imaging.

angle error decreases with depth of the reflector.

is depth-dependent — v = v(z). The new method actu-
ally builds a bridge between true amplitude common-shot
Kirchhoff migration and the migrations based on one-way
wavefield extrapolation.
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