True-amplitude Common-offset, Common-azimuth v(z) Migration

YU ZHANG *, SAM GRAY t, AND JERRY YOUNG 1

Abstract. We investigate the amplitude behavior of common-offset phase-shift migration in two and three
dimensions. By transforming phase-shift migration into an equivalent Kirchhoff migration, we find the deviation of
the phase-shift migration operator from ”true-amplitude.” We also investigate the amplitude error introduced by
anti-aliasing, for both phase-shift and Kirchhoff migration. Even for fairly routine acquisition characteristics, this
amplitude error can dominate the error due to the lack of true-amplitude migration weights, making the analysis of
migrated amplitudes problematic, especially for shallow reflection events.

1. Introduction. Reliable migrated amplitudes depend on acquisition geometry, complex-
ity of geologic structure, and choice of migration algorithm. Towed-streamer marine acquisition
typically involves a narrow range of azimuth angles, and lends itself well to processing of common-
offset, common-azimuth data volumes. When geologic structure is simple, with relatively little
variation of lateral velocity, using a migration algorithm that is correct for v(z) often provides
reasonable amplitudes for post-migration amplitude-vs.-offset (AVO) analysis. This is true for
a gently varying background medium, possibly even when the structures being imaged have sig-
nificant dip. Presently, several algorithms are in use for v(z), common-offset, common-azimuth
migration, with Kirchhoff migration weights providing known ”true” amplitudes. Schleicher et
al. (1993) and Bleistein et al. (2000) have provided general true-amplitude weights for Kirchhoff
migration. Winbow and Schneider (1999) specialized these weights for v(z) and shown their im-
portance in realistic settings. Zhang et al. (2000) modified the v(z) weights, greatly simplifying
them in the interest of speeding up their calculation and use in a production Kirchhoff migration
program.

Before these true-amplitude weights and their approximations appeared, Dubrulle (1983) pre-
sented a common-offset phase-shift migration method with no discussion of amplitudes. Ekren
and Ursin (1999) attached amplitudes to this method, and used it to provide migrated input to
AVO analysis in two dimensions. Dubrulle’s method extends readily to three dimensions, and we
discuss the amplitude behavior of both the two-dimensional (2-D) and three-dimensional (3-D)
versions of this method. In particular, by performing a stationary-phase analysis of Dubrulle’s
method in two and three dimensions, we show that the weights implied in this method, modified
by a geometrical spreading correction, are equivalent to ”true” Kirchhoff migration weights for all
dips at zero offset and for a flat reflector at all offsets. We also show that for constant velocity and
nonzero offset case, the amplitude error caused by Dubrulle’s phase-shift migration is small, within
6.1%. Etgen (1998) provided the modifications needed to include true amplitudes in Dubrulle’s
3-D method, with the resulting migration method having the speed of phase-shift migration and
the true-amplitude behavior of Kirchhoff migration.

An additional, often neglected, factor affecting migrated amplitudes is anti-aliasing (Gray,
1992; Lumley et al., 1994). Anti-aliasing reduces the frequency content of an input trace as it
swings out to steeper angles under the action of migration. As frequencies are successively removed
from the trace, the trace suffers amplitude loss as well, with different offsets losing amplitude at
different rates at a given dip angle. We show that, if the input data have frequency content
above the aliasing frequency, migration anti-aliasing can distort migrated amplitudes. In this case,
the amplitude distortion due to anti-aliasing (whether implicitly applied as part of the phase-
shift migration algorithm, or "manually” applied as part of a Kirchhoff migration program) can
dominate the amplitude distortion due to the lack of true-amplitude weighting in the migration.
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2. Dubrulle’s common-offset migration. In this section we introduce Dubrulle’s (1983)
2-D common-offset phase-shift migration, and then we generalize it to 3-D.

For 2-D common-offset phase-shift migration, the input data U(z,,,z = 0;t) depends on
time ¢, midpoint z,, and half offset h; the migrated image R(z,z) = U(x, 2z;t = 0) corresponds
to a diffractor at (z,z). Dubrulle’s phase-shift migration is based on the following geometrical
interpretation (Ekren and Ursin, 1999). Starting from a space-time diffractor response in a v(z)-
layered medium, the response is accumulated into the migration image by summing data along the
line tangent to the response at the sample location (z,t) (Figure 1).

Defining the 2-D Fourier transform pair

Fly;w) = //F(x, t)e1he o =Y dudt, forward
and
1 . ) ) )

F(z;t) = @ne // Fky;w)et™ = e dk, duw, inverse

we can formulate Dubrulle’s phase-shift migration method as
1 A . .

U(z,z;t) = @n? //U(kw,z = 0;w)etF=2 ittt gk du. (2.1)

In this equation,

to = 7(2,Zm; 2) — Pz (Tm — ),

7(2, Zm; 2) is the travel time from the source (z,, — h,0) to the diffractor (z,z) and back to the
receiver (z,, + h,0), and

_dr

Dz = —d.’L'm

is the slope of the tangent of traveltime at z,,. The slope p, corresponds to a plane-wave et(kezm+w?t)
by the relationship

Dz =——.
w
In following derivation and analysis, we use U(z, z;w) to distinguish single Fourier transform
in time
Ulz, z;w) = /U(x, z;t)e W dt.
Dubrulle’s method can be generalized easily to migrate 3-D common-offset, common-azimuth
data U(xm, Ym, 2z = 0;t) by the following generalization of (2.1):

1 . . .
Ulz,y,zt) = EBE / / / Ulky,ky,z = 0;w)elF=a+bay) giv(t+io) gp di de, (2.2)
Y
where
to = 7(2,Y, Tm, Ym; 2) — Pe(Tm — ) — Dy (Ym — V),
and
or kg 0t ky
pw—M——U and py_ay—m_ e

To simplify our discussion below, we will assume that in 3-D, the shot-receiver pairs are parallel
to the direction of y (or y,,), i.e. they are assigned the coordinates (z,, — b, Yr) and (2, + b, ym),
respectively.



3. Amplitude performance of zero-offset phase-shift migration. When the offset is
zero, Dubrulle’s formula reduces to Gazdag’s (1978) phase-shift migration. So we begin with
Gazdag’s migration, and discuss its amplitude performance in the constant velocity case:

U(kw,z;w):U(kw,zzo;w)e. v 1w? | (3.1)

This simple case sheds light on the basic ideas of this paper.
Inverse Fourier transforming (3.1) into space and time, we obtain

U(x,z;t):%(,f—z (U(x,zzO;t)*%), (3.2)

2
where x is 2-D (z, t) convolution, travel time 7(z;z) = —v/z2 + 22 and H(t) is the Heaviside
v

function
1, t>0,
H(t) =
0, t<O.
Then
1 0 ® U(zm, 0t
R(z,z) =U(z,z;t=0)= /d x;ni’)dt
T - T
= Lg xm/ / iwt! U (Zym, 0; w)dw (3.3)
272 Oz \/ﬁ ’
= 52 az/dxm/U (T, 0;0) [ (24, 2; w)dw.
where
o] eiwt' o] eiwvt2+r2

Iz, z;w) = —dt = ——dt
(@m, 25 0) . U2 _712 o V2412 ’

7T = 7(¢ — Tm; 2), and we have indicated the temporal Fourier transform of U by U. Letting

¢(t) = V12 + 72, we apply the method of stationary phase (Bleistein, 1984) to I, obtaining in the
high-frequency limit

ey, 210) ~ eior, |27 ifsem(wisen(s”@) _ €7 |27 (3.4)

27 PrZOIN 27

Since the stationary point £ = 0 is an endpoint of integration, the denominator of this expression
contains an extra factor of two. Substituting ( 3.4) into ( 3.3), we obtain

1 eiw‘r
R(z,z) ~ @i az/dxm/U T, 0; w)\/mdw

1 / sz Qi
~ 277)3/2 /dxm/ Uz, 0; w)e™ dw,

where r = /(2 — )% + 22.




Bleistein et al. (2000) have expressed 2-D true-amplitude zero-offset Kirchhoff migration as

R(z,z) ~ C/dxm/;—r|w|15(xm;w)eiwdw, (3.6)

where C is a constant and P(z,,; t) is seismic data. Comparing (3.5) with (3.6), we see an amplitude
and phase difference between zero-offset phase-shift migration and 2-D true-amplitude zero-offset
Kirchhoff migration. In order to reconcile the two, we must apply some additional correction terms
to the seismic data P, for example by setting

U@m,0;w) = \/E\/%P(xm;w) (3.7)

in (3.5). The first term in (3.7) is a phase correction to the input data, and the second term can be
regarded as an amplitude compensation for geometrical spreading, which is conventionally applied
in seismic data processing. We ignore constant multiplicative differences, which give rise only to
different normalizations for the migrated output.

An equivalent way to implement the correction terms in (3.7) is to apply them in the pre-
processing stage before phase-shift migration:

U@m,0;w) = m/oo VP (2 t)e”“tdt, (3.8)
0

where t is two-way travel time which can be found in the seismic data. In short, pre-processing
(3.8) together with Gazdag’s phase shift migration (3.3) give Bleistein’s true-amplitude zero-offset
Kirchhoff migration.

A similar comparison of (3.5) with Bleistein et al.’s 2.5-D true-amplitude migration formula
shows that we need to apply an amplitude compensation, but no phase compensation, to P before
phase-shift migration in order to yield true 2.5-D amplitudes after 2-D migration.

4. Amplitudes in Dubrulle’s migration formulas.

4.1. Amplitudes in Dubrulle’s 2-D common-offset phase-shift migration. Just as
Gazdag’s zero-offset migration method has an implicit weight that can be compared with the true-
amplitude Kirchhoff migration weight, so does Dubrulle’s common-offset migration method. In
this section, we derive expressions for these implicit weights in two dimensions, and compare them
with Kirchhoff migration weights.

We begin by rewriting (2.1) with a v(z) velocity function, setting ¢ = 0 and using the inverse
spatial Fourier transform of U(z,0; w), as

1 400 400 % ( "
_ ! 70 (- iwto ji(z—2z ke
R(z,z) = CE /_00 dz /_00 d(.u/_M Uz',0;w)e™e dk, (4.1)
v
where
k dr
to = 7(, Tm, 2) — Pz (T — T) and pw:_fza-
Here, z,, and z are coordinates for the input and output, respectively. Applying the change of
variable k, = 2wl siny(z), for |y| < T we obtain
1 Z 20w
R(ma Z) = W/ dCUdiL'I /;75 U_z)[j(xl,o;w)eiw(b(’}’) C037d77 (42)
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where
x 2 H
() = 7= Paln — 2) + (@ - of) = 7 4 ZEISNY
v v(2)

We plan to apply stationary phase to the y-integral in (4.2); to that end, we show expressions for
the first and second derivatives of ® with respect to . The first derivative is

(xm - -'If'l)- (43)

d®  dr

aé _dr dp, dz,, dp;  2sgn(w)cosy
dy  dy B

" = _ !
dry Dz dry (xm — ') dy v(2)

(T — -’I"I) (T — -’I"I)a (4.4)

80 z,, = ' is the stationary point. A much more detailed analysis, presented in Appendix A,
shows that

s
dv?

_4COS2 +(2) (cosas(z) . cosar(z))_1 , (4.5)

v?(2) ¥s Yr

Tm=2'
where

v(z)

cos® a;-(2')

s = cosas(2) /z v(@)

—_— ! —
| o as(z’)dz and ¥, cosar(z)/0

are in-plane geometrical spreading terms from sources and receivers, respectively. The number a;,
() is the angle along the ray path from source (receiver) relative to the vertical (Figure 2).

Now applying stationary phase to (4.2), we obtain the following integral form for Dubrulle’s
phase-shift migration

1 " . .
R(z,z) ~ 3 //\/—iw cosar | cosa U(2m,0;w)e™™ @ dwdz,y,. (4.6)
(27‘[‘)? 'l;[}r 'l;bs

Remark 4.1. For zero-offset and constant velocity, we have the explicit expressions

Cosay  cosay  Z
(8 ¥y vrd’

Substituting these into (4.6), we obtain the integral form of phase-shift migration (3.5) derived
earlier.

4.2. Comparison with true-amplitude Kirchhoff migration. 2-D true-amplitude common-
offset migration for a v(z) medium can be expressed as (Martins et al., 1997; Hanitzsch, 1997; Zhang
et al., 2000)

R(z,z) ~ C// |r,u|—'COM.;S((E);OS&T0 <\/%+ \/%> P(zn; w)e™™ @ dwdz,,. (4.7)

As in the discussion in Section 3, in order to make the amplitude and phase of the migration
in (4.6) identical, up to a multiplicative constant, with those of (4.7), we need to apply some
pre-processing to the seismic data P. In this case, we set

U(zm,0;w) = \/ﬁ/ LP(z,; t)e"™tdt, (4.8)
0

before applying phase-shift migration, where L is a geometrical spreading correction term to be
determined.



Now we ask, can we make Dubrulle’s migration true-amplitude if we play the same game as
we did to zero-offset phase-shift migration? To answer this question, we will discuss three typical
cases.

Cases 1 and 2: v(z), flat events or zero offset. In both cases a; = a, = o and
s = ¥ = 1), therefore the true-amplitude weight for Kirchhoff migration (4.7) is

2cosap
v(0)

Ursin (1990) derived an expression for 3-D geometrical spreading correction in a layered
medium (his Eq. (8)). By dropping the out-of-plane term in Ursin’s expression, we obtain the
following 2-D correction term:

Wra =

__cosayg 21
— v(0) V cosa’

As Ursin (1990) showed (his Eq. (12)), this factor can be written as a function of offset h and
two-way travel time ¢, making it appropriate to apply to P(z;t) before transformation to U and
subsequent phase-shift migration to a particular depth. Multiplying the factor L by the weight in
(4.6), we obtain the following total weight for Dubrulle’s migration:

[2cosa 2cosag
W = L = =
D ’l,[) ’U(O) WTA7

showing that this correction, applied to input data P, will provide correctly weighted input data
for either zero-offset phase-shift migration at arbitrary dip or nonzero-offset phase-shift migration
at flat dips.

Case 3: Constant velocity and common offset. For constant velocity,
z z
cosag = —, cosQp = —
Ts Ty
and
2 2
ur ur
_ S _ T
11118 - ? 11[}7‘ .

The true-amplitude migration weight is then

oz it
Wra = v (Tsrr)3/2, (49)
where r; and r, are distances from the diffractor to the source and receiver, respectively.

In cases 1 and 2, multiplying the implicit phase-shift migration weight by the geometrical
spreading correction L yielded the true-amplitude Kirchhoff migration weight. The present case
is not so simple. Here, the quotient of Wra and Wp includes r; and r,., which depend on the
source and receiver ray paths. It can not be expressed as a simple correction applicable to the
input data in either the time domain or the space domain, nor is it exactly equal to the geometrical
spreading correction L. Still, we can multiply the input data by L before Fourier transforming it
into the frequency domain in order to approximate the desired quotient, and this approximation
is surprisingly accurate as we will show below. The geometrical correction term is

L= % =i (4.10)



We obtain the effect of this on the total weight Wp by substituting (4.10) into (4.8) and combining
with (4.6):

z 1 Z \/(7'3+7'3)(7's+7'r)
=L—\|w+5== g T 4.11
o Vo rs - reov (rsrr)3/2 ( )
Comparing (4.9) with (4.11), we find that
3 L 3
WD — WTA \/(rs + TT)(TS + 7'7-) Z WTA, (412)

2 2
s+

so that the equivalent Kirchhoff weight for Dubrulle’s migration is always larger than the true-
amplitude migration weight, with equality if and only if ry = 7, i.e. in the case of zero-offset or
flat reflector. So generally, Dubrulle’s migration is not true-amplitude. Figure 3 illustrates the
relative error

|Wra — W

FE =
Wr

From Figure 3, we see that the amplitude error in Dubrulle’s method with the time scaler (4.10)
applied to P(z,,;t) is relatively small, less than 6.1%. Indeed, the maximum relative error

Erax = 0.060660171.. .,
occurs when

=(24+V3)r, or re = (24 V3)rs

5. Amplitude behavior in (generalized) Dubrulle’s 3-D migration . In Section 2, we
generalized Dubrulle’s migration to 3-D common-offset, common-azimuth data volumes. As in
2-D, a similar but more complicated analysis can be applied to algorithm (2.2). Here we just give
the final result, without showing details of the derivation:

1 ~ .
R(z,y,2) ~ _W // WhiwP (L, Ym; w)e™ " dwdz, dym, (5.1)

where the amplitude weight

1 1 cosa; COSQ 1 cosa 1 cosa
- L s T -2 =t s - T . 2
o \/(‘78 +‘7T)( s * (I ) FsintA (Us s )(UT Py ) (5:2)

Here, L is the geometrical correction term, A is the angle between the projection of source and
receiver rays to the surface (Figure 4) , and

4 1 4 7
O :/ &dz' and oy :/ &dz'
0 ) 0

cos ag (2! cosa,(2')

are out-of-plane spreading terms. In 3-D, the phase correction term is no longer needed.
For a v(z) medium, the true-amplitude Kirchhoff migration weight (Winbow and Schneider,
1999; Zhang et al., 2000) is

cosaso COS Qg Wy Uy Oy o sm A
(e DI e



where

Q = (cosa, +cosay) (\/%+ %) — (14 cosas cos a,.) ( % + %) )

and @ is the reflection angle.

Cases 1 and 2: v(z), flat events or zero offset. For zero offset, the opening angle
20 is zero and therefore its projection A is also zero. For a flat reflector, the specular ray pair is
restricted to the vertical plane below the source and receiver locations, therefore the projection of
the opening angle is 180°. In both cases sin A = 0, so

4 cos g
v(0)

Applying Ursin’s (1990) 3-D geometrical spreading correction

Wra =

2cosag [ o
[=2%%, [ 9%
v(0) cosa

cosQ 4 cos agp
= 2 = =
Wp ,/ - 2(0) Wra,

so that 3-D v(z) common-offset, common-azimuth migration can provide true amplitudes at zero-
offset or for flat reflectors.

Case 3: constant velocity, common offset, and common azimuth. As in 2-D, this
case is more complicated than the preceding cases. Here,

to Wp in (5.2), we obtain

3 3
WD = LE\/(TS +r7')(r8 + 7'7.),
v (rerr)?

and

(7‘? + 7'%)(7'3 + 7'7‘)
(rsry)2 )
As in 2-D, the quotient of Wpa and Wp can not be expressed as a function that can multiply

the input data in either the time domain or the space domain, nor does it equal L. But applying
the geometrical spreading correction

z
Wra = -
v

L=rs+r, =vt
to the input data in the time domain yields the approximate total weight for Dubrulle’s migration

\/(rs + 7'7-)3(7'2 + Tg)
(rsry)? '

z
Wi =2
v

Therefore, as in 2-D, we obtain the relationship

VT T r)
r2 + 12

Wp = Wra > Wra, (5.4)

which is exactly the same as its 2-D case (4.12).
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6. Amplitudes and anti-aliasing. In previous sections, we discussed the amplitude perfor-
mance of Dubrulle’s phase-shift migration. In migration practice, anti-aliasing modifies migrated
amplitudes also, by reducing the frequency content of an input trace as it migrates to steeper
angles.

Two kinds of aliasing happen to Kirchhoff migration (Lumley et al., 1994) : operator aliasing
and imaging aliasing. Operator aliasing occurs when the dip along the migration summation
trajectory is too steep for a given input trace spacing and frequency content. As a result, not all
the unwanted smile energy cancels, and we may be left with the envelope plus some unwanted noise.
Imaging aliasing occurs when the output sampling is too coarse to properly present migrated dips.
Such aliasing changes the appearance of dipping events on a migrated section and may mislead
interpretation of imaging.

In phase-shift migration, input trace spacings, dz and dy, are always the same as output
spacings, so the following formula for the highest frequency controls both operator aliasing and
imaging aliasing (Zhang et al., 2001)

?
dy}

Equation (6.1) can be used to predict the amplitude decay caused by anti-aliasing in phase-shift
migration (Figure 5). Figure 6 shows the effects of anti-aliasing on migrated impulses. In the
examples, we assume that the input wavelet is a sinc function with a maximum frequency of 50hz,
we choose v = 2000m/s, dz = 25m, and we vary the offset from Om to 6000m. Because the input
data have frequency content above the aliasing frequency v/(4dz) = 20hz, migration (even with
anti-aliasing) will fail to resolve the true dip of steeply dipping events, migrating their actual and
aliased dip components without completely cancelling the aliased components. Also, while anti-
aliasing has no effect on the amplitudes of events whose frequency content is below the aliasing
frequency, the migrated amplitudes of events with frequency content above the aliasing frequency
will be affected by anti-aliasing at steep enough dips. For this example, Figure 6 shows that
amplitude loss at a dip angle, proportional to the decrease in maximum frequency migrated to
that dip, ranges between 0% and 60%, and that this loss is not the same for all offsets. Over most
of the migrated smile, the amplitude decay from anti-aliasing is much larger than the amplitude
error (0%-6.1%) from Dubrulle’s phase-shift migration.

We analyze anti-aliasing as a function of offset and reflector azimuth from the following equa-
tions, valid for a v(z) medium,

1

= (6.1)

dx, By

fmax - > 8_7_
oz

Ot  2cosfsiné Or  2cosfsinéd |
— = ———— oSl and — = ———siny, (6.2)
Oz Jy v
where 8 is incidence angle, § is dip angle and u is reflector azimuth angle. Substituting these into
(6.1), we obtain

v

fmax = (63)

4 cos @ sin § max {| cos p|dz, | sin u|dy}

This expression shows that, for a given dip rate and fixed azimuth, anti-aliasing affects different
offsets differently, typically attenuating amplitudes at near offsets (i.e., small incidence angles)
more than it attenuates far-offset amplitudes (see Figure 7). Alternatively, fixing § and varying
1 gives the dependence of anti-aliasing on azimuth, and can be used to determine amplitude loss
due to anti-aliasing as a function of azimuth. From Eq. (6.3) we see that anti-aliasing affects the
analysis of amplitudes on migrated gathers, often more than the choice of migration weights does.
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7. Conclusions. The speed of common-offset, common-azimuth v(z) phase-shift migration
makes it an attractive alternative to Kirchhoff migration in areas of moderate structural com-
plexity. Its amplitude fidelity, however, is theoretically less than that of true-amplitude Kirchhoff
migration unless its implicit weights are replaced with Kirchhoff migration weights. To do this for
a general v(z) medium, it is necessary to recast phase-shift migration as the Fourier transform of a
true-amplitude Kirchhoff migration algorithm, performing appropriate asympotics along the way
(Etgen, 1998). Even when this is done, the anti-aliasing which is implicit in phase-shift migration
will reduce the migrated amplitudes from their correct values. These amplitude errors are more
severe for near offsets than far offsets, making post-migrated AVO problematic, particularly for
shallow reflection events.

Appendix A. Derivation of equation (4.5).
Differentiating Eq. (4.4) with respect to 7, we obtain

d’d cos(z) dzp,
—_— =2 —_—. Al
In the following, we attempt to find an explicit expression for dj—;n
In a v(z) medium, we have the following relationships
1 z z
T =T =5 (/ tan o, (2')dz’ —/ tanas(z')dz') , (A.2)
0 0
1 z z
h= 5 (/ tan o, (2')dz’ +/ tanas(z')dz') , (A.3)
0 0
and
z ds z ds
i 2) = _ - A4
7(@ &mi2) /0 v(2") cos as(2') +/0 v(2') cos a,(2') (4.4)
Differentiating (A.4) with respect to z,,, and applying (A.2) and (A.3), we obtain
sin~y(2) dr sina,.(z) sinag(z)
2 = - r = - = b . A.-5
(@) v(z) P dz,, v(z) v(z) (4.5)

By using Snell’s law, we know that

v(z') cos as(z)

sinag(2')  sinag(2) = doy(2) = ———"2da,(2), (A.6)

v(z)) v(2) v(z) cos a(2')
sina,(2')  sinar(2) n_ v(2")cosan(2)
’U(Z’) = ’U(Z) = dar(z ) = mdaT(z). (A7)

Differentiating (A.2) and (A.3) with respect to v, and combining with (A.6) and (A.7), we have

dz,, d(z — zm) 1d (/z N /z , ,)
— = - = tan o (2')dz" — tan ag(2')dz
dy dy 2dy \Jo =) 0 =)

1 # 1 das(Z') |, /z 1 da,(z") ,
= - dz' — d AR
2 (/0 cos? as(s) dy g o cos?ap(z') dy ? (4.8)

Vs dos(2) Yy dog(2)
w(z) dy  2w(z) dy
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and

_dh 1 # 1 da,(7") , , # 1 das(Z') |,
0= dfy_Q(/O cos? a(2') dy dz +/0 cos? as(2') dy dz

(A9)
o s dar(z) + Py das(z)
- 2v(2) dy 20(z) dy
Differentiating both sides of (A.5) with respect to 7, we obtain another useful relation:
day(z) das(2)
2 — () 2 . . Al
sgn(w) cosy = cos a(2) & cosas(z) & (A.10)

From (A.9) and (A.10), we can solve for da(;r)(/z) and da;r)(/z), and then substitute them into (A.8)

to obtain

drm _ 2sgn(w)cosy (cos ay(2) . cos aT(z)) -

dy v(2) s (I

which gives (4.4) together with (A.1).

(A.11)
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t=to+pz(tm—1)
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[
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Fi1Gc. 1. Dubrulle’s principle of prestack migration. The plane-wave component of the data tangent to the
diffraction curve at (xm,t) is accumulated into the image at (z, 2).
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F1G. 2. Ray paths in a v(z) medium.
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FIG. 3. Relative amplitude error of Dubrulle’s migration.
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A\ 4

F1G. 4. Definitions of A and 0 in 3-D amplitude weights. 20 is the opening angle, i.e. the angle between the
ray from the source and the ray from the receiver, and X\ is its projection on the plane z = 0.
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Peak Amplitude on An Impulse Response

Peak Amplitude on An Impulse Response
(diagonal direction, dx=dy=25m)
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F1a. 5. Peak amplitudes on an impulse (30hz Ricker Wavelet) response of zero-offset phase-shift migration
(dx = dy = 25m) vs. predicted amplitudes using FEq. (6.1). Left: central subline; Right: central diagonal line.
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F1a. 6. Anti-aliasing vs. offset, using Eq. (6.1).
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Anti-aliasing vs. Incidence Angle Anti—aliasing vs. Incidence Angle
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Fi1G. 7. Anti-aliasing vs. incidence angle. The input is supposed to have highest frequency fmax = 50hz,
v = 2km/s, de = 25m (left) and 40m (right). The frequency losses are calculated using Eq. (6.3). Four incidence
angles (0°, 30°, 45° and 60°) are shown. Note: for constant velocity, incidence angle always increases with offset.
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