Mathematics of Seismic Imaging

William W. Symes

University of Utah July 2003

www.trip.caam.rice.edu

How do you turn lots of this... (field seismogram from the Gulf of Mexico - thanks: Exxon.)

into this (a fair rendition of subsurface structure)?

Central Point of These Talks:

Estimating the index of refraction (wave velocity) is *the central issue* in seismic imaging.

Combines elements of

- optics, radar, sonar reflected wave imaging
- tomography with curved rays

Many unanswered mathematical questions with practical implications! A mathematical view of reflection seismic imaging, as practiced in the petroleum industry:

- an inverse problem, based on a model of seismic wave propagation
- contemporary practice relies on *partial linearization* and highfrequency asymptotics
- recent progress in understanding capabilities, limitations of methods based on linearization/asymptotics in presence of strong refraction: applications of microlocal analysis with implications for practice
- limitations of linearization lead to many open problems

Agenda

- 1. Seismic inverse problem in the acoustic model: nature of data and model, linearization, reflectors and reflections idealized via *harmonic analysis of singularities*.
- 2. High frequency asymptotics: why adjoints of modeling operators are imaging operators ("Kirchhoff migration"). Beylkin theory of high frequency asymptotic inversion.
- 3. Adjoint state imaging with the wave equation: reverse time and reverse depth.
- 4. Geometric optics, Rakesh's construction, and asymptotic inversion w/ caustics and multipathing.
- 5. A step beyond linearization: a mathematical framework for velocity analysis, imaging artifacts, and prestack migration après Claerbout.

1. The Acoustic Model and Linearization

Marine reflection seismology apparatus:

- acoustic source (airgun array, explosives,...)
- acoustic receivers (hydrophone streamer, ocean bottom cable,...)
- recording and onboard processing

Land acquisition similar, but acquisition and processing are more complex. Vast bulk (90%+) of data acquired each year is marine.

Data parameters: time *t*, source location \mathbf{x}_s , and receiver location \mathbf{x}_r or half offset $\mathbf{h} = \frac{\mathbf{x}_r - \mathbf{x}_s}{2}$, $h = |\mathbf{h}|$.

Idealized marine "streamer" geometry: \mathbf{x}_s and \mathbf{x}_r lie roughly on constant depth plane, source-receiver lines are parallel \rightarrow 3 spatial degrees of freedom (eg. \mathbf{x}_s, h): codimension 1. [Other geometries are interesting, eg. ocean bottom cables, but streamer surveys still prevalent.]

How much data? Contemporary surveys may feature

- Simultaneous recording by multiple streamers (up to 12!)
- Many (roughly) parallel ship tracks ("lines"), areal coverage
- single line ("2D") \sim Gbyte; multiple lines ("3D") \sim Tbyte

Main characteristic of data: *wave nature*, presence of **reflections** = amplitude coherence along trajectories in space-time.

Data from one source firing, Gulf of Mexico (thanks: Exxon)

Lightly processed version of data displayed in previous slide - bandpass filtered (in t), truncated ("muted").

Distinguished data subsets: "gathers", "bins", extracted from data after acquisition.

Characterized by common value of an acquisition parameter

- shot (or common source) gather: traces with same shot location x_s (previous expls)
- offset (or common offset) gather: traces with same half offset h

• ...

- presence of wave events ("reflections") = coherent spacetime structures - clear from examination of the data.
- what features in the subsurface structure could cause reflections to occur?

Blocked logs from well in North Sea (thanks: Mobil R & D). Solid: p-wave velocity (m/s), dashed: s-wave velocity (m/s), dash-dot: density (kg/m³). "Blocked" means "averaged" (over 30 m windows). Original sample rate of log tool < 1 m. **Reflectors** = jumps in velocities, density, **velocity trends**.

Known that abrupt (wavelength scale) changes in material mechanics, i.e. reflectors, act as internal boundary, causing reflection of waves.

What is the mechanism through which this occurs?

Seek a simple model which quantitatively explains wave reflection and other known features of the Earth's interior. The Modeling Task: any model of the reflection seismogram must

- predict wave motion
- produce reflections from reflectors
- accomodate significant variation of wave velocity, material density,...
- A *really good* model will also accomodate
 - multiple wave modes, speeds
 - material anisotropy
 - attenuation, frequency dispersion of waves
 - complex source, receiver characteristics

Acoustic Model (only compressional waves)

Not *really good*, but good enough for today and basis of most contemporary processing.

Relates $\rho(\mathbf{x})$ = material density, $\lambda(\mathbf{x})$ = bulk modulus, $p(\mathbf{x}, t)$ = pressure, $\mathbf{v}(\mathbf{x}, t)$ = particle velocity, $\mathbf{f}(\mathbf{x}, t)$ = force density (sound source):

$$\rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla p + \mathbf{f},$$
$$\frac{\partial p}{\partial t} = -\lambda \nabla \cdot \mathbf{v} \ (+\text{i.c.'s, b.c.'s})$$
pressional) wave speed $c = \sqrt{\underline{\lambda}}$

(compressional) wave speed $c = \sqrt{\frac{\lambda}{\rho}}$

acoustic field potential $u(\mathbf{x},t) = \int_{-\infty}^{t} ds \, p(\mathbf{x},s)$:

$$p = \frac{\partial u}{\partial t}, \ \mathbf{v} = \frac{1}{\rho} \nabla u$$

Equivalent form: second order wave equation for potential

$$\frac{1}{\rho c^2} \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \frac{1}{\rho} \nabla u = \int_{-\infty}^t dt \, \nabla \cdot \left(\frac{\mathbf{f}}{\rho}\right) \equiv \frac{f}{\rho}$$

plus initial, boundary conditions.

Weak solution of Dirichlet problem in $\Omega \subset \mathbb{R}^3$ (similar treatment for other b. c.'s):

$$u \in C^{1}([0,T]; L^{2}(\Omega)) \cap C^{0}([0,T]; H^{1}_{0}(\Omega))$$

satisfying for any $\phi \in C^{\infty}_{0}((0,T) \times \Omega)$,
$$\int_{0}^{T} \int_{\Omega} dt dx \left\{ \frac{1}{\rho c^{2}} \frac{\partial u}{\partial t} \frac{\partial \phi}{\partial t} - \frac{1}{\rho} \nabla u \cdot \nabla \phi + \frac{1}{\rho} f \phi \right\} = 0$$

Theorem (Lions, 1972) Suppose that $\log \rho$, $\log c \in L^{\infty}(\Omega)$, $f \in L^{2}(\Omega \times \mathbb{R})$. Then weak solutions of Dirichlet problem exist; initial data

$$u(\cdot,0)\in H^1_0(\Omega),\; rac{\partial u}{\partial t}(\cdot,0)\in L^2(\Omega)$$

uniquely determine them.

Further idealizations: (i) density is constant, (ii) source force density is *isotropic point radiator with known time dependence* ("source pulse" w(t))

$$f(\mathbf{x}, t; \mathbf{x}_s) = w(t)\delta(\mathbf{x} - \mathbf{x}_s)$$

 \Rightarrow acoustic potential, pressure depends on \mathbf{x}_s also.

Example: numerical solution of 2D wave equation via finite difference method (2nd order in time, 4th order in space).

Model = velocity as function of position (in \mathbb{R}^2) = sum of smooth trend plus zero mean fluctuations, *both functions of depth only*. Source wavelet = bandpass filter.

Smooth trend of velocity.

Zero-mean fluctuations of velocity.

4-10-25-35 Hz bandpass filter, used as source wavelet.

Shot (common source) gather or bin, computed by finite difference simulation. Forward map S = time history of pressure for each \mathbf{x}_s at receiver locations \mathbf{x}_r (predicted seismic data), depends on velocity field $c(\mathbf{x})$:

$$S[c] = \{p(\mathbf{x}_r, t; \mathbf{x}_s)\}$$

Reflection seismic inverse problem: given *observed seismic* data S^{obs} , find c so that

$$S[c] \simeq S^{\mathsf{obs}}$$

This inverse problem is

- large scale up to Tbytes, Pflops
- nonlinear

Almost all useful technology to date relies on partial linearization: write c = v(1 + r) and treat r as relative first order perturbation about v, resulting in perturbation of presure field $\delta p = \frac{\partial \delta u}{\partial t} = 0, t \leq 0$, where

$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\delta u = \frac{2r}{v^2}\frac{\partial^2 u}{\partial t^2}$$

Define linearized forward map ${\boldsymbol{F}}$ by

$$F[v]r = \{\delta p(\mathbf{x}_r, t; \mathbf{x}_s)\}$$

Analysis of F[v] is the main content of contemporary reflection seismic theory.

Critical question: If there is any justice F[v]r = derivative DS[v][vr]of S - but in what sense? Physical intuition, numerical simulation, and not nearly enough mathematics: linearization error

$$S[v(1+r)] - (S[v] + F[v]r)$$

- *small* when v smooth, r rough or oscillatory on wavelength scale well-separated scales
- large when v not smooth and/or r not oscillatory poorly separated scales

2D finite difference simulation: shot gathers with typical marine seismic geometry. Smooth (linear) v(x, z), oscillatory (random) r(xz) depending only on z ("layered medium")

Left: Smooth (linear) background v(x, z), oscillatory (random) r(x, z). Std dev of r = 5%.

Right: Simulated seismic response (S[v(1+r)]), wavelet = bandpass filter 4-10-30-45 Hz. Simulator is (2,4) finite difference scheme.

Model in previous slide as smooth background (left, v(x, z)) plus rough perturbation (right, r(x, z)).

,

Left: Simulated seismic response of smooth model (S[v]), Right: Simulated linearized response, rough perturbation of smooth model (F[v]r)

,

Model in previous slide as rough background (left, v(x, z)) plus smooth perturbation (right, r(x, z)).

Left: Simulated seismic response of rough model (S[v]), Right: Simulated linearized response, smooth perturbation of rough model (F[v]r)

1

Left: linearization error (S[v(1 + r)] - S[v] - F[v]r), rough perturbation of smooth background Right: linearization error, smooth perturbation of rough background (plotted with same grey scale). Implications:

- Some geologies have well-separated scales cf. sonic logs linearization-based methods work well there. Other geologies do not - expect trouble!
- v smooth, r oscillatory ⇒ F[v]r approximates primary reflection = result of wave interacting with material heterogeneity only once (single scattering); error consists of multiple reflections, which are "not too large" if r is "not too big", and sometimes can be suppressed (lecture 4).
- v nonsmooth, r smooth \Rightarrow error consists of *time shifts* in waves which are very large perturbations as waves are oscillatory.

No mathematical results are known which justify/explain these observations in any rigorous way.

Partially linearized inverse problem = velocity analysis problem: given S^{obs} find v, r so that

$$S[v] + F[v]r \simeq S^{\mathsf{obs}}$$

Linear subproblem = imaging problem: given S^{obs} and v, find r so that

$$F[v]r \simeq S^{\mathsf{obs}} - S[v]$$

Last 20 years:

- much progress on imaging problem
- much less on velocity analysis problem.

2. High frequency asymptotics and imaging operators
Importance of *high frequency asymptotics*: when linearization is accurate, properties of F[v] dominated by those of $F_{\delta}[v]$ (= F[v] with $w = \delta$). Implicit in migration concept (eg. Hagedoorn, 1954); explicit use: Cohen & Bleistein, SIAM JAM 1977.

Key idea: **reflectors** (rapid changes in r) emulate *singularities*; **reflections** (rapidly oscillating features in data) also emulate singularities.

NB: "everybody's favorite reflector": the smooth interface across which r jumps. *But* this is an oversimplification – reflectors in the Earth may be complex zones of rapid change, pehaps in all directions. More flexible notion needed!!

Paley-Wiener characterization of smoothness: $u \in \mathcal{D}'(\mathbb{R}^n)$ is smooth at $\mathbf{x}_0 \Leftrightarrow$ can choose $\phi \in \mathcal{D}(\mathbb{R}^n)$ with $\phi(\mathbf{x}_0) \neq 0$ so that for any N, there is $C_N \geq 0$ so that for any $\xi \neq 0$,

$$|\mathcal{F}(\phi u)(\tau \xi)| \leq C_N(\tau |\xi|)^{-N}, \text{ all } \tau > 0$$

Harmonic analysis of singularities, *après* Hörmander: the **wave** front set $WF(u) \subset \mathbb{R}^n \times \mathbb{R}^n - 0$ of $u \in \mathcal{D}'(\mathbb{R}^n)$ - captures orientation as well as position of singularities.

 $(\mathbf{x}_0, \xi_0) \notin WF(u) \Leftrightarrow$ can choose $\phi \in \mathcal{D}(\mathbf{R}^n)$ with $\phi(\mathbf{x}_0) \neq 0$ and an open nbhd $\Xi \subset \mathbf{R}^n - 0$ of ξ_0 so that for any N, there is $C_N \ge 0$ so that for all $\xi \in \Xi$,

$$|\mathcal{F}(\phi u)(\tau \xi)| \leq C_N(\tau |\xi|)^{-N}, \text{ all } \tau > 0$$

Housekeeping chores:

(i) note that the nbhds \equiv may naturally be taken to be *cones*

(ii) WF(u) is invariant under chg. of coords if it is regarded as a subset of the *cotangent bundle* $T^*(\mathbb{R}^n)$ (i.e. the ξ components transform as covectors).

[Good refs: Duistermaat, 1996; Taylor, 1981; Hörmander, 1983]

The standard example: if u jumps across the interface $f(\mathbf{x}) = 0$, otherwise smooth, then $WF(u) \subset \mathcal{N}_f = \{(\mathbf{x}, \xi) : f(\mathbf{x}) = 0, \xi | |\nabla f(\mathbf{x}) \}$ (normal bundle of f = 0).

Fact ("microlocal property of differential operators"):

Suppose $u \in \mathcal{D}'(\mathbb{R}^n)$, $(\mathbf{x}_0, \xi_0) \notin WF(u)$, and $P(\mathbf{x}, D)$ is a partial differential operator:

$$P(\mathbf{x}, D) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$$

$$D = (D_1, ..., D_n), \ D_i = -i \frac{\partial}{\partial x_i}$$

$$\alpha = (\alpha_1, ..., \alpha_n), \ |\alpha| = \sum_i \alpha_i,$$

$$D^{\alpha} = D_1^{\alpha_1} \dots D_n^{\alpha_n}$$

Then $(\mathbf{x}_0, \xi_0) \notin WF(P(\mathbf{x}, D)u)$ [i.e.: $WF(Pu) \subset WF(u)$].

Proof: Choose $\phi \in \mathcal{D}$, Ξ as in the definition, form the required Fourier transform

$$\int dx \, e^{i\mathbf{x}\cdot(\tau\xi)} \phi(\mathbf{x}) P(\mathbf{x}, D) u(\mathbf{x})$$

and start integrating by parts: eventually

$$= \sum_{|\alpha| \le m} \tau^{|\alpha|} \xi^{\alpha} \int dx \, e^{i\mathbf{x} \cdot (\tau\xi)} \phi_{\alpha}(\mathbf{x}) u(\mathbf{x})$$

where $\phi_{\alpha} \in \mathcal{D}$ is a linear combination of derivatives of ϕ and the $a_{\alpha}s$. Since each integral is rapidly decreasing as $\tau \to \infty$ for $\xi \in \Xi$, it remains rapidly decreasing after multiplication by $\tau^{|\alpha|}$, and so does the sum. **Q. E. D.**

Key idea, restated: reflectors (or "reflecting elements") will be points in WF(r). Reflections will be points in WF(d).

These ideas lead to a usable definition of *image*: a reflectivity model \tilde{r} is an image of r if $WF(\tilde{r}) \subset WF(r)$ (the closer to equality, the better the image).

Idealized **migration problem**: given d (hence WF(d)) deduce somehow a function which has *the right reflectors*, i.e. a function \tilde{r} with $WF(\tilde{r}) \simeq WF(r)$.

NB: you're going to need v! ("It all depends on v(x,y,z)" - J. Claerbout)

With $w = \delta$, acoustic potential u is same as Causal Green's function $G(\mathbf{x}, t; \mathbf{x}_s)$ = retarded fundamental solution:

$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)G(\mathbf{x}, t; \mathbf{x}_s) = \delta(t)\delta(\mathbf{x} - bx_s)$$

and $G \equiv 0, t < 0$. Then $(w = \delta!) p = \frac{\partial G}{\partial t}$, $\delta p = \frac{\partial \delta G}{\partial t}$, and

$$\left(\frac{1}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\delta G(\mathbf{x}, t; \mathbf{x}_s) = \frac{2}{v^2(\mathbf{x})}\frac{\partial^2 G}{\partial t^2}(\mathbf{x}, t; \mathbf{x}_s)r(\mathbf{x})$$

Simplification: from now on, define $F[v]r = \delta G|_{\mathbf{x}=\mathbf{x}_r}$ - i.e. lose a *t*-derivative. Duhamel's principle \Rightarrow

$$\delta G(\mathbf{x}_r, t; \mathbf{x}_s) = \int dx \frac{2r(\mathbf{x})}{v(\mathbf{x})^2} \int ds G(\mathbf{x}_r, t-s; \mathbf{x}) \frac{\partial^2 G}{\partial t^2}(\mathbf{x}, s; \mathbf{x}_s)$$

44

Geometric optics approximation of G should be good, as v is smooth. Local version: if \mathbf{x} "not too far" from \mathbf{x}_s , then

$$G(\mathbf{x}, t; \mathbf{x}_s) = a(\mathbf{x}; \mathbf{x}_s)\delta(t - \tau(\mathbf{x}; \mathbf{x}_s)) + R(\mathbf{x}, t; \mathbf{x}_s)$$

where the traveltime $\tau(\mathbf{x}; \mathbf{x}_s)$ solves the eikonal equation

$$|v_1| - 1$$

 $au(\mathbf{x}; \mathbf{x}_s) \sim rac{|\mathbf{x} - \mathbf{x}_s|}{v(\mathbf{x}_s)}, \ \mathbf{x}
ightarrow \mathbf{x}_s$

 $n|\nabla \tau| = 1$

and the amplitude $a(\mathbf{x}; \mathbf{x}_s)$ solves the transport equation

$$\nabla \cdot (a^2 \nabla \tau) = 0$$

All of this is meaningful only if the remainder R is small in a suitable sense: energy estimate (**Exercise!**) \Rightarrow

$$\int dx \int_0^T dt |R(\mathbf{x}, t; \mathbf{x}_s)|^2 \le C ||v||_{\mathsf{C}^4}$$

45

Numerical solution of eikonal, transport: ray tracing (Lagrangian), various sorts of upwind finite difference (Eulerian) methods. See Sethian lectures, WWS 1999 MGSS notes (online) for details.

"Not too far" means: there should be one and only one ray of geometric optics connecting each x_s or x_r to each $x \in \text{supp}r$.

For "random but smooth" $v(\mathbf{x})$ with variance σ , more than one connecting ray occurs as soon as the distance is $O(\sigma^{-2/3})$. Such *multipathing* is invariably accompanied by the formation of a *caustic* (White, 1982).

Upon caustic formation, the simple geometric optics field description above is no longer correct (Ludwig, 1966).

2D Example of strong refraction: Sinusoidal velocity field v(x, z) =1 + 0.2 sin $\frac{\pi z}{2}$ sin $3\pi x$

Rays in sinusoidal velocity field, source point = origin. Note formation of caustic, multiple rays to source point in lower center. Assume: supp r contained in simple geometric optics domain (each point reached by unique ray from any source point x_s).

Then distribution kernel K of F[v] is

$$K(\mathbf{x}_r, t, \mathbf{x}_s; \mathbf{x}) = \int ds \, G(\mathbf{x}_r, t - s; \mathbf{x}) \frac{\partial^2 G}{\partial t^2}(\mathbf{x}, s; \mathbf{x}_s) \frac{2}{v^2(\mathbf{x})}$$
$$\simeq \int ds \, \frac{2a(\mathbf{x}_r, \mathbf{x})a(\mathbf{x}, \mathbf{x}_s)}{v^2(\mathbf{x})} \delta'(t - s - \tau(\mathbf{x}_r, \mathbf{x})) \delta''(s - \tau(\mathbf{x}, \mathbf{x}_s))$$
$$= \frac{2a(\mathbf{x}, \mathbf{x}_r)a(\mathbf{x}, \mathbf{x}_s)}{v^2(\mathbf{x})} \delta''(t - \tau(\mathbf{x}, \mathbf{x}_r) - \tau(\mathbf{x}, \mathbf{x}_s))$$

provided that $\nabla_{\mathbf{x}} \tau(\mathbf{x}, \mathbf{x}_r) + \nabla_{\mathbf{x}} \tau(\mathbf{x}, \mathbf{x}_s) \neq 0 \Leftrightarrow$ velocity at \mathbf{x} of ray from \mathbf{x}_s **not** negative of velocity of ray from $\mathbf{x}_r \Leftrightarrow$ *no forward scattering*. [Gel'fand and Shilov, 1958 - when is pullback of distribution again a distribution].

Q: What does \simeq mean?

A: It means "differs by something smoother".

In theory, can complete the geometric optics approximation of the Green's function so that the difference is C^{∞} - then the two sides have the same singularities, i.e. the same wavefront set.

In practice, it's sufficient to make the difference just a bit smoother, so the first term of the geometric optics approximation (displayed above) suffices (can formalize this with modification of wavefront set defn).

These lectures will ignore the distinction.

So: for r supported in simple geometric optics domain, no forward scattering \Rightarrow

$$\delta G(\mathbf{x}_r, t; \mathbf{x}_s) \simeq$$

$$\frac{\partial^2}{\partial t^2} \int dx \frac{2r(\mathbf{x})}{v^2(\mathbf{x})} a(\mathbf{x}, \mathbf{x}_r) a(\mathbf{x}, \mathbf{x}_s) \delta(t - \tau(\mathbf{x}, \mathbf{x}_r) - \tau(\mathbf{x}, \mathbf{x}_s))$$

That is: pressure perturbation is sum (integral) of r over *re-flection isochron* { $\mathbf{x} : t = \tau(\mathbf{x}, \mathbf{x}_r) + \tau(\mathbf{x}, \mathbf{x}_s)$ }, w. weighting, filtering. Note: if v =const. then isochron is ellipsoid, as $\tau(\mathbf{x}_s, \mathbf{x}) = |\mathbf{x}_s - \mathbf{x}|/v!$

Left: FD *linearized* simulation of shot gather, (i.e. $\delta G(\mathbf{x}_r, t; \mathbf{x}_s)$ for fixed \mathbf{x}_s , convolved with bandpass filter source wavelet). Middle: Detail of numerical implementation of geometric optics approximation.

Right: Difference, plotted on same scale.

Zero Offset data and the Exploding Reflector

Zero offset data ($\mathbf{x}_s = \mathbf{x}_r$) is seldom actually measured (contrast radar, sonar!), but routinely *approximated* through *NMO-stack* (to be explained later).

Extracting image from zero offset data, rather than from all (100's) of offsets, is tremendous *data reduction* - when approximation is accurate, leads to excellent images.

Imaging basis: the *exploding reflector* model (Claerbout, 1970's).

For zero-offset data, distribution kernel of F[v] is

$$K(\mathbf{x}_s, t, \mathbf{x}_s; \mathbf{x}) = \frac{\partial^2}{\partial t^2} \int ds \frac{2}{v^2(\mathbf{x})} G(\mathbf{x}_s, t-s; \mathbf{x}) G(\mathbf{x}, s; \mathbf{x}_s)$$

Under some circumstances (explained below), K (= G timeconvolved with itself) is "similar" (also explained) to \tilde{G} = Green's function for v/2. Then

$$\delta G(\mathbf{x}_s, t; \mathbf{x}_s) \sim \frac{\partial^2}{\partial t^2} \int dx \, \tilde{G}(\mathbf{x}_s, t, \mathbf{x}) \frac{2r(\mathbf{x})}{v^2(\mathbf{x})}$$

 \sim solution w of

$$\left(\frac{4}{v^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)w = \delta(t)\frac{2r}{v^2}$$

Thus reflector "explodes" at time zero, resulting field propagates in "material" with velocity v/2. Explain when the exploding reflector model "works", i.e. when G time-convolved with itself is "similar" to $\tilde{G} =$ Green's function for v/2. If supp r lies in simple geometry domain, then

$$K(\mathbf{x}_s, t, \mathbf{x}_s; \mathbf{x}) = \int ds \frac{2a^2(\mathbf{x}, \mathbf{x}_s)}{v^2(\mathbf{x})} \delta(t - s - \tau(\mathbf{x}_s, \mathbf{x})) \delta''(s - \tau(\mathbf{x}, \mathbf{x}_s))$$

$$=\frac{2a^2(\mathbf{x},\mathbf{x}_s)}{v^2(\mathbf{x})}\delta''(t-2\tau(\mathbf{x},\mathbf{x}_s))$$

whereas the Green's function \tilde{G} for v/2 is

$$\tilde{G}(\mathbf{x},t;\mathbf{x}_s) = \tilde{a}(\mathbf{x},\mathbf{x}_s)\delta(t-2\tau(\mathbf{x},\mathbf{x}_s))$$

(half velocity = double traveltime, same rays!).

Difference between effects of K, \tilde{G} : for each \mathbf{x}_s scale r by smooth fcn – preserves WF(r) hence WF(F[v]r) and relation between them. Also: adjoints have same effect on WF sets.

Upshot: from imaging point of view (i.e. apart from amplitude, derivative (filter)), kernel of F[v] restricted to zero offset is same as Green's function for v/2, provided that simple geometry hypothesis holds: only one ray connects each source point to each scattering point, ie. no multipathing.

See Claerbout, BEI, for examples which demonstrate that multipathing really does invalidate exploding reflector model.

Standard Processing: an inspirational interlude

Suppose were v,r functions of $z = x_3$ only, all sources and receivers at z = 0. Then the entire system is translation-invariant in $x_1, x_2 \Rightarrow$ Green's function G its perturbation δG , and the idealized data $\delta G|_{z=0}$ are really only functions of t and half-offset $h = |\mathbf{x}_s - \mathbf{x}_r|/2$. There would be only one seismic experiment, equivalent to any common midpoint gather ("CMP") = traces with the same midpoint $\mathbf{x}_m = (\mathbf{x}_r + \mathbf{x}_s)/2$.

This isn't really true - *look at the data*!!! However it is *approximately* correct in many places in the world: CMPs change slowly with midpoint Standard processing: treat each CMP as if it were the result of an experiment performed over a layered medium, but permit the layers to vary with midpoint.

Thus v = v(z), r = r(z) for purposes of analysis, but at the end $v = v(\mathbf{x}_m, z), r = r(\mathbf{x}_m, z).$

 $F[v]r(\mathbf{x}_r,t;\mathbf{x}_s)$

$$\simeq \int dx \frac{2r(z)}{v^2(z)} a(\mathbf{x}, x_r) a(\mathbf{x}, x_s) \delta''(t - \tau(\mathbf{x}, x_r) - \tau(\mathbf{x}, x_s))$$

$$= \int dz \frac{2r(z)}{v^2(z)} \int d\omega \int dx \omega^2 a(\mathbf{x}, x_r) a(\mathbf{x}, x_s) e^{i\omega(t - \tau(\mathbf{x}, x_r) - \tau(\mathbf{x}, x_s))}$$

Since we have already thrown away smoother (lower frequency) terms, do it again using *stationary phase*. Upshot (see 2000 MGSS notes for details): up to smoother (lower frequency) error,

$$F[v]r(h,t) \simeq A(z(h,t),h)R(z(h,t))$$

Here z(h,t) is the inverse of the 2-way traveltime

 $t(h,z) = 2\tau((h,0,z),(0,0,0))$

i.e. z(t(h, z'), h) = z'. R is (yet another version of) "reflectivity"

$$R(z) = \frac{1}{2} \frac{dr}{dz}(z)$$

That is, F[v] is a a derivative followed by a change of variable followed by multiplication by a smooth function. Substitute t_0 (vertical travel time) for z (depth) and you get "Inverse NMO" $(t_0 \rightarrow (t, h))$. Will be sloppy and call $z \rightarrow (t, h)$ INMO.

Left: $r(t_0)$. Middle: $r(\zeta(t,h))$. Right: F[v]r(t,h)

,

1

Anatomy of an adjoint:

$$\int dt \int dh \, d(t,h) F[v]r(t,h) = \int dt \int dh \, d(t,h) A(z(t,h),h) R(z(t,h))$$

$$= \int dz R(z) \int dh \frac{\partial t}{\partial z}(z,h) A(z,h) d(t(z,h),h) = \int dz r(z) (F[v]^*d)(z)$$

so $F[v]^* = -\frac{\partial}{\partial z} SM[v]N[v],$

N[v] = NMO operator N[v]d(z,h) = d(t(z,h),h)

M[v] =multiplication by $\frac{\partial t}{\partial z}A$

S =stacking operator

$$Sf(z) = \int dh f(z,h)$$

Left: d(t,h) = F[v]r(t,h). Middle: $N[v]d(t_0,h)$. Right: $N[v_1]d(t_0,h), v_1 \neq v$

Stack as ersatz ZO section: how to "get" ZO data even if you don't measure it.

If you use t_0 instead of z to parametrize depth, and data is consistent with conv. model, then

every trace looks exactly like the zero offset trace - even if you don't measure the zero offset trace!

Therefore stack = average of a bunch of traces (output of NMO) which have events in exactly the same place (t_0) as ZO trace. Hence view stack as substitute for ZO data.

Adjusting velocity estimate to align NMO corrected traces produces *stacking velocity* - if successful, then stack enhances signal, suppresses (coherent and incoherent) noise. **Imaging** in standard processing: suppose that S^{obs} is modelconsistent, i.e. $d \equiv S^{obs} - S[v] = F[v]r$. Then

 $F[v]^*d = F[v]^*F[v]r(z)$ $= -\frac{\partial}{\partial z} \left[\int dh \frac{dt}{dz}(z,h) A^2(z,h) \right] \frac{\partial}{\partial z} r(z)$

Microlocal property of PDOs \Rightarrow $WF(F[v]^*F[v]r) \subset WF(r)$ i.e. $F[v]^*$ is an *imaging operator*.

If you leave out the amplitude factor (M[v]) and the derivatives, as is commonly done, then you get essentially the same expression - so (NMO, stack) is an imaging operator!

Now make everything dependent on \mathbf{x}_m and you've got standard processing. (end of standard processing interlude).

Multioffset Imaging: if d = F[v]r, then

$$F[v]^*d = F[v]^*F[v]r$$

In the layered case, $F[v]^*F[v]$ is an operator which preserves wave front sets. Whenever $F[v]^*F[v]$ preserves wave front sets, $F[v]^*$ is an imaging operator.

Beylkin, JMP 1985: for r supported in simple geometric optics domain,

- $WF(F_{\delta}[v]^*F_{\delta}[v]r) \subset WF(r)$
- if $S^{obs} = S[v] + F_{\delta}[v]r$ (data consistent with linearized model), then $F_{\delta}[v]^*(S^{obs} - S[v])$ is an image of r
- an operator $F_{\delta}[v]^{\dagger}$ exists for which $F_{\delta}[v]^{\dagger}(S^{\text{obs}} S[v]) r$ is smoother than r, under some constraints on r an inverse modulo smoothing operators or parametrix.

Also: explicit relation between WF(d) and WF(r) ("canonical relation").

$$(\mathbf{x},\xi) \in WF(r) \Leftrightarrow (\mathbf{x}_s,\mathbf{x}_r,t,\xi_s,\xi_r,\omega) \in WF(d)$$

and (1) the source ray connects (\mathbf{x}_s, ξ_s) to (\mathbf{x}, Ξ_s) with traveltime $\tau(\mathbf{x}, \mathbf{x}_s)$;

(2) the receiver ray connects (\mathbf{x}_r, ξ_r) to (\mathbf{x}, Ξ_r) with traveltime $\tau(\mathbf{x}, \mathbf{x}_r)$;

(3) $\xi \| \Xi_s + \Xi_r$ ("Snell's law"); (4) $t = \tau(\mathbf{x}, \mathbf{x}_s) + \tau(\mathbf{x}, \mathbf{x}_r)$.

Outline of proof: (i) express $F[v]^*F[v]$ as "Kirchhoff modeling" followed by "Kirchhoff migration"; (ii) introduce Fourier transform; (iii) approximate for large wavenumbers using stationary phase, leads to representation of $F[v]^*F[v]$ modulo smoothing error as *pseudodifferential operator* (" Ψ DO"):

$$F[v]^*F[v]r(\mathbf{x}) \simeq p(\mathbf{x}, D)r(\mathbf{x}) \equiv \int d\xi \, p(\mathbf{x}, \xi) e^{i\mathbf{x}\cdot\xi} \hat{r}(\xi)$$

in which $p \in C^{\infty}$, and for some m (the *order* of p), all multiindices α, β , and all compact $K \subset \mathbf{R}^n$, there exist constants $C_{\alpha,\beta,K} \geq 0$ for which

$$|D_{\mathbf{x}}^{\alpha}D_{\xi}^{\beta}p(\mathbf{x},\xi)| \leq C_{\alpha,\beta,K}(1+|\xi|)^{m-|\beta|}, \ \mathbf{x} \in K$$

Explicit computation of symbol p - for details, .

Imaging property of Kirchhoff migration follows from *microlocal* property of ΨDOs :

if p(x,D) is a ΨDO , $u \in \mathcal{E}'(\mathbf{R}^n)$ then $WF(p(x,D)u) \subset WF(u)$.

Will prove this. First, a few other properties:

- differential operators are Ψ DOs (easy exercise)
- Ψ DOs of order *m* form a module over $C^{\infty}(\mathbf{R}^n)$ (also easy)
- product of ΨDO order m, ΨDO order $l = \Psi DO$ order $\leq m+l$; adjoint of ΨDO order m is ΨDO order m (much harder)

Complete accounts of theory, many apps: books of Duistermaat, Taylor, Nirenberg, Treves, Hörmander. Proof of microlocal property: suppose $(\mathbf{x}_0, \xi_0) \notin WF(u)$, choose neighborhoods X, Ξ as in defn, with Ξ conic. Need to choose analogous nbhds for P(x, D)u. Pick $\delta > 0$ so that $B_{3\delta}(\mathbf{x}_0) \subset X$, set $X' = B_{\delta}(\mathbf{x}_0)$.

Similarly pick $0 < \epsilon < 1/3$ so that $B_{3\epsilon}(\xi_0/|\xi_0|) \subset \Xi$, and chose $\Xi' = \{\tau \xi : \xi \in B_{\epsilon}(\xi_0/|\xi_0|), \tau > 0\}.$

Need to choose $\phi \in \mathcal{E}'(X')$, estimate $\mathcal{F}(\phi P(\mathbf{x}, D)u)$. Choose $\psi \in \mathcal{E}(X)$ so that $\psi \equiv 1$ on $B_{2\delta}(\mathbf{x}_0)$.

NB: this implies that if $\mathbf{x} \in X'$, $\psi(\mathbf{y}) \neq 1$ then $|\mathbf{x} - \mathbf{y}| \geq \delta$.

Write
$$u = (1 - \psi)u + \psi u$$
. Claim: $\phi P(\mathbf{x}, D)((1 - \psi)u)$ is smooth.
 $\phi(\mathbf{x})P(\mathbf{x}, D)((1 - \psi)u))(\mathbf{x})$
 $= \phi(\mathbf{x}) \int d\xi P(\mathbf{x}, \xi)e^{i\mathbf{x}\cdot\xi} \int dy (1 - \psi(\mathbf{y}))u(\mathbf{y})e^{-i\mathbf{y}\cdot\xi}$
 $= \int d\xi \int dy P(\mathbf{x}, \xi)\phi(\mathbf{x})(1 - \psi(\mathbf{y}))e^{i(\mathbf{x}-\mathbf{y})\cdot\xi}u(\mathbf{y})$
 $= \int d\xi \int dy (-\nabla_{\xi}^{2})^{M}P(\mathbf{x}, \xi)\phi(\mathbf{x})(1 - \psi(\mathbf{y}))|\mathbf{x} - \mathbf{y}|^{-2M}e^{i(\mathbf{x}-\mathbf{y})\cdot\xi}u(\mathbf{y})$
using the identity

$$e^{i(\mathbf{x}-\mathbf{y})\cdot\xi} = |\mathbf{x}-\mathbf{y}|^{-2} \left[-\nabla_{\xi}^{2} e^{i(\mathbf{x}-\mathbf{y})\cdot\xi}\right]$$

and integrating by parts 2M times in ξ . This is permissible because $\phi(\mathbf{x})(1 - \psi(\mathbf{y})) \neq 0 \Rightarrow |\mathbf{x} - \mathbf{y}| > \delta$.

According to the definition of ΨDO ,

$$|(-\nabla_{\xi}^2)^M P(\mathbf{x},\xi)| \le C|\xi|^{m-2M}$$

For any K, the integral thus becomes absolutely convergent after K differentiations of the integrand, provided M is chosen large enough. Q.E.D. Claim.

This leaves us with $\phi P(\mathbf{x}, D)(\psi u)$. Pick $\eta \in \Xi'$ and w.l.o.g. scale $|\eta| = 1$. Fourier transform:

$$\mathcal{F}(\phi P(\mathbf{x}, D)(\psi u))(\tau \eta) = \int dx \int d\xi P(\mathbf{x}, \xi) \phi(\mathbf{x}) \widehat{\psi} u(\xi) e^{i\mathbf{x} \cdot (\xi - \tau \eta)}$$

Introduce $\tau \theta = \xi$, and rewrite this as

$$= \tau^n \int dx \int d\theta P(\mathbf{x}, \tau\theta) \phi(\mathbf{x}) \widehat{\psi} u(\tau\theta) e^{i\tau \mathbf{x} \cdot (\theta - \eta)}$$
Divide the domain of the inner integral into $\{\theta : |\theta - \eta| > \epsilon\}$ and its complement. Use

$$-\nabla_x^2 e^{i\tau \mathbf{x} \cdot (\theta - \eta)} = \tau^2 |\theta - \eta|^2 e^{i\tau \mathbf{x} \cdot (\theta - \eta)}$$

and integration by parts 2M times to estimate the first integral:

$$\begin{aligned} \tau^{n-2M} \left| \int dx \int_{|\theta-\eta| > \epsilon} d\theta \left(-\nabla_x^2 \right)^M [P(\mathbf{x}, \tau\theta)\phi(\mathbf{x})] \widehat{\psi}u(\tau\theta) \right. \\ & \times |\theta-\eta|^{-2M} e^{i\tau \mathbf{x} \cdot (\theta-\eta)} \Big| \\ & \leq C \tau^{n+m-2M} \end{aligned}$$

m being the order of P. Thus the first integral is rapidly decreasing in τ .

For the second integral, note that $|\theta - \eta| \leq \epsilon \Rightarrow \theta \in \Xi$, per the defn of Ξ' . Since $X \times \Xi$ is disjoint from the wavefront set of u, for a sequence of constants C_N , $|\widehat{\psi}u(\tau\theta)| \leq C_N \tau^{-N}$ uniformly for θ in the (compact) domain of integration, whence the second integral is also rapidly decreasing in τ . **Q. E. D.**

And that's why Kirchhoff migration works, at least in the simple geometric optics regime.

Recall: in layered case,

$$F[v]r(h,t) \simeq A(z(h,t),h) \frac{1}{2} \frac{dr}{dz}(z(h,t))$$

$$F[v]^*d(z) \simeq -\frac{\partial}{\partial z} \int dh A(z,h) \frac{\partial t}{\partial z}(z,h) d(t(z,h),h)$$

$$F[v]^*F[v]r(z) = -\frac{\partial}{\partial z} \left[\int dh \frac{dt}{dz}(z,h) A^2(z,h) \right] \frac{\partial}{\partial z} r(z)$$

thus normal operator is invertible and you can construct approximate least-squares solution to F[v]r = d:

$$\tilde{r} \simeq (F[v]^* F[v])^{-1} F[v]^* d$$

Relation between r and \tilde{r} : difference is *smoother* than either. Thus difference is *small* if r is oscillatory – consistent with conditions under which linearization is accurate. Analogous construction in simple geometric optics case: due to Beylkin (1985).

Complication: $F[v]^*F[v]$ cannot be invertible - because $WF(F[v]^*F[v]r)$ generally quite a bit smaller than WF(r).

Inversion aperture $\Gamma[v] \subset \mathbb{R}^3 \times \mathbb{R}^3 - 0$: if $WF(r) \subset \Gamma[v]$, then $WF(F[v]^*F[v]r) = WF(r)$ and $F[v]^*F[v]$ "acts invertible". [construction of $\Gamma[v]$ - later!]

Beylkin: with proper choice of amplitude $b(\mathbf{x}_r, t; \mathbf{x}_s)$, the modified Kirchhoff migration operator

 $F[v]^{\dagger}d(\mathbf{x}) = \int \int \int dx_r \, dx_s \, dt \, b(\mathbf{x}_r, t; \mathbf{x}_s) \delta(t - \tau(\mathbf{x}; \mathbf{x}_s) - \tau(\mathbf{x}; \mathbf{x}_r)) d(\mathbf{x}_r, t; \mathbf{x}_s)$ yields $F[v]^{\dagger}F[v]r \simeq r$ if $WF(r) \subset \Gamma[v]$ For details of Beylkin construction: Beylkin, 1985; Miller et al 1989; Bleistein, Cohen, and Stockwell 2000; WWS MGSS notes 1998. All components are by-products of eikonal solution.

aka: Generalized Radon Transform ("GRT") inversion, Ray-Born inversion, migration/inversion, true amplitude migration,...

Many extensions, eg. to elasticity: Bleistein, Burridge, deHoop, Lambaré,...

Apparent limitation: construction relies on simple geometric optics (no multipathing) - how much of this can be rescued? cf. Lecture 3.

Example of GRT Inversion (application of $F[v]^{\dagger}$): K. Araya (1995), "2.5D" inversion of marine streamer data from Gulf of Mexico: 500 source positions, 120 receiver channels, 750 Mb.