
3. Wave equation migration

(i) Reverse time

(ii) Reverse depth
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Reverse time computation of adjoint F [v]∗:

Start with the zero-offset case - easier, but only if you replace it

with the exploding reflector model, which replaces F [v] by

F̃ [v]r(xs, t) = w(xs, t), xs ∈ Xs,0 ≤ t ≤ T(
4

v2

∂2

∂t2
−∇2

)
w = δ(t)

2r

v2
, w ≡ 0, t < 0

To compute the adjoint, start with its definition: choose d ∈
E(Xs × (0, T )), so that

< F̃ [v]∗d, r >=< d, F̃ [v]r >

=
∫
Xs

dxs

∫ T

0
dt d(xs, t)w(xs, t)
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The only thing you know about w is that it solves a wave equation

with r on the RHS. To get this fact into play, (i) rewrite the

integral as a space-time integral:

=
∫
R3

dx
∫ T

0
dt
∫
Xs

dxs d(xs, t)δ(x− xs)w(x, t)

(ii) write the other factor in the integrand as the image of a field

q under the (adjoint of the) wave operator (it’s self-adjoint), that

is, (
4

v2

∂2

∂t2
−∇2

)
q(x, t) =

∫
Xs

dxs d(xs, t)δ(x− xs)

so

=
∫
R3

dx
∫ T

0
dt

[(
4

v2(x)

∂2

∂t2
−∇2

)
q(x, t)

]
w(x, t)
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(iii) integrate by parts

=
∫
R3

dx
∫ T

0
dt

[(
4

v2(x)

∂2

∂t2
−∇2

)
w(x, t)

]
q(x, t)

which works if q ≡ 0, t > T (final value condition); (iv) use the

wave equation for w

=
∫
R3

dx
∫ T

0
dt

2

v(x)2
r(x)δ(t)q(x, t)

(v) observe that you have computed the adjoint:

=
∫
R3

dx r(x)

[
2

v(x)2
q(x,0)

]
=< r, F̃ [v]∗d >

i.e.

F̃ [v]∗d =
2

v(x)2
q(x,0)
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Summary of the computation, with the usual description:

• Use that data as sources, backpropagate in time - i.e. solve

the final value (“reverse time”) problem(
4

v2

∂2

∂t2
−∇2

)
q(x, t) =

∫
Xs

dxs d(xs, t)δ(x− xs), q ≡ 0, t > T

• read out the “image” (= adjoint output) at t = 0:

F̃ [v]∗d =
2

v(x)2
q(x,0)

Note: The adjoint (time-reversed) field q is not the physical field

(δu) run backwards in time, contrary to some imputations in the

literature.
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Known as “two way reverse time finite difference migration” in
geophysical literature (Whitmore, 1982) - uses full (two way)
wave equation, propagates adjoint field backwards in time, gen-
erally implemented using finite difference discretization. Same
as “adjoint state method”, Lions 1968, Chavent 1974 for con-
trol and inverse problems for PDEs - much earlier for control of
ODEs - Lailly, Tarantola ’80s.

A slightly messier computation computes the adjoint of F [v] (i.e.
multioffset or prestack migration):

F [v]∗d(x) = −
2

v(x)

∫
dxs

∫ T

0
dt

(
∂q

∂t
∇2u

)
(x, t;xs)

where adjoint field q satisfies q ≡ 0, t ≥ T and(
1

v2

∂2

∂t2
−∇2

)
q(x, t;xs) =

∫
dxr d(xr, t;xs)δ(x− xr)
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Proof:

< F [v]∗d, r >=< d, F [v]r >

=
∫ ∫

dxs dxr

∫ T

0
dt d(xr, t;xs)

∂δu

∂t
(xr, t;xs)

=
∫

dxs

∫
dx

∫ T

0
dt

{∫
dxr d(xr, t;xs)δ(x− xr)

}
∂δu

∂t
(x, t;xs)

=
∫

dxs

∫
dx

∫ T

0
dt

[(
1

v2

∂2

∂t2
−∇2

)
q

]
∂δu

∂t
(x, t;xs)

= −
∫

dxs

∫
dx
∫ T

0
dt

[(
1

v2

∂2

∂t2
−∇2

)
δu

]
∂q

∂t
(x, t;xs)
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(boundary terms in integration by parts vanish because (i) δu ≡
0, t << 0; (ii) q ≡ 0, t >> 0; (iii) both vanish for large x, at each

t)

= −
∫

dxs

∫
dx

∫ T

0
dt

(
2r

v2

∂2u

∂t2
∂q

∂t

)
(x, t;xs)

= −
∫

dxs

∫
dx r(x)

2

v2(x)

∫ T

0
dt

(
∂2u

∂t2
∂q

∂t

)
(x, t;xs)

=< r, F [v]∗d >

q.e.d.
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Algorithm: finite difference or finite element discretization in x,

finite difference time stepping.

• For each xs, solve wave equation for u forward in t, record

final (t=T) Cauchy data, also (for example) Dirichlet bound-

ary data.

• Step u and q backwards in time together; at each time step,

data serves as source for q (“backpropagate data”)

• During backwards time stepping, accumulate (approxima-

tions to)

Q(x)+ =
2

v2(x)

∫ T

0
dt

(
∂2u

∂t2
∂q

∂t

)
(x, t;xs)

(“crosscorrelate reference and backpropagated field”).

• next xs - after last xs, F [v]∗d = Q.
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Example: constant (reference) velocity v ≡ 1.5 km/s, flat reflec-

tor at z = 0.25 km (r(z) = 0, z < 0.25 km, = 0.15 km/s else).
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21 CSGs, flat reflector, const vel.

10



0

0.1

0.2

0.3

0.4

z (
km

)

0 0.5 1.0 1.5
x (km)

CSG RT mig, 1 shot (x_s=1.0 km)
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)

0 0.5 1.0 1.5
x (km)

CSG RT mig, 21 shots (x_s = 0.5-1.5 km)
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x (km)

Reflectivity model, flat reflector
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Reverse depth computation of F [v]∗

• Claerbout, early 70’s
• zero offset version: Claerbout IEI (“swimming pool equa-

tion”).
• multioffset version: “survey sinking”, double-square-root (“DSR”)

equation, BEI.

Start with zero-offset. Again, assume exploding reflector model:

F̃ [v]r(xs, t) = w(xs, t), xs ∈ Xs,0 ≤ t ≤ T(
4

v2

∂2

∂t2
−∇2

)
w = δ(t)

2r

v2
, w ≡ 0, t < 0

Basic idea: 2nd order wave equation permits waves to move in
all directions, but waves carrying reflected energy are (mostly)
moving up. Should satisfy a 1st order equation for wave motion
in one direction.

14



For the moment use 2D notation x = (x, z) etc. Write wave
equation as evolution equation in z:

∂2w

∂z2
−
(

4

v2

∂2

∂t2
−

∂2

∂x2

)
w = −δ(t)

2r

v2

Suppose that you could take the square root of the operator in
parentheses - call it B. Then the LHS of the wave equation
becomes (

∂

∂z
−B

)(
∂

∂z
+ B

)
w = −δ(t)

2r

v2

so setting

w̃ =
(

∂

∂z
+ B

)
w

you get (
∂

∂z
−B

)
w̃ = −δ(t)

2r

v2
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which might be the required equation for upcoming waves.

Two major problems: (i) how the h–l do you take the square root

of a PDO? (ii) what guarantees that the equation just written

governs upcoming waves?

Calculus of pseudodifferential operators: recall that products of

ΨDOs are ΨDOs. Computations simple for subclass of ΨDOs

with symbols given by asymptotic expansions:

p(x, ξ) ∼
∑

j≤m

pj(x, ξ), |ξ| → ∞

in which pj is homogeneous in ξ of degree j:

pj(x, τξ) = τ jpj(x, τξ), τ, |ξ| ≥ 1
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The principal symbol is the homogeneous term of highest degree,

i.e. pm above.

Product rule for ΨDOs: if

p1(x, ξ) =
∑

j≤m1

p1
j (x, ξ), p2(x, ξ) =

∑
j≤m2

p2
j (x, ξ)

then principal symbol of p1(x, D)p2(x, D) is p1
m1(x, ξ)p2

m2(x, ξ),

and there is an algorithm for computing the rest of the expansion.

In an open neighborhood X×Ξ of (x0, ξ0), symbol of p1(x, D)p2(x, D)

depends only on symbols of p1, p2 in X ×Ξ.
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Consequence: if a(x, D) has an asymptotic expansion and is of
order m ∈ R, and am(x0, ξ0) > 0 in P ⊂ Rn ×Rn − 0, then there
exists b(x, D) of order m/2 with asymptotic expansion for which

(a(x, D)− b(x, D)b(x, D))u ∈ E(Rn)

for any u ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover, bm/2(x, ξ) =
√

am(x, ξ), (x, ξ) ∈ P. Will call b a mi-
crolocal square root of a.

Similar construction: if a(x, ξ) 6= 0 in P, then there is c(x, D) of
order −m so that

c(x, D)a(x, D)u− u, a(x, D)c(x, D)u− u ∈ E(Rn)

for any u ∈ E ′(Rn) with WF (u) ⊂ P.

Moreover, c−m(x, ξ) = 1/am(x, ξ), (x, ξ) ∈ P. Will call b a mi-
crolocal inverse of a.
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Application: symbol of

a(x, z, Dt, Dx) =
∂2

∂x2
−

4

v(x, z)2
∂2

∂t2
=

4

v(x, z)2
D2

t −D2
x

is

a(x, z, τ, ξ) =
4

v(x, z)2
τ2 − ξ2

For δ > 0, set

Pδ(z) =

{
(x, t, ξ, τ) :

4

v(x, z)2
τ2 > (1 + δ)ξ2

}
Then according to the last slide, there is an order 1 ΨDO-valued

function of z, b(x, z, Dt, Dx), with principal symbol

b1(x, z, τ, ξ) =

√
4

v(x, z)2
τ2 − ξ2 = τ

√√√√ 4

v(x, z)2
−

ξ2

τ2
, (x, t, ξ, τ) ∈ Pδ(z)
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for which a(x, z, Dt, Dx)u ' b(x, z, Dt, Dx)b(x, z, Dt, Dx)u if WF (u) ⊂
Pδ(z).

b is the world-famous single square root (“SSR”) operator -
see Claerbout, BEI.

To what extent has this construction factored the wave operator:(
∂

∂z
− ib(x, z, Dx, Dt)

)(
∂

∂z
+ ib(x, z, Dx, Dt)

)

=
∂2

∂z2
+ b(x, z, Dx, Dt)b(x, z, Dx, Dt) +

∂b

∂z
(x, z, Dx, Dt)

SSR Assumption: For some δ > 0, the wavefield w satisfies

(x, z, t, ξ, ζ, τ) ∈ WF (w) ⇒ (x, t, ξ, τ) ∈ Pδ(z) and ζτ > 0
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This statement has a ray-theoretic interpretation (which will

eventually make sense): rays carrying significant energy are nowhere

horizontal. Along any such ray, z decreases as t increases - com-

ing up!

w̃(x, z, t) =
(

∂

∂z
+ ib(x, z, Dx, Dt)

)
w(x, z, t)

b(x, z, Dx, Dt)b(x, z, Dx, Dt)w '
(

4

v(x, z)2
D2

t −D2
x

)
w

with a smooth error, so(
∂

∂z
− ib(x, z, Dx, Dt)

)
w̃(x, z, t) = −

2r(x, z)

v(x, z)2
δ(t)

+i

(
∂

∂z
b(x, z, Dx, Dt)

)
w(x, z, t)
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(since b depends on z, the z deriv. does not commute with b).

So w̃ = w̃0 + w̃1, where(
∂

∂z
− ib(x, z, Dx, Dt)

)
w̃0(x, z, t) = −

2r(x, z)

v(x, z)2
δ(t)

(this is the SSR modeling equation)(
∂

∂z
− ib(x, z, Dx, Dt)

)
w̃1(x, z, t) = i

(
∂

∂z
b(x, z, Dx, Dt)

)
w(x, z, t)

Claim: WF (w̃1) ⊂ WF (w).

Granted this ⇒ WF (w̃0) ⊂ WF (w) also.
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Upshot: SSR modeling

F̃0[v]r(xs, zs, t) = w̃0(xs, zs, t)

produces the same singularities (i.e. the same waves) as explod-

ing reflector modeling, so is as good a basis for migration.

SSR migration: assume that sources all lie on zs = 0.

< F̃0[v]
∗d, r >=< d, F̃0[v]r >

=
∫

dxs

∫
dt d(xs, t)w̃0(xs,0, t)
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=
∫

dxs

∫
dt
∫

dz ¯d(xs, t)δ(z)w̃0(xs, z, t)

Define the adjoint field q by(
∂

∂z
− b(x, z, Dx, Dt)

)
q(x, z, t) = d(x, t)δ(z), q(x, z, t) ≡ 0, z < 0

which is equivalent to solving the initial value problem(
∂

∂z
− ib(x, z, Dx, Dt)

)
q(x, z, t) = 0, z > 0; , q(x,0, t) = d(x, t)

Insert in expression for inner product, integrate by parts, use

self-adjointness of b, get

< d, F̃0[v]r >=
∫

dx
∫

dz
2r(x, z)

v(x, z)2
q(x, z,0)
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whence

F̃0[v]
∗d(x, z) =

2

v(x, z)2
q(x, z,0)

Standard description of this algorithm:

• downward continue data (i.e. solve for q)

• image at t = 0.

The art of SSR migration: computable approximations to b(x, z, Dx, Dt)

- swimming pool operator, many successors.
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Unfinished business: proof of claim

Depends on celebrated Propagation of Singularities theorem

of Hörmander (1970).

Given symbol p(x, ξ), order m, with asymptotic expansion, define

bicharateristics as solutions (x(t), ξ(t)) of Hamiltonian system

dx

dt
=

∂p

∂ξ
(x, ξ),

dξ

dt
= −

∂p

∂x
(x, ξ)

with p(x(t), ξ(t)) ≡ 0.

Theorem: Suppose p(x, D)u = f , and suppose that for t0 ≤ t ≤
t1, (x(t), ξ(t)) /∈ WF (f). Then either {(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂
WF (u) or {(x(t), ξ(t)) : t0 ≤ t ≤ t1} ⊂ T ∗(Rn)−WF (u).
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At least two distinct proofs:

• Nirenberg, 1972

• Hörmander, 1970 (in Taylor, 1981)

Proof of claim: check that bicharacteristics for SSR operator are

just upcoming rays of geom. optics for wave equation. These

pass into t < 0 where RHS is smooth, also initial condn at large

z is smooth - so each ray has one “end” outside of WF (w̃1).

If ray carries singularity, must pass of WF of w, but then it’s

entirely contained by P of S applied to w. q. e. d.
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Nonzero offset (“prestack”): starting point is integral represen-
tation of the scattered field

F [v]r(xr, t;xs) =
∂2

∂t2

∫
dx

2r(x)

v(x)2

∫
ds G(xr, t− s;x)G(xs, s;x)

By analogy with zero offset case, would like to view this as
“exploding reflectors in both directions”: reflectors propagate
energy upward to sources and to receivers. However can’t do
this because reflection location is same for both.

Bold stroke: introduce a new space variable y, define

F̃ [v]R(xr, t;xs) =
∂2

∂t2

∫ ∫
dx dy R(x,y)

∫
ds G(xr, t−s;x)G(xs, s;y)

and note that F̃ [v]R = F [v]r if

R(x,y) =
2r

v2

(
x + y

2

)
δ(x− y)
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This trick decomposes F [v] into two “exploding reflectors”:

F̃ [v]R(xr, t;xs) = u(x, t;xs)|x=xr

where (
1

v(x)2
∂2

∂t2
−∇2

x

)
u(x, t;xs) =

∫
dy R(x,y)G(xs, t;y)

≡ ws(xs, t;x)

(“upward continue the receivers”),(
1

v(y)2
∂2

∂t2
−∇2

y

)
ws(y, t;x) = R(x,y)δ(t)

(“upward continue the sources”).
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This factorization of F [v] (r 7→ R 7→ F̃ [v]R) leads to a reverse

time computation of adjoint with - will discuss on Friday.

It’s equally possible to continue the receivers first, then the

sources, which leads to(
1

v(y)2
∂2

∂t2
−∇2

y

)
u(xr, t;y) =

∫
dx R(x,y)G(xr, t;x)

≡ wr(xr, t;y)

(“upward continue the sources”),(
1

v(x)2
∂2

∂t2
−∇2

x

)
wr(x, t;y) = R(x,y)δ(t)

(“upward continue the receivers”).
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Apply reverse depth concept: as before, go 2D temporarily, x =

(x, zr),y = (y, zs), all sources and receivers on z = 0.

Double Square Root (“DSR”) assumption: For some δ > 0,

the wavefield u satisfies

(x, zr, t, y, zs, ξ, ζs, τ, η, ζr) ∈ WF (u) ⇒

(x, t, ξ, τ) ∈ Pδ(zr), (y, t, η, τ) ∈ Pδ(zs), and ζrτ > 0, ζsτ > 0,

As for SSR, there is a ray-theoretic interpretation: rays from

source and receiver to scattering point stay away from the verti-

cal and decrease in z for increasing t, i.e. they are all upcoming.
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Since z will be singled out (and eventually R(x,y) will have a

factor of δ(x,y)), impose the constraint that

R(x, z, x, zs) = R̃(x, y, z)δ(z − zs)

Define upcoming projections as for SSR:

w̃s =
(

∂

∂zs
+ ib(y, zs, Dy, Dt)

)
ws,

w̃r =
(

∂

∂zr
+ ib(x, zr, Dx, Dt)

)
wr,

ũ =
(

∂

∂zs
+ ib(y, zs, Dy, Dt)

)(
∂

∂zr
+ ib(x, zr, Dx, Dt)

)
u
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Except for lower order commutators which we justify throwing

away as before,(
∂

∂zs
− ib(y, zs, Dy, Dt)

)
w̃s = R̃δ(zr − zs)δ(t),

(
∂

∂zr
− ib(x, zr, Dx, Dt)

)
w̃r = R̃δ(zr − zs)δ(t),

(
∂

∂zr
− ib(x, zr, Dx, Dt)

)
ũ = w̃s

(
∂

∂zs
− ib(y, zs, Dy, Dt)

)
ũ = w̃r

Initial (final) conditions are that w̃r, w̃s, and ũ all vanish for large

z - the equations are to be solve in decreasing z (“upward con-

tinuation”).
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Simultaneous upward continuation:

∂

∂z
ũ(x, z, t; y, z) =

∂

∂zr
ũ(x, zr, t; y, z)|z=zr +

∂

∂zr
ũ(x, z, t; y, zs)|z=zs

= [ib(x, zr, Dx, Dt)ũ + w̃s + ib(y, zs, Dy, Dt)ũ + w̃r]zr=zs=z

Since w̃s(y, z, t;x, z) = w̃r(x, z, t; y, z) = R̃(x, y, z)δ(t), ũ is seen to

satisfy the DSR modeling equation:(
∂

∂z
− ib(x, z, Dx, Dt)− ib(y, z, Dy, Dt)

)
ũ(x, z, t; y, z) = 2R̃(x, y, z)δ(t)

F̃ [v]R̃(xr, t;xs) = ũ(xr,0, t;xs,0)
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Computation of adjoint follows same pattern as for SSR, and

leads to

DSR migration equation: solve(
∂

∂z
− ib(x, z, Dx, Dt)− ib(y, z, Dy, Dt)

)
q̃(x, y, z, t) = 0

in increasing z with initial condition at z = 0:

q̃(xr, xs,0, t) = d(xr, xs, t)

Then F̃ [v]∗d(x, y, z) = q̃(x, y, z,0)

The physical DSR model has R̃(x, y, z) = r(x, z)δ(x− y), so final

step in DSR computation of F [v]∗ is adjoint of r 7→ R̃:

F [v]∗d(x, z) = q̃(x, x, z,0)
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Standard description of DSR migration (Claerbout, IEI):

• downward continue sources and receivers (solve DSR migra-

tion equation)

• image at t = 0 and zero offset (x = y)

Another moniker: “survey sinking”: DSR field q̃ is (related to)

the field that you would get by conducting the survey with

sources and receivers at depth z. At any given depth, the zero-

offset, time-zero part of the field is the instantaneous response

to scatterers on which source = receiver is sitting, therefore

constitutes an image.

As for SSR, the art of DSR migration is in the approximation of

the DSR operator.
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4. Velocity Analysis
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Partially linearized seismic inverse problem: given observed

seismic data dobs, find smooth velocity v ∈ E(X), X ⊂ R3 oscil-

latory reflectivity r ∈ E ′(X) so that

DF[v](vr) = F [v]r ' dobs

where the acoustic potential field u and its perturbation δu solve(
1

v2

∂2

∂t2
−∇2

)
u = f(t)δ(x− xs),

(
1

v2

∂2

∂t2
−∇2

)
δu = 2r∇2u

plus suitable bdry and initial conditions.
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F [v]r =
∂δu

∂t

∣∣∣∣
Y

data acquisition manifold Y = {(xr, t;xs)} ⊂ R7, dimn Y ≤ 5

(many idealizations here!).

F [v] : E ′(X) → D′(Y ) is a linear map but dependence on v is

quite nonlinear, so this inverse problem is nonlinear.

Direct approach, eg. via output least squares - hopeless! (Gau-

thier et al., 1986; Kolb et al., 1986; Bunks et al., 1995)

Velocity analysis = clever indirect approach to this inverse prob-

lem, based on concept of extended model or extension of F [v].
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Extension of F [v] (aka extended model): manifold X̄ and maps

χ : E ′(X) → E ′(X̄), F̄ [v] : E ′(X̄) → D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes, i.e.

F̄ [v]χr = F [v]r
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(Familiar) Example: the Convolutional Model

• Approximation of P. L. model, accurate when v, r functions

of z only

• data function of t, h = (xr − xs)/2 half-offset

• two-way traveltime τ(z, h), inverse ζ(t, h)

• if v =const. then τ(z, h) = 2
√

z2 + h2/v

F [v]r(t, h) =
∫

dt′ f(t− t′)r(ζ(t′, h))

(”inverse NMO, convolve with source”)
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Factor convolutional model through extension: replicate r for

each h

χ : r(z) 7→ r̄(z, h) = r(z)

then apply inverse NMO and convolve with source, independently

for each h

F̄ [v] : r̄(z, h) 7→ f ∗ r̄(ζ(t, h), h)
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Invertible extension: F̄ [v] has a right parametrix Ḡ[v], i.e.

I − F̄ [v]Ḡ[v]

is smoothing.

Example: for the convolutional model, Ḡ[v] is signature decon

followed by NMO, applied trace-by-trace.

NB: The trivial extension - X̄ = X, F̄ = F - is virtually never

invertible.
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Reformulation of inverse problem: given dobs, find v so that

Ḡ[v]dobs ∈ the range of χ.

Proof: that is, Ḡ[v]dobs = χr for some r, so dobs ' F̄ [v]Ḡ[v]dobs =

F̄ [v]χr = F [v]r Q. E. D.

This is velocity analysis!

Example: Standard VA. Apply convolutional model to each mid-

point in CMP-binned data. Range of χ = r̄(z, h) independent of

h, i.e. flat. SO: twiddle v so that Ḡ[v]dobs shows flat events.

Caveats: in practice, be happy when Ḡ[v]dobs is in range of χ ex-

cept for wrong amplitudes, finite frequency effects, and obvious

(!) noise.
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The usual extended model behind Migration Velocity Analysis:

• v, r functions of all space variables

• χr(x,h) = r(x) (so r̄ ∈ range of χ ⇔ plots of r̄(·, ·, z, h) appear
flat)

•

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫
dx r̄(x,h)

∫
ds G(xr, t− s;x)u(xs, s;x)

(recall h = (xr − xs)/2)

NB: F̄ is “block diagonal” - family of operators (FIOs) parametrized
by h.
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• Beylkin (1985), Rakesh (1988): if ‖∇2v‖C0 “not too big”,

then the usual extension is invertible.

• Ḡ = common offset migration-inversion aka ray-Born inver-

sion aka true-amplitude migration etc. etc. Usually imple-

mented as generalized Radon transform = ”weighted diffrac-

tion stack” (Beylkin, Bleistein, DeHoop,...)

• Nolan, Stolk, WWS: if ‖∇2v‖C0 is too big, usual extension is

not invertible!
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Claerbout’s extended model = basis of survey sinking or shot-
geophone migration:

• χr(x,h) = r(x)δ(h), so r̄ ∈ range of χ ⇔ plots of r̄(·, ·, z, h)
appear focussed at h = 0

F̄ [v]r̄(xr,xs, t)

=
∂2

∂t2

∫
dx

∫
dh r̄(x,h)

∫
ds G(xr, t− s;x + h)u(xs, s;x− h)

• This extension is invertible, assuming (i) h3 = 0 (horizontal
offset only) and (ii) ”DSR hypothesis”: rays do not turn.
Then adjoint map is equivalent modulo elliptic ΨDO fac-
tor to shot-geophone migration via DSR equation [Stolk-
DeHoop 2001]
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Lens data, shot-geophone migration [B. Biondi, 2002]

Left: Image via DSR. Middle: Ḡ[v]d - well-focused (at h = 0),

i.e. in range of χ to extent possible. Right: Angle CIG.
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Alternate expression for extended S-G model:

F̄ [v]r̄(xr, t;xs) =
∂

∂t
δū(x, t;xs)|x=xr

where

(
1

v(x)2
∂2

∂t2
−∇2

x

)
δū(x, t;xs) =

∫
x+2Σd

dy r̄(x,y)u(y, t;xs)

Computing Ḡ[v]: instead of parametrix, be satisfied with adjoint -

the two differ by a ΨDO factor, which will not affect smoothness

of CIGs.
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Computing the adjoint: use the adjoint state method (WWS,
Biondi & Shan, SEG 2002).

Define adjoint state w:(
1

v(x)2
∂2

∂t2
−∇2

x

)
w(x, t;xs) =

∫
dxr d(xr, t;xs)δ(x− xr)

with w(x, t;xs) = 0, t >> 0. [This is exactly the backpropagated
field of standard reverse time prestack migration, cf. Lines talk.]

Then

F̄ [v]∗d(x,h) =
∫

dxs

∫
dt u(x + 2h, t;xs)w(x, t;xs)

[This is exactly the same computation as for standard reverse
time prestack, except that crosscorrelation occurs at an offset
2h].
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Some Loose Ends

• invertibility of S-G extended model only known under DSR
assumption with horizontal offsets [Stolk-DeHoop, 2001].
Vertical offsets are good when DSR breaks down, eg. to
image overhanging reflectors [Biondi, WWS 2002]. Current
best result: data focusses only at offset = 0 within a lim-
ited range off offsets; focussing at large offsets not ruled out
[WWS, 2002]. What actually happens?

• S-G extension amounts to construction of annihilators [cf.
DeHoop]. How can one characterize globally invertible anni-
hilator representations?

• quantification of non-membership in range of χ (DSO) -
which ones yield good optimization problems locally [Stolk-
WWS, IP 2003] or globally?
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Conclusions

• Most of contemporary SDP related partially linearized seismic
inverse problem

• Velocity analysis = approach to solution of PL seismic inverse
problem via invertible extended models

• Usual extended models (common offset, common shot, com-
mon angle,...) are not invertible when the velocity structure
is complex, due to multipathing

• The extended model of shot-geophone migration is invertible
even in the presence of multipathing

• Shot-geophone migration has a reverse-time implementation
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