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Summary 

 
Most current anisotropic velocity analysis deals with non-
hyperbolic normal-moveout (NMO), with application to 
prestack time processing.  In contrast, we present a general 
algorithm for 3-D velocity updating with tomographic 
velocity analysis, with application to 3-D prestack depth 
imaging. First, we outline the key components of 
tomographic velocity analysis in transversely isotropic 
media with arbitrary axis of symmetry (TTI media). 
Second, we derive an explicit representation of traveltime 
derivatives in weak transversely isotropic media and 
present the corresponding analytic formulae.  Finally, we 
demonstrate the effectiveness of this procedure with a 
simple synthetic data example. 
 
Introduction 
 
Because velocity information is needed for depth 
migration, accurate knowledge of seismic interval 
velocities is essential for imaging subsurface structures. 
With correct velocities, 3-D prestack depth migration 
positions reflected seismic events at their correct 
subsurface locations.  The presence of seismic anisotropy 
(angle-dependent velocity) makes it necessary to generalize 
traditional isotropic velocity analysis to account for 
anisotropy. A number of approaches to anisotropic 
traveltime inversion and velocity analysis have been 
developed (Tsvankin and Thomsen, 1995; Alkhalifah and 
Tsvankin, 1995; Baan and Kendall, 2002).  Most of these 
approaches analyze higher-order terms in the NMO 
equation in order to improve images obtained in time 
processing. 
 
Such traditional non-hyperbolic NMO velocity analysis is 
often used for building initial velocity/anisotropy models 
for prestack depth migration. Then the interval velocities 
required by depth imaging are obtained from these initial 
models by a layer-stripping process using the Dix formula. 
This layer stripping can accumulate errors with increasing 
depth during the inversion process.  As an alternative, we 
propose a tomographic velocity analysis method, in which 
interval velocities and anisotropy parameters are obtained 
by globally solving a linear system of equations. This 
partially solves the problem of error accumulation intrinsic 
to the layer stripping process with the Dix formula.  In 
addition to avoiding the error accumulation problem, the 
tomographic method applies ray tracing to recover the 
specular ray paths, accommodating the ray-bending effect 
due to velocity heterogeneity that Dix-based methods 
ignore. 
 

Analysis of depth-migrated gathers (common image 
gathers, or CIG’s), is the basis of most current interval 
velocity estimation techniques. These gathers should 
consist of flat events when the velocity/anisotropy model 
used for the migration is correct. Inaccurate estimates for 
either velocity or anisotropy parameters will result in 
nonzero residual moveout in CIGs.  The goal of interval 
velocity analysis is to estimate velocities and anisotropy 
parameters that flatten events in the gathers, and seismic 
tomography uses depth migration as a tool to that end. 
 
In this abstract, we use the fixed-time event tomography 
method (van Trier, 1990; Zhou et al., 2001) to build 
updating equations for parameters in transversely isotropic 
media. This method works by using true zero-offset or 
near-offset events in the time (unmigrated) domain as its 
reference events, which are recovered based on the 
principle that ray tracing (modeling) undoes migration 
whether the migration velocity is accurate or not. The 
method also uses a specular ray pair for each offset; these 
raypaths are traced from the migrated depth for the given 
offset. We extend the fixed-time method to the case of 3-D 
anisotropic velocity analysis by incorporating anisotropy 
into the raytracing, and by providing a method for 
estimating the anisotropy parameters. 
 
We examine the effectiveness of the algorithm with a 
simple synthetic example. 
 
Algorithm  
 
Prestack depth migration produces common image gathers 
at specified surface locations. Each trace in the CIG 
represents the result of depth-migration for a small range of 
offsets. Given the picked image locations and their set of 
offsets, we build the linear system of tomography equations 
for transversely isotropic media with the following steps: 
 
• Shoot the rays up from the given image location along a 

reflector to find the corresponding incident and reflected 
ray pairs associated with this location and the given 
offset. The specular ray pairs should satisfy (anisotropic) 
Snell’s law. 

• Calculate the derivatives of traveltime with respect to 
the unknown parameters, which include velocities and 
anisotropy parameters (Thomsen, 1986) in each layer. 

• Build the linear system of equations with each row 
related to its corresponding specular ray pairs using the 
fixed-time event algorithm discussed below.   

• Solve the linear equation using least-squares method to 
obtain the solution of the model such as velocity 
perturbations.   
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• Update to get new image locations.  
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In the following subsections, we will discuss some of the 
key components for carrying out the above steps. Here, 0θ  is the dip angle of the reflector or the angle 

between the normal direction of the reflector and the z-axis 
(see Figure 1). 

 
� Finding the reflection angle with Snell’s law 

 

 
Tomographic velocity analysis depends on finding the 
specular ray pairs at the given image locations. To obtain 
the shooting phase angle of the reflected ray ( 2θ ), we need 
to apply Snell’s law, which is written as (see Figure 1):  
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where p is known as the ray parameter or “wavefront 
parameter”, which we can obtain from the given incident 
phase angle 1θ  (measured from the normal to the reflector) 

and the phase velocity )( 1θv . Here, 1θ is the angle 
between the symmetry axis and the incident phase slowness 

vector. Similarly, )( 2θv  is the phase velocity of the 

reflected ray at the reflection point with 2θ defined as the 
angle between the symmetry axis and the reflected phase 

slowness vector. Since )( 2θ

2

v is a nonlinear function of the 

unknown phase angle θ  (measured from normal to the 
reflector) of the reflected ray, we need to devise a 
numerical scheme to solve for 2θ . In general, there might 

be more than one value of 2θ  satisfying equation (1). In 
this case, we select the one whose group direction is on the 
same side of the reflector as that of the incident ray. 

Figure 1. Reflection of a ray: n is the normal to the reflector. 1θ  

and 2θ are the phase angles (measured from the normal direction 
of the reflector) of  the incident and reflected rays respectively, 

and 0θ is the dip angle of the reflector. 

 
� Reflector changes with respect to changes of 

anisotropy parameters  
 
Based on the zero-time imaging principle (Wang et al., 
1995; Zhou, et al., 2001), it is easy to derive the relations 
between the reflector movement and the changes of 
anisotropic parameters, which are: 
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� Traveltime changes with respect to reflector 

movement 
 
We can describe the traveltime changes with respect to 
reflector movement in normal direction as: 
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where , iv iδ , and iε  are the anisotropy parameters 
(Thomsen, 1986) that we invert for. The index 
( ni ,1,K= ) represents the indices of the unknown 
parameters in the n layers or cells encountered/sampled by 
the specular ray pairs. These equations measure how far the 

Here, the variables are defined the same as above. Since the 
data are often picked along the vertical (z) direction, we are 
most interested in traveltime changes with respect to 
reflector movement in the z direction. To obtain this, we 

can project n
t h

∂
∂ to the z-axis, resulting in the following 

expression: 



3-D Tomographic velocity analysis for TI media 

reflector will move when anisotropy parameters are 
perturbed. 
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� Velocity updating equations (Fixed-time event) 
 
The fixed-time event method works first by finding 
specular ray pairs for all of the given offsets and picked 
reflection image locations. Next, this method traces 
normal-incidence rays (or near-offset rays if zero-offset 
data are not available) for all these reflection image 
locations (Zhou et al., 2001).  Although we perform the 
migration with an incorrect velocity, the two-way 
traveltime along the normal incidence ray from a migrated 
event on the zero-offset section is still the correct zero-
offset time for that event. However, corresponding image 
locations on the same CIG at other (nonzero) offsets are 
shallower or deeper than the zero-offset event; if we shoot 
normal-incidence rays from those locations, the zero-offset 
times will not be the correct zero-offset times when the 
velocity is incorrect. This difference can be used to invert 
for perturbations in velocity v , 0 ε , and δ .   

(6) 
 
with the left-side denoting the traveltime residuals. 
Although equation (6) is a complete equation for 3-D 
tomographic velocity updating, it may be insufficient to 
recover all the vertical velocity and anisotropy parameters 
(ε  and δ ) simultaneously. The reason is the trade-off 
between the vertical velocity and anisotropy coefficients;  
this trade-off cannot be overcome by using P-wave seismic 
information alone even if long spreads (e.g., twice the 
reflector depth) are used (Tsvankin and Thomsen (1995)).  
 
So far, we have discussed all the terms in equation (6) 
except the traveltime derivatives, which can be computed 
numerically during ray tracing. Alternatively, as we show 
next, we can also derive an explicit analytic expression for 
these derivatives in weak transversely isotropic (TI) media.  

 
Specifically, let t  represent the two-way traveltime for 

half-offset , called the reference offset, at location . 

Then, according to the demigration principle, t  should 

be recovered exactly even when the migration velocity is 

incorrect. Now let  represent the modeled two-way 

traveltime for the same reference offset at location . In 
principle, if the migration velocity is not correct, 

.  We can then use the difference between t  

and t  to get the velocity information.  We apply a Taylor 

expansion to this difference in traveltime to obtain the 
following expression: 
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� Traveltime derivatives in weak TI media  
 
In general, the traveltime can be represented as the 
following integral along the raypath: 

∫=
gv

dt l
                                        (7) 

where is the group velocity of the ray. In weak TI 

media, similar to phase velocity, the group velocity can 

be represented as (Grechka, 1998) 
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where  is the angle between the raypath and the 
symmetry axis. 
 
According to Fermat’s principle which states that the 
raypath between any fixed points will be that with 
minimum traveltime. In other words, the raypath is 
stationary and will not change with small changes in 
unknown parameters. Therefore, perturbations of traveltime 
with respect to small changes of the unknown parameters 
( ,0v δ and ε ) can be derived from equations (7) and (8), 
after some algebraic manipulations, as 

Here, p , i= 1,…,n, represents the parameters to be inverted 
for such as Thomsen parameters , iv iδ , and iε . 
 
Substituting equations (3) and (4) into equation (5) yields 
the final updating equation: 
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Mirko van der Baan and Kendall, J., 2002, Estimating 
anisotropy parameters and traveltimes in the τ -p 
domain: Geophysics, 67, 1076-1086. 
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    (9) Deregowski, S.M., 1990, Common offset migrations and 
velocity analysis: First break, 8, 224-234. 

Grechka, V., 1998, Transverse isotropy versus lateral 
heterogeneity in the inversion of P-wave reflection 
traveltimes: Geophysics, 63, 204-212. 

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 
51, 1954-1966. With all of these preparations, we have completed the 

description of the algorithm. Next, we test our algorithm 
with a synthetic example. 

Tsvankin, L. and Thomsen, L., 1995, Inversion of 
reflection traveltimes for transverse isotropy: 
Geophysics, 60, 1095-1107.  

Synthetic Data Example Van Trier, J., 1990, Tomographic determination of 
structural velocities from depth-migrated seismic data: 
PhD thesis, SEP. 

 
We have created a simple vertically transversely isotropic 
(VTI) synthetic data set to test the above formulation. As 
shown in Figure 2, the true model is a horizontally layered 
model, with vertical velocity defined as a continuous 
piecewise linear function, and with constant δ and ε , 
defined for each layer. Recognizing the trade-off between 
the vertical velocity and anisotropy parameters (Tsvankin 
and Thomsen, 1995), we fix the vertical velocities, and 
invert only for the anisotropy parameters  (δ ,ε ). To 
simulate an actual application of tomography, we pick the 
residual curvatures on the CIG’s rather than computing 
them analytically. The true anisotropy model, initial 
anisotropy model, and inversion results are shown in Figure 
2.  The inversion results indicate that although there are 
still tradeoffs betweenδ andε , they can be inverted 
reasonably well (within a few percent) as long as there is 
enough far offset data available. 

Wang, B., Pann, K., and Meek, R.A., 1995, Macro velocity 
model estimation through model-based globally-
optimized residual-curvature analysis: 65th Ann. SEG, 
Expanded Abstracts, 1084-1087. 

Zhou, H., Guo, J., and Young, J., 2001, An alternative 
residual-curvature velocity updating method for prestack 
depth migration: 71st  SEG, Expanded Abstracts. 

 
 
 

 

 
Conclusions  
 
We described a tomographic velocity and anisotropic 
parameter estimation method for TTI media. We then 
derived an explicit expression for weak TI media.  Finally, 
we demonstrated its effectiveness with a synthetic VTI data 
example.   
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Figure 2.  Model for the synthetic test.  The top layer is isotropic, 
the second layer is anisotropic with anisotropy parameters 

20.0=δ and 05.0=ε . The third layer is isotropic.  
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