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Summary

Seismic inverse problems are known to be ill-posed and
ill-conditioned because of noisy data and inadequate
model parameterizations. To obtain a unique and stable
solution, both data and model have to be regularized.
How do we do this? Given the wealth of data and model
regularization techniques available, are there criteria
for choosing an adequate regularization algorithm for a
particular problem? In this abstract, we begin to answer
this question. First, we discuss the properties of some
conventionally used regularization functionals, and we
compare them systematically. Then we discuss specific
linear/nonlinear functionals, which can be used for
certain special purposes. Finally, we show an example,
applying these techniques to migration velocity analysis.

Introduction

Solving an inverse problem means making inferences
about physical models from the observed data. For
seismic inverse problems, the observed data might be
reflection traveltimes or residual curvature on depth-
migrated gathers (Bube and Langan, 1997; Zhou et al.,
2001), and the physical model to be inferred is typically
the velocity structure within the Earth. A common way
to estimate a model is to seek the model that gives the
best fit to the data in the sense that the data residual,
measured by some metric (usually the Ly norm), is made
as small as possible.

In real problems, the final estimated model usually differs
significantly from the idealized model. One cause of this
difference is noisy data, since the observations (picked re-
flection traveltimes or moveout on gathers) are usually
inconsistent, and are contaminated with errors that have
some effect on the estimation. These solutions need data
regularization to reduce the effects of noisy data. An-
other cause may be the mathematical description of the
model. Generally, most seismic inverse problems are ill-
posed (under-determined, with a large null space) and ill-
conditioned or unstable, so that small errors in the data
may lead to large variations in the model. So there may
exist many models, usually an infinite number of them,
that fit the same observed data equally well. Usually, the
size and shape of the model null space depends partly
on the choice of model space parameterization. There-
fore, besides data regularization, one should also apply a
model reqularization or preconditioning in order to reduce
the size of the null space and stabilize the algorithm. This
step restricts the set of admissible solutions, and provides
a priori information (e.g., model smoothness).

In general, given a forward model, i.e., a relationship be-

tween the model u and observed data b
Au = b,

the inverse problem can be formulated as a variational
problem to minimize the misfit functional

J(u) = F(r(u)) + eR(u). 1
Here F(r) is called the data term, usually an even, non-
negative function, r(u) = Au—b is the data residual, and
R(w) is called the regularization term. The goal of Eq. (1)
is to estimate the model v from the data residual r(u).
The roles of R(u) are to incorporate a priori knowledge of
the model u and to regularize the solution. In principle,
eR(u) should be as small as possible, allowing the solution
method to attack the data residuals, but in practice the
ill-posedness of the unconstrained inverse problem often
forces this term to be larger than we wish it to be. If
eR(u) is much greater than F(r), our solution is as regu-
lar as we’ve constrained it to be, and it incorporates prior
knowledge, but it ignores the data residuals.

Mathematically it is obvious (but geophysically we tend
to ignore) that, by choosing particular forms for F, R,
and a particular value for €, we have already begun to
constrain the solution of equation (1). The constraints
can be either mathematical (continuity, smoothness, etc.)
or geophysical (geological interfaces, maximal and mini-
mal velocity values, etc.). Therefore, our choice of objec-
tive function should depend on our a priori knowledge of
the solution and on our assumptions about its properties,
e.g., its smoothness. A high-fidelity inversion result can
be obtained only with good choices for the functionals
F(r) and R(u).

In this abstract, we address the problem of appropriate
choices for F(r) and R(u) by discussing the properties of
some conventionally used regularization functionals and
comparing them systematically. We also introduce some
specific linear /nonlinear functionals which can be used for
certain special purposes. For example, some functionals
can be used to detect the sharp model boundaries from
the data automatically, and others can be used to pre-
serve model resolution near geological interfaces without
compromising their ability to suppress random data noise.

Data regularization

Optimization problems are often formulated as least-
squares problems, where the Ly norm of the data misfit
needs to be minimized. However, least-squares solutions
tend to be very sensitive to outliers, i.e., individual data
points that lie far away from the bulk of the data (Claer-
bout, 2001). Therefore, to reduce the influence of outliers,



we must sometimes use a norm different from L,. From
the enormous selection of choices for the function F(r),
we discuss three of the most popular ones.

e L, norm: F(r) = %|r|p, where 1 < p < 2. When
p =2, we have a least-squares problem; the solution
tends to be very sensitive to spiky data residuals.
The L; norm (p = 1) overcomes this problem by
overweighting data terms with small residuals and
underweighting the large spiky data residuals. Other
p-values between 1 and 2 perform between L; and
Ls. In numerical calculations, solving optimized L,
norm problems often requires the use of IRLS (Tter-
atively Reweighted Least Squares) algorithm (Bube
and Langan, 1997; Claerbout, 2001) in which ex-
tremely small residuals are replaced by a threshold
value. This causes some artificial errors in the mini-
mization, and a loss of resolution in the solution.

o Hybrid Li/Ly: F(r) = (1+77/r3)""* — 1, where
1 < p < 2. When r/ro is small, F(r) ~ 2Z|r/ro|?,
and when r/ro is large, F(r) = |r/ro|”. Therefore,
F(r) behaves like the Ly norm for small residuals,
and like the L, norm for large residuals (Bube and
Langan, 1997). This hybrid norm underweights large
residual errors, but it treats small values as Lo does,
simply by ignoring their influence. Therefore, unlike
the L; norm, this function F(r) does not emphasize
data terms with small residuals.

e Cauchy distribution: F(r) = In(1 4+ r2?/#Z). Similar
to the L; norm, this function is not guaranteed to
produce unique solutions. However, it underweights
larger data residuals more severely than the hybrid
Li/Ls norm does.

Model regularization

The data regularization techniques mentioned above
result from minimizing different misfit functionals
of data residual. However, because of the intrinsic
under-determined nature of seismic inverse problems, the
inverse matrices might not exist or, if they exist, they
might not have any meaning. Even when the inverse
matrices exist, they can be ill-conditioned (become nearly
singular and extremely sensitive to data errors). When
this happens, the solution becomes extremely unstable.
To overcome this difficulty, the models also need to be
regularized by introducing functional R.

Linear isotropic regularization Linear isotropic
regularization uses the Ly norm to penalize the rough-
ness in the solution and attempts to emphasize the large
scale features of the model. Also, according to the vari-
ational calculus, such regularization functions often lead
to linear differential equations for the inverted model u
which are relatively easy to solve.

e H° norm:

1/2

R(u) = ||ull7, = (/IU(f)I2df) )
This is the Levenberg-Marquardt damping opera-
tor. It provides stable, but oscillatory, solutions for
a given model parameterization. One serious disad-
vantage of this model regularization norm is that the
solution depends heavily on the model parameteri-
zation.

e H' semi-norm:

®3)

where V represents the gradient operator. Minimiz-
ing the objective function with this regularization
term leads to the solving of a elliptic equation

R(u) = ||Vul|L,,

—Au=0,
where A = % + % + % is the Laplace operator.
e H? semi-norm:
R(u) = || Aul[Z,. (4)

Minimizing this functional is equivalent to solving a
bi-harmonic equation (Smith and Wessel, 1990)

Ay =0.

e H' + H? semi-norm: The physical interpretation of
this regularizer is splines in tension, with an energy
functional R(u) defined as

R(u) = (1= )[|Aul” + 8| Vul[?, (3)

where 0 <t <1 is a tension parameter. The corre-
sponding partial differential equation is

(1 —8)Au — tAu=0. (6)

When ¢t = 0, this equation becomes bi-harmonic,
which produces a smooth solution, but creates artifi-
cial oscillations in the unconstrained regions around
sharp changes in the gradient; when ¢ = 1, it be-
comes Laplace’s equation, whose solution is a linear
function with no extraneous inflections in the solu-
tion, but with discontinuous derivatives. Intermedi-
ate values of ¢ allow us to achieve a compromise: a
smooth solution surface with constrained oscillations
(Smith and Wessel, 1990).

Nonlinear isotropic regularization The main
problem using quadratic regularization functionals in the
preceding section is their inability to “respect” the dis-
continuities of the model. A strategy for overcoming this
problem is to use the gradient as an edge detector, and en-
courage intra-region smoothing over inter-region smooth-
ing. Then, locations where the gradient is large will have
a large likelihood of being an edge (Perona and Malik,
1990).



e L?” norm, 1 < p < 2: When p = 1, the vari-
ational problem becomes the total variation (TV)
norm, which is proposed as a regularization func-
tionals for the image restoration problem (Rudin et
al., 1992):

R(u) =TV (u) = / i +ul +uide.  (7)

Its corresponding differential equation, with homo-
geneous Neumann boundary conditions for u, is

Vu
0= V. (W) ®)

While the H° semi-norm honors larger values of the
solution, the H' semi-norm honors linear functions
over others. However, the TV norm allows more so-
lution functions, including discontinuous ones, to ap-
proximate a given function.

e Cauchy distribution: Minimizing the energy func-
tional

R(u) = / In(1 + |Vu|*)dz, (9)

results in its corresponding differential equation

1

This corresponds to the very famous Perona-Malik
(1990) nonlinear diffusion filter. One problem with
this functional is that R(u) will not have a well-posed
solution unless regularized (Alvarez, et al., 1992).

(10)

e Hybrid L;/Ly: Minimizing the energy functional

R(u) = / 1+ |Vul?dz. (11)
gives a solution which satisfies
1
0=-V: | ———=Vu|. (12)
V14| Vul?

This is similar to the Cauchy distribution, and it
provides a unique solution.

Linear anisotropic regularization In migration
velocity analysis, sometimes we have information about
the subsurface dips. When this happens, it is desirable
to let our solution (the estimated velocity function) fol-
low the given structures. Suppose the normalized normal
direction 7 = (ng,ny,n;) of a reflecting surface is given.
Then we can project any vector into the plane orthogonal
to 7 by using the projection operator Py, defined as

(13)

To make sure that diffusion takes place only in the plane
orthogonal to 7, we minimize the energy functional

J(u) = % / |Pa V| da. (14)

Its solution satisfies
-V - (PzVu) =0, (15)

and it can be solved by the following parabolic differential
equation

— =V (P;. 1
5 V- (Pz.Vu) (16)
Expanding the RHS of this equation produces

0%u 0%u 0%u
= Q)2 ¥ 1 TY 1T

( nw)6$2 + ( ny) 6y2 +( nz) 6,22 (17)
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This is exactly the same result, derived differently, as that
of Schwab (1997) who used it to detect plane reflectors.

Numerical tests

In this section, we perform The residual curvature anal-
ysis using the technique discussed above to a two-layer
model with a horizontal reflector. The model is
100 x 100m wide and 50 x 100m deep and is divided
into boxes of a width and height of 100m x 100m. There
are 100 x 50 velocity parameters. The true velocity for
the first layer is 1000 m/s, and the migration velocity is
chosen as 900 m/s. The depth residuals are computed
analytically over an offset range of Om to 3000m. The
common image point locations are picked at every other
grid point, i.e., the input data grid is coarser than the
solution grid.

Figure 1 (top) shows the velocity perturbation from mi-
gration velocity analysis without applying any regular-
ization. The solution oscillates because the density of
the analysis locations (every second grid location) is too
coarse for the inversion. Figure 1 (middle) shows the re-
sult of linear isotropic smoothing using H' semi-norm (3),
a significant improvement over the solution without regu-
larization, but still showing a certain amount of smearing.
This smearing is greatly reduced in Figure 1 (bottom),
the result from hybrid L;/L; nonlinear isotropic regu-
larization, which shows the sharp boundary at the right
reflector location.

Conclusion

Seismic inverse problems are inherently non-unique, and
a priori information is often needed to reduce the
ambiguity in the solution. With so many choices of data
and model regularization algorithms, a natural question



to ask is which one we should choose. In general, there is
no single correct answer to this question. But if we un-
derstand the physics behind a particular problem, finding
a solution becomes relatively easy. As a general rule,
an appropriate choice of regularization depends on our
a priori knowedge of the solution and an understanding
of the logic behind the various candidate regularization
algorithms. The solution - the inverted model - will
depend critically on our choice of regularization. For
example, in velocity analysis, if we know in advance that
velocity is piecewise constant, we will use the TV (total
variation) norm. If we know the velocity is a bi-cubic
spline, we will use H? norm. If we know in advance
that the solution is spiky, then the L; norm, the hybrid
Ly/L; norm, or the Cauchy distribution can be applied
to the model. Of course, the seismic velocity field within
the Earth is usually none of these. So our choice of
norm is a compromise that attempts to balance the
range of possible velocity distributions with the prospect
of obtaining a plausible, well-behaved solution in an
efficient manner.
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Fig. 1: Top figure shows perturbation of the velocity with-
out any smoothing; the middle figure is the result with linear
isotropic smoothing; and the bottom figure is the result of non-
linear isotropic smoothing



