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Partially linearized seismic inverse problem (‘“velocity anal-
ysSis” ). given observed seismic data SObS, find smooth velocity
v(x) oscillatory reflectivity r(x), functions of x € X so that

Flv]r ~ Gobs

Scattering operator F' defined by acoustic “partially linearized”
model: acoustic potential field v and its perturbation du solve

1 92 5 1 92 5 5
plus suitable bdry and initial conditions.

Flolr(xs, %r,t) = %@cs,xr,w

where source positions = {xs}, receiver positions = {x;,}.



Agenda:
e How common offset and Claerbout’s survey sinking or shot-
geophone migration are similar, and how they are different
e How to perform shot-geophone migration as a sequence of
two-way reverse time shot-profile (“RTSG” ) migrations
e How RTSG migration avoids kinematic artifacts

e How RTSG images arbitrary dips

e A new variant of differential semblance



Common Offset vs. Shot-Geophone.

Common features: both involve a prestack image or reflectivity
volume X = many copies of subsurface X parametrized by a bin
parameter h (half-offset)

Physical reflectivity volume produced from physical reflectivity
by an extension operator x.

Prestack migration operator G[v] = adjoint of prestack model-
ing operator F[v] (or closely related operator), parametrized by
velocity function v(x).

Reformulation of inverse problem = velocity analysis. given
prestack data d°°S, find v so that G[v]d°PS is physical, i.e. lies in
the range of x (comes from a physical reflectivity).



Common offset prestack image volume: X = subsurface volume,
>, = set of half-offsets in data, X = X x X;, x[r](x,h) = r(x).

Extended forward modeling op, applied to prestack reflectivity
r(x,h):

Flo]7(xs, £, %) =/d:cF(x,h) / ds g(xm 4 h, t — 5: X)g(xm — h, s; %)

where ¢(xs,t;x) is acoustic Green's function for source at xg,
or close relative, and x, is receiver coord, x, = %(xr + x5),

h — %(X')ﬂ — Xs).

If 7 is physical, i.e. independent of h, then this reduces to usual
integral representation (“Lippman-Schwinger equation’ ) of Born
forward modeling.

NB: note that F[v] is “block diagonal” - family of operators
parametrized by h.



G[v] = adjoint of F[v]:
G[v]d(x,h) =

/ dxs / dt d(xs,t,xs + 2h) / ds g(xs + 2h,t — s;x)g(xs, s, %)
Replace g by its usual h. f. asymptotic expansion
g(X87 t, X) = A(X87 X)5(t T T(X87 X))

and you have prestack Kirchhoff common offset migration. Add
some more amplitude terms and you have Kirchhoff inversion

(Beylkin 1985, Bleistein 1987).



Shot-geophone prestack image volume: %> ; = somewhat arbi-
trary set of vectors near 0 (‘“depth half-offsets”), X = X x X,

Physical reflectivity volumes x[r](x,h) = r(x)d(h)

Prestack forward modeling op, applied to prestack reflectivity
r(x,h):

F[’U]’F(XS) t) X'l“) —

/da:/dh'F(X,h)/dsg(xs,t—s;x—h)g(xr,s;x—l—h)

If r is physical, reduces to usual Born forward model.
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Computing G[v]: could produce Kirchhoff formula as in common
offset case - nonstandard.

Usual adjoint computation, aprés Claerbout (1985):

(1) assume double square root (“DSR"”) hypothesis: all rays
carrying significant energy are downgoing between source and
reflection point or upcoming from reflection point to receiver.

(2) restrict offsets to be horizontal, i.e. h = (hg,hy,0), and
correspondingly restrict F to reflectivity volumes of the form

r2(x,h) = 72(X, hg, hy)d(hz)
Restricted operator = F,[v]7,
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Stolk and deHoop, TRIP 2001: up to a factor affecting am-
plitudes (neglected in standard implementations), (1) and (2)
= F,[v]*d(x,h) = w(x — h,x + h,0) where w(ys,yr,t) solves 1-
way wave equations in z and ys,t, z and y,,t resp.

This is the survey-sinking method of Claerbout: downward con-
tinue sources, downward continue receivers to same depth, read
off image at t = 0.

Standard implementations in frequency, various one-way wave
equation approximations (parabolic, phase screen,...).

(Slightly different derivation: CIME notes, www.trip.caam.rice.edu)
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Summary: comparison of common offset, shot-geophone migra-
tion operators

e both are adjoints of prestack modeling operators

e bin parameter is offset - restricted to surface data offsets for
common offset, unrestricted for S-G (conventionally horizon-
tal)

e physical prestack reflectivity volumes are different: indepen-
dence from h vs. focussing in h.

e Kirchhoff is available for shot-geophone (but never used!),
mandatory for common offset
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Reverse Time Shot-Geophone Migration
Based on wave equation solved by integral representation of
modeling operator:
Flv]r(xy, t;xs) = adﬂ(x, t; Xs)|x=x,

where

1 8% _5\ .. ) |
(U(X)28t2 — VX> 5U(X,t, Xs) — /x—|—22d dy T(X, y)g(y,t, Xs)

(that's the same g as before, i.e. the causal Green's function).
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Specify adjoint field w(x, t; xs) as in standard reverse time prestack
migration:

2
(fv(i)Qth - V}%) w(X, t; Xs) = / dxr d(Xr,t; Xs)0(x — Xr)

with w(x,t;xs) = 0,t >> 0. Then

G[v]d(x,h) =/de / dt g(x 4 2, t: xs)w(x, t: Xs)

i.e. exactly the same computation as for reverse time prestack,
except that crosscorrelation occurs at offset 2h rather than O.
(Equivalent: Biondi and Shan, SEG 2002).
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Implementation issues:

(1) Restricted offsets: simply set h, = 0 in output (this is adjoint
of ¥ +— 7) to get G.[v].

(2) Implementation using finite difference method: no additional
expense over standard reverse time prestack, except for addi-
tional loop over offsets - one correlation of g, w per offset. EXx-
pense equivalent to one additional timestep per offset sample.

(3) For restricted offsets, eg. h, = 0, simply don't compute
correlations for h, = 0.
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What should be the character of the image when the velocity is
correct?

Hint: for simulation of seismograms, the input reflectivity had
the form r(x)d(h).

Therefore guess that when velocity is correct, image is concen-
trated near h = 0.

Examples: 2D finite difference implementation of reverse time
method. Correct velocity = 1. Input reflectivity used to gener-
ate synthetic data: random! For output reflectivity (image of
F.[v]*), constrain offset to be horizontal: 7(x,h) = 7,(x, hs)d(h).
Display CIGs (i.e. x =const. slices of 7,).
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offset (km)

Offset Image Gather, x=1km 0IG, x=1 km: vel 10% high 0IG, x=1 km: vel 10% low

Two way reverse time S-G image gathers of data from random
reflectivity, constant velocity. From left to right: correct velocity,
10% high, 10% low.
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Kinematics of reverse time S-G Migration

Advantage of “standard” (common shot) two way reverse time
migration: images energy which violates DSR assumption (turn-
ing rays, overturned reflectors) - standard ‘“survey-sinking” mi-
gration using depth extrapolation does not (see eg. recent TLE
article by Lines et al.).

Same advantage acrues to reverse time shot-geophone migration
(Biondi and Shan, SEG 2002).

Need to understand how events in data are imaged as reflectors
in reflectivity volume 7(x, h).

Mathematics = propagation of singularities, following Rakesh
1988; see WWS, Stolk, Biondi TRIP 2002.
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Convenient domain for expression of kinematics: source receiver
parametrization

Riynyny = 7 (FE2e v =)

Events, reflectors as points in phase space:
Event (“element”) in data: (xs,Xr,t, wps, wpr,w)

Reflector in subsurface: (ys,yr, ks, k)
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Imaging relation:
e source ray (Xs,Ps), X5(0) = x5, Ps(0) = ps
e receiver ray (X,,P;), X, (t) = x,, Pr(t) = p-

e at imaging time = time tg along source ray, rays match re-
flecting element:

- Xs(ts) - yS, wps(ts) — —kS
— Xp(ts) = yr, wPr(ts) = kv
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XS’pS

t,+t, =t

t, +t=t

Xs(t,s)’ P s(t, s)

Xs(ts)’ P gt s)

X 0).P(0)

X (t.), P (t )
=y.,-k /W
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Obvious imaging ambiguity: given data event, corresponding
rays, can choose any ts between 0 and ¢!

Convenient method to remove ambiguity (WWS, Stolk, Biondi,
TRIP 2002, see also Biondi and WWS, SEP 112 for another,
similar approach): restrict offset direction, as in original Claer-
bout S-G.

Horizontal offsets: h, = 0, i.e.

r2(x,h) = 7,(x, hg, hy)d(hz)

or in source-receiver coords

7 + 7
Yr.z ; Ys z) 5(y7“,z B ys,z)
Implies phase space constraint: reflector lies in reduced phase
space of R, wave vector = (ks, ks,y, kr.z, kry, kz) and z-imaging
COﬂdIthn |S Xs’z(ts) — X.'r’z(ts),W(Ps’z(ts) - Pfr,z(ts)) — k'z.

Rz(YS>Y7“) — Rz (ys,fﬂa Ys,yr Yr,xs Yr,y,

23



Stolk and deHoop, TRIP 2001: SUPPOSE: DSR assumption:
all significant energy to be imaged travels on downgoing source
rays (Ps . > 0) and upcoming receiver rays (Pr. < 0). NB: must
assume to use depth extrapolation in S-G migration.

THEN: Each event is imaged in exactly one reflector in the
horizontal offset reflectivity volume R,, whether the velocity is
correct or not.

PROOF: obvious (picture).

COROLLARY: If the velocity is correct, and DSR holds, then
S-G image gathers will be focussed (i.e. S-G version of sem-
blance criterion will hold) - regardless of the complexity of the
velocity field.
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X (t), P4t)

X (1), P(t)
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Why this is remarkable: analogous statement for common offset
IS false i.e. common offset image gathers may not be flat even

when velocity is correct (Stolk, Stolk and WWS - TRIP 2001,
after Nolan TRIP 1995 for common source).

Example: Gaussian lens over flat reflector at depth z (r(x) =
0(x1 — 2z), ©1 = depth).
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traveltime #s,r
—11
3,3
—21
=12
31
— 32

Common offset migration of lens data. Left: image at offset
h = 0.3 km Right: CIG at £ = 1.0 km - not smooth in A!

27



Half Cffzet [m) Aperture a=-gls {deg)
<00 — 50} J 5

200 =50 4]

S-G migration of lens data. Left: image (h = 0 section) Center:
CIG at z = 1.0km Right: Angle CIG (Radon of CIG in h,z)
[Thanks: Biondo Biondi]
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Imaging arbitrary dips

DSR assumption, horizontal offset reflectivity incompatible with
imaging reflecting elements with k, = 0 (i.e. vertical reflectors):
imaging condition is
W(Ps,z(ts) — Pr,z(ts)) =k,
but DSR requires
Ps,z > 0, Pr,z <0

and these are incompatible with k, = 0 unless w = 0. In practice:
k. small = low-frequency artifacts (“smearing” ), see Biondi and
WWS SEP 112, Biondi and Shan SEG 02.
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Imaging (near-) vertical reflectors = give up DSR, permit ver-
tical offsets h = (0,h;) (2D for simplicity - 3D similar), and
correspondingly restrict F to reflectivity volumes of the form

re(x,h) = 7p(x,hz)0(hy)

Restricted operator = F,.[v]7s

As before, to get adjoint Gy[v] simply set hy = O in output of
G[v].

Two image volumes: G.[v]d, smeared near vertical reflectors,
and Gz[v]d, smeared near horizontal reflectors.
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A solution (Stolk, WWS, Biondi, 2003 - see Biondi and WWS
SEP 112 for another approach): introduce dip filters M4, M, with

rla:(O, ks,z, k'r,z) — O, rlz(ks,:ca k'r,a:, O) =0

and define a total forward map on pairs of reflectivity volumes

Ft[v](an Tz) = Fx[”](nwa) =+ Fz[v](nze)

Adjoint G¢[v] outputs filtered restricted offset reflectivities with
smearing removed. But that is not all...
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For correct velocity, images focus (source, receiver rays inter-
sect) at h = 0 at imaging time ts. S-G imaging condition reduces
to usual Snell's law at these points.

Because of imaging condition, rays focusing at k; = 0 must have
P,.—Ps . # 0= depth components of source, receiver rays must
separate immediately, i.e. hy = 0 is violated for times near ts.
eads to generalization of Stolk-deHoop theorem:

Local Focussing Theorem: If the velocity is correct, the fil-
tered image volumes are focussed at h, = 0 resp. hy = 0 within
a corridor of width he, i.e. |hgl,|hz| < he.

[Does energy focus outside the corridor? Probably. Stay tuned.]
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Differential semblance

Quantifying the semblance principle: devise operator W for which
Wr ~ 0 is equivalent to r being physical, at least approximately.

Then minimize w.r.t. v a suitable norm
1 _
J[v] = S||WGlv]d>>®)2

Given size of these problems, want to use if possible descent-
based methods, which require smoothness of objective.

Stolk and WWS TRIP 2002 (published in IP, 2003): The only
operators W which work are pseudodifferential = compositions
of differential operators and |kP filters.
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For common offset, physical = does not depend on offset, so
only choice of W is

%4

PVy,

with P a WDO of order —1. Hence name of this technique:
differential semblance

For S-G, physical = focussed at h = 0, hence necessarily
W = Ph
with P a WDO of order 0 (Stolk 2000, Stolk & deHoop 2001).
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Ongoing Work
(1) implementation of DSR-based DS using one-way propagators

(Shen, Stolk), demonstration of Stolk-deHoop focussing prop-
erty and VA in presence of multipathing

(2) implementation of RTSG-based DS using FD WE solvers
(WWS)

(3) design of noise suppression, antialiasing for these operators
(Shen, WWS)

(4) further study of one-way propagators (Stolk)

(5) theoretical study of S-G based DS (WWS)
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