# The Rice Inversion Project 

William W. Symes, Christiaan Stolk, Peng Shen

Annual Project Review, 2002-3

## Sponsors, 2003

Amerada Hess<br>ConocoPhillips<br>Landmark Graphics<br>Sensorwise (new!)<br>Shell Research<br>Western Geco

## Agenda

0900-1200:
(1) WWS: Reverse Time S-G Migration and Differential Semblance
(2) PS: DS Velocity Analysis via Depth Extrapolation
(3) CS: Analysis of Phase Screen Depth Extrapolation

1200-1330:

Lunch, Cohen House

1330-1430:

Wrapup session

# Reverse Time S-G Migration and Differential Semblance 

William W. Symes

TRIP Review
March 2003
www.trip.caam.rice.edu

Partially linearized seismic inverse problem ("velocity analysis"): given observed seismic data $S^{\text {obs }}$, find smooth velocity $v(\mathbf{x})$ oscillatory reflectivity $r(\mathbf{x})$, functions of $\mathbf{x} \in X$ so that

$$
F[v] r \simeq S^{\mathrm{obs}}
$$

Scattering operator $F$ defined by acoustic "partially linearized" model: acoustic potential field $u$ and its perturbation $\delta u$ solve

$$
\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) u=\delta(t) \delta\left(\mathbf{x}-\mathbf{x}_{s}\right),\left(\frac{1}{v^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}\right) \delta u=2 r \nabla^{2} u
$$

plus suitable bdry and initial conditions.

$$
F[v] r\left(\mathbf{x}_{s}, \mathbf{x}_{r}, t\right)=\frac{\partial \delta u}{\partial t}\left(\mathbf{x}_{s}, \mathbf{x}_{r}, t\right)
$$

where source positions $=\left\{\mathbf{x}_{s}\right\}$, receiver positions $=\left\{\mathbf{x}_{r}\right\}$.

Agenda:

- How common offset and Claerbout's survey sinking or shotgeophone migration are similar, and how they are different
- How to perform shot-geophone migration as a sequence of two-way reverse time shot-profile ("RTSG") migrations
- How RTSG migration avoids kinematic artifacts
- How RTSG images arbitrary dips
- A new variant of differential semblance


## Common Offset vs. Shot-Geophone.

Common features: both involve a prestack image or reflectivity volume $\bar{X}=$ many copies of subsurface $X$ parametrized by a bin parameter h (half-offset)

Physical reflectivity volume produced from physical reflectivity by an extension operator $\chi$.

Prestack migration operator $\bar{G}[v]=$ adjoint of prestack modeling operator $\bar{F}[v]$ (or closely related operator), parametrized by velocity function $v(\mathbf{x})$.

Reformulation of inverse problem $=$ velocity analysis: given prestack data $d^{\mathrm{obs}}$, find $v$ so that $\bar{G}[v] d^{\mathrm{obs}}$ is physical, i.e. lies in the range of $\chi$ (comes from a physical reflectivity).

Common offset prestack image volume: $X=$ subsurface volume, $\Sigma_{h}=$ set of half-offsets in data, $\bar{X}=X \times \Sigma_{h}, \chi[r](\mathbf{x}, \mathbf{h})=r(\mathbf{x})$.

Extended forward modeling op, applied to prestack reflectivity $\bar{r}(\mathrm{x}, \mathrm{h})$ :
$\bar{F}[v] \bar{r}\left(\mathbf{x}_{s}, t, \mathbf{x}_{r}\right)=\int d x \bar{r}(\mathbf{x}, \mathbf{h}) \int d s g\left(\mathbf{x}_{m}+\mathbf{h}, t-s ; \mathbf{x}\right) g\left(\mathbf{x}_{m}-\mathbf{h}, s ; \mathbf{x}\right)$ where $g\left(\mathbf{x}_{s}, t ; \mathbf{x}\right)$ is acoustic Green's function for source at $\mathbf{x}_{s}$, or close relative, and $\mathbf{x}_{r}$ is receiver coord, $\mathbf{x}_{m}=\frac{1}{2}\left(\mathbf{x}_{r}+\mathbf{x}_{s}\right)$, $\mathrm{h}=\frac{1}{2}\left(\mathrm{x}_{r}-\mathrm{x}_{s}\right)$.

If $\bar{r}$ is physical, i.e. independent of $\mathbf{h}$, then this reduces to usual integral representation ("Lippman-Schwinger equation") of Born forward modeling.

NB: note that $\bar{F}[v]$ is "block diagonal" - family of operators parametrized by h .
$\bar{G}[v]=$ adjoint of $\bar{F}[v]:$

$$
\begin{gathered}
\bar{G}[v] d(\mathbf{x}, \mathbf{h})= \\
\int d x_{s} \int d t d\left(\mathbf{x}_{s}, t, \mathbf{x}_{s}+2 \mathbf{h}\right) \int d s g\left(\mathbf{x}_{s}+2 \mathbf{h}, t-s ; \mathbf{x}\right) g\left(\mathbf{x}_{s}, s ; \mathbf{x}\right)
\end{gathered}
$$

Replace $g$ by its usual h. f. asymptotic expansion

$$
g\left(\mathbf{x}_{s}, t ; \mathbf{x}\right) \simeq A\left(\mathbf{x}_{s}, \mathbf{x}\right) \delta\left(t-T\left(\mathbf{x}_{s}, \mathbf{x}\right)\right)
$$

and you have prestack Kirchhoff common offset migration. Add some more amplitude terms and you have Kirchhoff inversion (Beylkin 1985, Bleistein 1987).

Shot-geophone prestack image volume: $\Sigma_{d}=$ somewhat arbitrary set of vectors near 0 ("depth half-offsets"), $\bar{X}=X \times \Sigma_{d}$

Physical reflectivity volumes $\chi[r](\mathrm{x}, \mathrm{h})=r(\mathrm{x}) \delta(\mathrm{h})$

Prestack forward modeling op, applied to prestack reflectivity $\bar{r}(\mathrm{x}, \mathrm{h})$ :

$$
\begin{gathered}
\bar{F}[v] \bar{r}\left(\mathbf{x}_{s}, t, \mathbf{x}_{r}\right)= \\
\int d x \int d h \bar{r}(\mathbf{x}, \mathbf{h}) \int d s g\left(\mathbf{x}_{s}, t-s ; \mathbf{x}-\mathbf{h}\right) g\left(\mathbf{x}_{r}, s ; \mathbf{x}+\mathbf{h}\right)
\end{gathered}
$$

If $\bar{r}$ is physical, reduces to usual Born forward model.

Computing $\bar{G}[v]$ : could produce Kirchhoff formula as in common offset case - nonstandard.

Usual adjoint computation, après Claerbout (1985):
(1) assume double square root ("DSR") hypothesis: all rays carrying significant energy are downgoing between source and reflection point or upcoming from reflection point to receiver.
(2) restrict offsets to be horizontal, i.e. $\mathbf{h}=\left(h_{x}, h_{y}, 0\right)$, and correspondingly restrict $\bar{F}$ to reflectivity volumes of the form

$$
\bar{r}_{z}(\mathbf{x}, \mathbf{h})=\tilde{r}_{z}\left(\mathbf{x}, h_{x}, h_{y}\right) \delta\left(h_{z}\right)
$$

Restricted operator $=\tilde{F}_{z}[v] \tilde{r}_{z}$

Stolk and deHoop, TRIP 2001: up to a factor affecting amplitudes (neglected in standard implementations), (1) and (2) $\Rightarrow \bar{F}_{z}[v]^{*} d(\mathbf{x}, \mathbf{h})=w(\mathbf{x}-\mathbf{h}, \mathbf{x}+\mathbf{h}, 0)$ where $w\left(\mathbf{y}_{s}, \mathbf{y}_{r}, t\right)$ solves 1way wave equations in $z$ and $\mathbf{y}_{s}, t, z$ and $\mathbf{y}_{r}, t$ resp.

This is the survey-sinking method of Claerbout: downward continue sources, downward continue receivers to same depth, read off image at $t=0$.

Standard implementations in frequency, various one-way wave equation approximations (parabolic, phase screen,...).
(Slightly different derivation: CIME notes, www.trip.caam.rice.edu)

Summary: comparison of common offset, shot-geophone migration operators

- both are adjoints of prestack modeling operators
- bin parameter is offset - restricted to surface data offsets for common offset, unrestricted for S-G (conventionally horizontal)
- physical prestack reflectivity volumes are different: independence from $\mathbf{h}$ vs. focussing in $\mathbf{h}$.
- Kirchhoff is available for shot-geophone (but never used!), mandatory for common offset


## Reverse Time Shot-Geophone Migration

Based on wave equation solved by integral representation of modeling operator:

$$
\bar{F}[v] \bar{r}\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right)=\left.\frac{\partial}{\partial t} \delta \bar{u}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)\right|_{\mathbf{x}=\mathbf{x}_{r}}
$$

where

$$
\left(\frac{1}{v(\mathbf{x})^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla_{\mathbf{x}}^{2}\right) \delta \bar{u}\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\int_{\mathbf{x}+2 \Sigma_{d}} d y \bar{r}(\mathbf{x}, \mathbf{y}) g\left(\mathbf{y}, t ; \mathbf{x}_{s}\right)
$$

(that's the same $g$ as before, i.e. the causal Green's function).

Specify adjoint field $w\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)$ as in standard reverse time prestack migration:

$$
\left(\frac{1}{v(\mathbf{x})^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla_{\mathbf{x}}^{2}\right) w\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)=\int d x_{r} d\left(\mathbf{x}_{r}, t ; \mathbf{x}_{s}\right) \delta\left(\mathbf{x}-\mathbf{x}_{r}\right)
$$

with $w\left(\mathrm{x}, t ; \mathbf{x}_{s}\right)=0, t \gg 0$. Then

$$
\bar{G}[v] d(\mathbf{x}, \mathbf{h})=\int d x_{s} \int d t g\left(\mathbf{x}+2 \mathbf{h}, t ; \mathbf{x}_{s}\right) w\left(\mathbf{x}, t ; \mathbf{x}_{s}\right)
$$

i.e. exactly the same computation as for reverse time prestack, except that crosscorrelation occurs at offset 2 h rather than 0. (Equivalent: Biondi and Shan, SEG 2002).

Implementation issues:
(1) Restricted offsets: simply set $h_{z}=0$ in output (this is adjoint of $\tilde{r} \mapsto \bar{r})$ to get $\widetilde{G}_{z}[v]$.
(2) Implementation using finite difference method: no additional expense over standard reverse time prestack, except for additional loop over offsets - one correlation of $g, w$ per offset. Expense equivalent to one additional timestep per offset sample.
(3) For restricted offsets, eg. $h_{z}=0$, simply don't compute correlations for $h_{z} \neq 0$.

What should be the character of the image when the velocity is correct?

Hint: for simulation of seismograms, the input reflectivity had the form $r(\mathbf{x}) \delta(\mathbf{h})$.

Therefore guess that when velocity is correct, image is concentrated near $h=0$.

Examples: 2D finite difference implementation of reverse time method. Correct velocity $\equiv 1$. Input reflectivity used to generate synthetic data: random! For output reflectivity (image of $\left.\bar{F}_{z}[v]^{*}\right)$, constrain offset to be horizontal: $\bar{r}(\mathbf{x}, \mathbf{h})=\tilde{r}_{z}\left(\mathbf{x}, h_{x}\right) \delta\left(h_{z}\right)$. Display CIGs (i.e. $x=$ const. slices of $\tilde{r}_{z}$ ).


Two way reverse time S-G image gathers of data from random reflectivity, constant velocity. From left to right: correct velocity, 10\% high, 10\% low.

## Kinematics of reverse time S-G Migration

Advantage of "standard" (common shot) two way reverse time migration: images energy which violates DSR assumption (turning rays, overturned reflectors) - standard "survey-sinking" migration using depth extrapolation does not (see eg. recent TLE article by Lines et al.).

Same advantage acrues to reverse time shot-geophone migration (Biondi and Shan, SEG 2002).

Need to understand how events in data are imaged as reflectors in reflectivity volume $\bar{r}(\mathbf{x}, \mathbf{h})$.

Mathematics $=$ propagation of singularities, following Rakesh 1988; see WWS, Stolk, Biondi TRIP 2002.

Convenient domain for expression of kinematics: source receiver parametrization

$$
\bar{R}\left(\mathbf{y}_{s}, \mathbf{y}_{r}\right)=\bar{r}\left(\frac{\mathbf{y}_{s}+\mathbf{y}_{r}}{2}, \frac{\mathbf{y}_{r}-\mathbf{y}_{s}}{2}\right)
$$

Events, reflectors as points in phase space:

Event ("element") in data: ( $\mathbf{x}_{s}, \mathbf{x}_{r}, t, \omega \mathbf{p}_{s}, \omega \mathbf{p}_{r}, \omega$ )

Reflector in subsurface: $\left(\mathbf{y}_{s}, \mathbf{y}_{r}, \mathbf{k}_{s}, \mathbf{k}_{r}\right)$

Imaging relation:

- $\operatorname{source} \operatorname{ray}\left(\mathbf{X}_{s}, \mathbf{P}_{s}\right), \mathbf{X}_{s}(0)=\mathbf{x}_{s}, \mathbf{P}_{s}(0)=\mathbf{p}_{s}$
- receiver ray $\left(\mathbf{X}_{r}, \mathbf{P}_{r}\right), \mathbf{X}_{r}(t)=\mathbf{x}_{r}, \mathbf{P}_{r}(t)=\mathbf{p}_{r}$
- at imaging time $=$ time $t_{s}$ along source ray, rays match reflecting element:

$$
\begin{aligned}
& -\mathbf{X}_{s}\left(t_{s}\right)=\mathbf{y}_{s}, \omega \mathbf{P}_{s}\left(t_{s}\right)=-\mathbf{k}_{s} \\
& -\mathbf{X}_{r}\left(t_{s}\right)=\mathbf{y}_{r}, \omega \mathbf{P}_{r}\left(t_{s}\right)=\mathbf{k}_{r}
\end{aligned}
$$

Obvious imaging ambiguity: given data event, corresponding rays, can choose any $t_{s}$ between 0 and $t$ !

Convenient method to remove ambiguity (WWS, Stolk, Biondi, TRIP 2002, see also Biondi and WWS, SEP 112 for another, similar approach): restrict offset direction, as in original Claerbout S-G.

Horizontal offsets: $h_{z}=0$, i.e.

$$
\bar{r}_{z}(\mathbf{x}, \mathbf{h})=\tilde{r}_{z}\left(\mathbf{x}, h_{x}, h_{y}\right) \delta\left(h_{z}\right)
$$

or in source-receiver coords

$$
\bar{R}_{z}\left(\mathbf{y}_{s}, \mathbf{y}_{r}\right)=\tilde{R}_{z}\left(y_{s, x}, y_{s, y}, y_{r, x}, y_{r, y}, \frac{y_{r, z}+y_{s, z}}{2}\right) \delta\left(y_{r, z}-y_{s, z}\right)
$$

Implies phase space constraint: reflector lies in reduced phase space of $\tilde{R}$, wave vector $=\left(k_{s, x}, k_{s, y}, k_{r, x}, k_{r, y}, k_{z}\right)$ and $z$-imaging condition is $\mathbf{X}_{s, z}\left(t_{s}\right)=\mathbf{X}_{r, z}\left(t_{s}\right), \omega\left(\mathbf{P}_{s, z}\left(t_{s}\right)-\mathbf{P}_{r, z}\left(t_{s}\right)\right)=k_{z}$.

Stolk and deHoop, TRIP 2001: SUPPOSE: DSR assumption: all significant energy to be imaged travels on downgoing source rays ( $\mathbf{P}_{s, z}>0$ ) and upcoming receiver rays ( $\mathbf{P}_{r, z}<0$ ). NB: must assume to use depth extrapolation in S-G migration.

THEN: Each event is imaged in exactly one reflector in the horizontal offset reflectivity volume $\tilde{R}_{z}$, whether the velocity is correct or not.

PROOF: obvious (picture).
COROLLARY: If the velocity is correct, and DSR holds, then S-G image gathers will be focussed (i.e. S-G version of semblance criterion will hold) - regardless of the complexity of the velocity field.


Why this is remarkable: analogous statement for common offset is false i.e. common offset image gathers may not be flat even when velocity is correct (Stolk, Stolk and WWS - TRIP 2001, after Nolan TRIP 1995 for common source).


Example: Gaussian lens over flat reflector at depth $\mathbf{z}(r(x)=$ $\delta\left(x_{1}-z\right), x_{1}=$ depth $)$.


Common offset migration of lens data. Left: image at offset $h=0.3 \mathrm{~km}$ Right: CIG at $x=1.0 \mathrm{~km}$ - not smooth in $h$ !


S-G migration of lens data. Left: image ( $h=0$ section) Center: CIG at $x=1.0 \mathrm{~km}$ Right: Angle CIG (Radon of CIG in $h, z$ ) [Thanks: Biondo Biondi]

## Imaging arbitrary dips

DSR assumption, horizontal offset reflectivity incompatible with imaging reflecting elements with $k_{z}=0$ (i.e. vertical reflectors): imaging condition is

$$
\omega\left(\mathbf{P}_{s, z}\left(t_{s}\right)-\mathbf{P}_{r, z}\left(t_{s}\right)\right)=k_{z}
$$

but DSR requires

$$
\mathbf{P}_{s, z}>0, \mathbf{P}_{r, z}<0
$$

and these are incompatible with $k_{z}=0$ unless $\omega=0$. In practice: $k_{z}$ small $\Rightarrow$ low-frequency artifacts ("smearing"), see Biondi and WWS SEP 112, Biondi and Shan SEG 02.

Imaging (near-) vertical reflectors $\Rightarrow$ give up DSR, permit vertical offsets $\mathbf{h}=\left(0, h_{z}\right)$ (2D for simplicity - 3D similar), and correspondingly restrict $\bar{F}$ to reflectivity volumes of the form

$$
\bar{r}_{x}(\mathbf{x}, \mathbf{h})=\tilde{r}_{x}\left(\mathbf{x}, h_{z}\right) \delta\left(h_{x}\right)
$$

Restricted operator $=\tilde{F}_{x}[v] \tilde{r}_{x}$
As before, to get adjoint $\widetilde{G}_{x}[v]$ simply set $h_{x}=0$ in output of $\bar{G}[v]$.

Two image volumes: $\tilde{G}_{z}[v] d$, smeared near vertical reflectors, and $\tilde{G}_{x}[v] d$, smeared near horizontal reflectors.

A solution (Stolk, WWS, Biondi, 2003 - see Biondi and WWS SEP 112 for another approach): introduce dip filters $\Pi_{x}, \Pi_{z}$ with

$$
\Pi_{x}\left(0, k_{s, z}, k_{r, z}\right)=0, \Pi_{z}\left(k_{s, x}, k_{r, x}, 0\right)=0
$$

and define a total forward map on pairs of reflectivity volumes

$$
\tilde{F}_{t}[v]\left(\tilde{r}_{x}, \tilde{r}_{z}\right)=\tilde{F}_{x}[v]\left(\Pi_{x} \tilde{r}_{x}\right)+\tilde{F}_{z}[v]\left(\Pi_{z} \tilde{r}_{z}\right)
$$

Adjoint $\tilde{G}_{t}[v]$ outputs filtered restricted offset reflectivities with smearing removed. But that is not all...

For correct velocity, images focus (source, receiver rays intersect) at $\mathbf{h}=0$ at imaging time $t_{s}$. S-G imaging condition reduces to usual Snell's law at these points.

Because of imaging condition, rays focusing at $k_{z} \neq 0$ must have $\mathbf{P}_{r, z}-\mathbf{P}_{s, z} \neq 0 \Rightarrow$ depth components of source, receiver rays must separate immediately, i.e. $h_{z}=0$ is violated for times near $t_{s}$. Leads to generalization of Stolk-deHoop theorem:

Local Focussing Theorem: If the velocity is correct, the filtered image volumes are focussed at $h_{z}=0$ resp. $h_{x}=0$ within a corridor of width $h_{c}$, i.e. $\left|h_{x}\right|,\left|h_{z}\right|<h_{c}$.
[Does energy focus outside the corridor? Probably. Stay tuned.]

## Differential semblance

Quantifying the semblance principle: devise operator $W$ for which $W \bar{r} \simeq 0$ is equivalent to $\bar{r}$ being physical, at least approximately.

Then minimize w.r.t. $v$ a suitable norm

$$
J[v] \equiv \frac{1}{2}\left\|W \bar{G}[v] d^{\mathrm{obs}}\right\|^{2}
$$

Given size of these problems, want to use if possible descentbased methods, which require smoothness of objective.

Stolk and WWS TRIP 2002 (published in IP, 2003): The only operators $W$ which work are pseudodifferential = compositions of differential operators and $|k|^{p}$ filters.

For common offset, physical $=$ does not depend on offset, so only choice of $W$ is

$$
W=P \nabla_{\mathbf{h}}
$$

with $P$ a $\Psi D O$ of order -1 . Hence name of this technique: differential semblance

For S-G, physical $=$ focussed at $\mathbf{h}=0$, hence necessarily

$$
W=P h
$$

with $P$ a $\Psi$ DO of order 0 (Stolk 2000, Stolk \& deHoop 2001).

## Ongoing Work

(1) implementation of DSR-based DS using one-way propagators (Shen, Stolk), demonstration of Stolk-deHoop focussing property and VA in presence of multipathing
(2) implementation of RTSG-based DS using FD WE solvers (WWS)
(3) design of noise suppression, antialiasing for these operators (Shen, WWS)
(4) further study of one-way propagators (Stolk)
(5) theoretical study of S-G based DS (WWS)

