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ABSTRACT

Velocity analysis resolves relatively long scales of earth structure, on the order of 1 km.
Migration produces images with length scales (wavelengths) on the order of 10’s of m.
In between these two scale regimes lies another, corresponding roughly to structures
between 60 to 300m in extent, in which the resolution of velocity analysis is uncertain
and the energy of images is small to non-existent. The proposed thesis aims at assessing
the impact on velocity analysis and imaging of uncertainty at these intermediate length
scales, using ideas on time reversal and imaging in randomly inhomogeneous media
developed by G. Papanicolaou and colleagues, in combination with velocity estimation
methods of differential semblance type.

INTRODUCTION

Motivation

The Earth’s crust is extremely heterogeneous, with structures occurring over a broad range
of scales, from the micrometer-millimeter grain and pore scale, to the multi-kilometer sedi-
mentary basin scale (where hydrocarbons are typically found). These heterogeneities include
variations in lithology, porosity, permeability, pore fluid properties, and conditions of pore
pressure, temperature, and stress, among others.

Exploration seismology aims at determining the structure of the near-subsurface (usually 0-
10km) of the Earth from observations of reflected seismic waves, generally for the purpose of
locating hydrocarbons. Because the mechanical properties of the heterogeneous near-surface
span a wide range of scales, seismic waves propagate in a variety of complex nonlinear ways.
In order to understand seismic time responses in the earth, the effects of such complexity on
seismic wave fields need to be resolved. To model the propagation of waves, the subsurface
is generally viewed as an acoustic medium. Although this model does not accommodate
many of the phenomena associated with seismic wave propagation, it is the simplest one
in which to carry out the analysis and is widely used in the seismic processing industry.
Such a medium is generally described by the following two parameters: the acoustic wave
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speed and the mass density. These parameters occur as coefficients in the wave equation
which describes wave propagation in an acoustic medium. It was established long ago that
reflected signals are caused by localized, rapid changes in rock properties. Inspection of
direct measurements (well logs) often shows that these reflection zones exhibit oscillatory
or abrupt changes in mechanical properties. Because the density plays a relatively minor
role and changes less dramatically than the velocity in the upper crust of the Earth, we
may view it as a constant and disregard it. Accordingly, the significant properties of an
arbitrary Earth model are a smooth velocity macro-model plus a rough reflectivity micro-
model. For this reason, seismic data are commonly modeled by a high-frequency single
scattering approximation [6], the so-called ’ray+Born’ approximation. This amounts to a
linearization of the wave equation in the medium coefficients about a smooth background.
That is, the medium coefficient is written as a sum of a smooth background component and
an oscillatory perturbation (the reflectivity), assumed to be small enough that linearization
is accurate. This scale dichotomy between long scale and short scale components reflects
the common conceptual division: velocity is responsible for kinematics, while reflectivity is
responsible for dynamics. The separation of scales also allows for great simplification in the
description of solutions of the solutions of the wave equation: in particular, waves propagate
according to geometrical optics in the background medium, and (partially) reflect at the
singularities of the reflectivity.

Both the smooth background and the perturbation are in general unknown and have to be
reconstructed jointly. Seismic imaging techniques typically resolve the long-scale component
of velocity via a process called velocity analysis, whereas migration (or linearized inversion)
methods commonly resolve the reflectivity. However, the standard techniques do not esti-
mate the intermediate scale structure. In fact, there is a widespread belief that seismic data
simply do not contain any reliable information on this intermediate scale structure. Indeed,
Jannine, Tarantola et al. [28] showed that while seismic data contain information on both
long wavelengths (λ ≥ 300 m) and short wavelengths of velocity (λ ≤ 60 m), they do not
contain information on the middle wavelengths (60 m ≤ λ ≤ 300 m). This is the well-known
scale gap. This is corroborated by Claerbout [19] who described the “information” gap by
the following plot (Imaging the Earth’s interior, page 47):

Fig. 1. Reliability of information obtained from surface seismic measurements
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The proposed work aims at providing a new way to look at this familiar ”fact”. Although
the scale gap indicates that seismic data provide little intrinsic information about the mid-
dle scales of velocity, it is not clear that this intermediate structure scale does not influence
the resolution of the long (background velocity) and short (image) scales. In fact, because
the seismic problem is nonlinear (these are components of the velocity), one would expect
“energy” or (lack of) ”information” to cascade between scales. That is, it seems very reason-
able to think that the uncertainty at one scale would pollute the estimation of one (velocity
analysis) and the quality of the other (migration). The choice of a random field to model
the intermediate scale structure follows naturally from the above discussion: what the ran-
dom process represents is precisely the uncertainty and the lack of information inherent to
these medium scales. The equation of linear acoustics wave propagation becomes therefore
a stochastic partial differential equation, and the underlying theory becomes that of wave
propagation in stochastic media.

Three-scale asymptotics

In order to study the effect of the random fluctuations of the medium scale velocity compo-
nent, we will consider a model of the Earth with three distinct scales of velocity:

• “Deterministic” reflectors (the zones of rapid velocity changes) are structures on wave-
length scale λ, corresponding to the short-scale component of velocity.

• the background velocity “macro-model” (the component which may be estimated via
velocity analysis) varies on the scale L, which will also be the typical propagation
distance.

• The medium scale velocity will be regarded as a randomly fluctuating field on the scale
l.

This setting corresponds to the high-frequency regime in which λ � l � L. Under this
asymptotic assumption, waves propagate over many correlation lengths so multiple scattering

is significant. Furthermore, random fluctuations are slowly varying on the wavelength scale,
so that scattered waves concentrate within a narrow cone and propagate essentially in the
same direction as the primary wave. Therefore multiple scattering occurs essentially in
the form of multipathing (i.e. forward scattering). In particular, the wave fields can be
approximated within the framework of geometrical optics, which accounts for multipathing.
However, this approximation method completely ignores diffraction effects which become
important when the distance L covered by the wave field in the heterogeneous medium is
sufficiently large (L � l/λ). We will use the parabolic equation approximation [4; 3; 54],
an extension of the geometrical optics approximation which takes diffraction effects into
account.
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Wave propagation in randomly inhomogeneous media

The phenomena associated with high-frequency wave propagation in randomly inhomoge-
neous media and the methods of their analysis are considerably varied. Numerous the-
oretical, computational, and experimental studies have dealt with wave propagation in
stochastic media, both in 1-D layered media [33] and in 2-D and 3-D random media, e.g.
[18; 57; 32; 27; 42; 40; 58]. More recently, the scattering phenomena associated with stochas-
tic wave propagation have been put to contribution in the context of time-reversed acoustics.
In time reversal experiments, a signal emitted by a localized source is recorded by an array of
transducers, and then re-emitted into the medium time-reversed, that is, the tail of the signal
is sent first. In the absence of absorption, the re-emitted signal propagates back toward the
source and focuses approximately on it. In a homogeneous medium, the size of the refocused
spot is approximately λL/a, where L is the distance of propagation, λ is the wavelength,
and a is the size of the transducer array. There are two striking features associated with
time reversal in randomly inhomogeneous media. The first one is the super-resolution phe-
nomenon which arises as a by-product of multipathing: the transducer array captures waves
that were initially moving away from it but get scattered onto it by the inhomogeneities. As
the result, the array captures a larger part of the total wave field emanating from the point
source and thus appears to be larger than its physical size. The refocused spot is now λL/ae,
where ae > a is the effective size of the array. The second feature is that the time-reversed
field is self-averaging, so that the refocusing of the signal is in essence statistically stable,
i.e. it does not depend on the particular realization of the random medium. This process
has had numerous applications such as in ultrasound medical imaging, foliage and ground
penetrating radar, mine detection in the ocean, non-destructive testing (e.g. identifying
defects in materials), and underwater acoustics (e.g. wireless and secure communications),
among others. It has been extensively studied, both experimentally, numerically and the-
oretically [20; 38; 37; 36; 24; 29; 44; 21; 22; 41; 2; 9; 35; 34]. More recently, time reversal
has been the subject of active mathematical research in the context of imaging in randomly
inhomogeneous media [5; 13; 12; 10]. In particular, these papers show that it is possible
to construct self-averaging functionals of the wave field which can then be used not only to
“image” point scatterers but also to quantify the influence of the randomly inhomogeneous
medium. Although these ideas have been developed with the seismic imaging as a potential
application, a thorough examination of the applicability of these techniques to the seismic
inverse problem has yet to be made.

Applications to seismic imaging

The proposed work aims precisely at doing so, in the following contexts. First, we will
study the influence of the random fluctuations on the estimation of the background velocity.
Estimation of a sufficiently accurate background velocity model in areas where the geology
is complex is one of the core challenges in seismic imaging. Since the data can be predicted
from the velocity by means of the linear acoustics model, the determination of the latter
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can be formulated as an inverse problem, i.e. the background velocity can be adjusted so
that the model predicts the observed data as well as possible. A popular formulation of this
inverse problem is the output least-squares, in which case the data are to be fitted in the L2

sense. Differential semblance optimization [14; 49; 50; 43; 25; 17; 31; 46; 47] is one of many
formulations of velocity analysis as an optimization problem. In the form presented in [51; 52;
47], the differential semblance objective is the only quadratic functional with smooth (C∞)
dependence on the background medium [47]. This result is supported by several numerical
examples [16]. Moreover, for laterally homogeneous medium (i.e. the velocity is a function of
depth only) and with the travel times replaced by their hyperbolic moveout approximations,
the stationary points of the differential semblance functional are actually asymptotic global
minima [52]. The same result was achieved in [46], with a laterally homogeneous medium and
a single reflector (it can be extended to accommodate many reflectors) but with the correct
(ray-theory) travel times, provided the medium is non constant above the reflector. In this
thesis, we propose to construct statistically stable functionals of the differential semblance
type, i.e. functionals which essentially vanish at the correct background velocity. The second
part of the proposed work will focus on the influence of the cross-scale interactions on the
quality of migration. Migration is the central step in seismic processing because it actually
produces detailed map (“image”) of the structure of the near-subsurface of the Earth. As it
was demonstrated in [30; 6; 48; 39; 55], migration is a technique of imaging discontinuities of
parameters describing the medium and its accuracy relies on a correct background velocity
model. The proposed work will show that the effect of the random fluctuations in the medium
scales of velocity can be explicitly quantified, using the techniques discussed previously.

Contents of this proposal

This proposal is organized as follows. Sections 1 and 2 are of an introductory nature. Section
1 gives an overview of the seismic inverse problem, with an emphasis on seismic migration and
velocity analysis using differential semblance optimization. Section 2 contains an overview
of the properties of time-reversed acoustic fields, including a detailed mathematical analysis
of the phenomena of super-resolution and self-averaging of certain functionals of the wave
fields. Section 3 represents the core of this thesis proposal. We show there how the tools
developed by G. Papanicolaou and his group might be used in the context of seismic imaging.

THE SEISMIC INVERSE PROBLEM

In this section, we give a brief overview of the seismic inverse problem. The focus will be
mostly on the aspects that are of primary interest in the proposed thesis, namely migration
(imaging) and velocity analysis via differential semblance optimization. The presentation is
based on the notes of Professor Symes [48] as well as the paper by Stolk and Symes [47].
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Modeling and migration

We assume that the medium occupies an open part X ⊂ R
n, with boundary ∂X ⊂ R

n−1. It
is often the case that the medium is actually confined to a half-space by writing X = {x ∈
R

n| xn > 0}. Sources and receivers are distributed over a source and receiver manifold Σs,
Σr that are assumed to be open parts of the boundary ∂X. Depending on the experiment
configuration, Σs and Σr may partially coincide, or be totally disjoint (note that source and
receiver locations, although discrete in reality, are commonly idealized as continuous). The
measurements are made during the time interval It = [0, T ]. The medium is described solely
by the acoustic speed of sound c(x). The constant density linear acoustic model of small
amplitude wave propagation in a fluid is given by:

1

c2
∂2p

∂t2
−∇2p = g, (1)

where g is a body force divergence (the source), and where p represents the pressure field.
Assuming that the source term g is known, the inverse problem is to infer the velocity c
from a sampling of p at receiver locations. By Duhamel’s principle, a causal solution for the
inhomogeneous equation (1) is constructed as a superposition of Green’s functions

p(x, t) =

∫ t

0

∫
G(x,y, t− τ)f(y, τ)dydτ

Because the inverse problem as formulated is intractable (the relation between c and p is
highly nonlinear), a common practice is to linearize the wave equation, thereby writing the
medium coefficient as the sum of a long scale component c0 and a small scale perturbation δc.
This is the Born approximation. The perturbation contains the singularities and is assumed
to be small.

We further assume that the source has point support, i.e. g(x, t) = f(t)δ(x − xs). In the
high-frequency single scattering approximation, the data are modeled as the trace of the
first-order perturbation to the Green’s function on the hypersurface {xn = 0}:

d(xs,xr, t) = f(t) ∗t δG(xs,xr, t) = f(t) ∗t

∫ [
2δc(x)

c3(x)

∫
G(x,xr, t− τ)

∂2G

∂t2
(xs,x, τ)dτ

]
dx.

(2)
We now define the linearized forward operator F = F [c0] to be the (linear) operator mapping
the reflectivity r = 2δc/c3 to the data d, i.e.

d(xs,xr, t) = F [c0]r(x)

The next approximation consists the geometrical optics approximation to the Green’s func-
tions on the right-hand-side of (2). This approximation is accomplished via the progressing

wave expansion (it amounts in keeping the first term in the progressing wave expansion - or
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WKB expansion - of G, hence the ’ray+Born’ term mentioned in the introduction). If n = 3,
we obtain the so-called Kirchhoff modeling operator:

d(xs,xr, t) ' f ′′′(t) ∗t

∫
a(x,xs,xr)δ (t− T (x,xr) − T (x,xs))

2δc(x)

c3(x)
dx, (3)

where a(x,xs,xr) is just an amplitude factor.

It is well known [39; 56; 48] that the linear modeling operator F , under certain assumptions,
is a Fourier integral operator, i.e. it has a kernel of the form

K(xs,xr, t;x) =

∫
A(x,xs,xr, τ)e

iτ(t−T (x,xs,xr))dτ, (4)

where T (x,xs,xr) is the two-way travel time (the time it takes for a ray to travel from the
source at xs to the reflector point x and back to the receiver at xr.

As we mentioned before, seismic processing involves the joint reconstruction of the back-
ground velocity and of the reflectivity. Both are a priori unknown. The reconstruction
involves two distinct steps. Migration, or linearized inversion aims at the recovery of the re-
flectivity given the background velocity. Velocity analysis aims at estimating the background
model, and is typically based on a set of reconstructions of the reflectivity.

The reconstruction of δc given the background velocity is essentially done by applying the
adjoint of the linear modeling operator F to the data. This operator is precisely the migration
operator and the outcome of this operation is a so-called seismic image of the reflectivity or
more precisely of the high-frequency component of the velocity. The operator F has a left
inverse if and only if the normal operator F ∗F is invertible. In that case, a left inverse, given
by (F ∗F )−1F ∗ is optimal in the sense of least-squares.

It turns out that the redundancy in the data (the dimension of the data is 2n− 1, whereas
that of the reflectivity is n) can be used to simplify greatly the inversion process. The data
can thus be partitioned into n-dimensional subsets, and each of this subset may be used for
an independent reconstruction of the reflectivity. We will thereafter assume that the data
are binned into sets of constant half-offset h = (xs − xr). We write

Th(x,xr) = T (x,xr − h,xr)

It has been shown by Beylkin [6] (and later Bleistein [8]) that the (asymptotic) inversion for
δc is possible only if the following condition is satisfied

det

(
∂2Th

∂x∂xr

∂Th

∂x

)
6= 0.

This determinant is the so-called Beylkin determinant. If this condition is satisfied, then it
was shown by Beylkin [6] that Fh (the modeling operator corresponding to that particular
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subset of the data) is partially (and microlocally) invertible. The proof involves showing
that the normal operator F ∗

hFh is pseudodifferential with invertible symbol. An asymptotic
inverse has the general form

Gh(x,xr, t) ' (F ∗
hFh)

−1F ∗
h ' F ∗

h ≡
∫
φ(xr − h,xr, t)b(x, h,xr, t)e

iτ(Th(x,xr)−t)dτ,

Here φ is a C∞ cutoff function, equal to one on a subset of the data acquisition set, vanishing
outside a larger compact set than the acquisition set, and smoothly varying in between. The
operator Gh is called a migration operator. In particular, an asymptotic inverse to the
operator in (3) yields the so-called Kirchhoff migration operator:

r(x) ≡ (Ghd) (x) ≡
∫∫∫

b(h,xr, t)δ (t− Th(x,xr)) d(h,xr, t) dtdxrdh (5)

We define the operator G to be the map from data to the set of reconstructions:

G : d 7→ r(h,x) = (Ghd)(x).

VELOCITY ANALYSIS VIA DIFFERENTIAL

SEMBLANCE OPTIMIZATION

The semblance principle, which states that the images (of the singular part of the reflec-
tivity) must agree, is the basis for the reconstruction of the background velocity. Given an
estimate of the background medium, a set of images, each one corresponding to a particular
“experiment” (or subset of the data) can be constructed in the manner described in the
previous section. The reconstructed medium perturbation should obviously not depend on
the offset h being used (there is only one Earth, hence one reflectivity), since this dependence
is purely an artifact which expresses the redundancy in the data. The reconstructions will
be essentially the same (as far as possible given that the inversion of the reflectivity is only
partial) if the background medium is correctly chosen. However, if the background medium
is incorrect, then there will some dependence on h and the images will not agree.

There are been several attempts to automate the procedure of determining the background
medium. Several optimization methods have been proposed in which a functional of the set
of images having an extremum when the images agree is optimized (see [15] for a comparison
of various methods). In this paper, we consider functionals of the differential semblance type.
Differential semblance functionals express semblance through the comparison of neighboring

bins (in our case, offset). In particular, images are compared by taking the derivatives ∂/∂h.
We consider the asymptotic expression for the differential semblance functional as presented
in [52]:

J0[c0] = 1
2
‖HψF [c0]WG[c0]d‖2

L2(R2n−1), (6)

This general form of differential semblance is in part due to ideas introduced in the thesis
of M. Gockenbach and H. Song [25; 43]. Here W = ∂/∂h is the operator approximating
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the derivative in the bin parameter(s). The application of the modeling operator F [c0] after
formation of the bin difference makes the power of the output independent of the amplitude,
up to an error which decays with increasing frequency. The function φ is a mute designed to
control edge artifacts produced by differentiation in the bin direction, while the operator H
is a smoothing pseudodifferential operator designed to keep the spectrum of the functional
output comparable to that of the data (differentiation enhances frequency content). An
appropriate choice is the inverse square root of the Helmholtz operator:

H = (I −∇2)1/2.

In the form presented here, the differential semblance objective is the only quadratic func-
tional with smooth (C∞) dependence on the background medium [47]. This is conditioned
on the fact that W is a pseudodifferential operator. Moreover, for laterally homogeneous
medium and with the hyperbolic moveout approximation of the travel times, it was shown
in [52] that the stationary points of the differential semblance functional are actually asymp-
totic global minima. The hyperbolic moveout approximation assumption was relaxed by
Stolk [46] who proved the same result with the correct (ray-theory) travel times, provided
the medium is nonconstant above the reflector.

There is a nice connection between differential semblance optimization and pseudodifferential
annihilators [23; 26]. Annihilators are a precise microlocal representation of the differential
semblance concept. In fact, as mentioned in [45], the operator

F
∂

∂h
G

is a pseudodifferential operator which microlocally annihilates the data. If the background
velocity is correct, then the differential semblance functional essentially vanishes. Hence, the
reconstruction of the background velocity for a given data set amounts to determining the
appropriate microlocal annihilator for that data set.

TIME REVERSAL IN RANDOMLY INHOMOGENEOUS MEDIA

In this section, we analyze and describe two important phenomena associated with time
reversal in a randomly inhomogeneous medium:

• Super-resolution of the time-reversed, backpropagated wave field, due to multipathing.

• Self-averaging of the field which produces a statistically stable refocusing.

The analysis is based on a specific asymptotic regime, where the distance of propagation is
much larger than the correlation length of the medium, fluctuations in the index of refraction
are weak, and the wavelength is short compared to the correlation length of the randomly
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inhomogeneous medium. This high-frequency regime is precisely the one that we described
in the introduction and in which we will subsequently consider the seismic inverse problem.

The presentation that follows is based for the most part on the lectures that Professor Liliana
Borcea gave during the spring semester of 2003 at Rice University, and which are collected
in some notes [10]. Other references include the papers by Papanicolaou and colleagues
[9; 35; 34], and the monologues by Ishimaru [27], Sobczyk [42], and by Rytov, Kravtsov and
Tatarskii [40].

Introduction

In time reversal experiments, a pulse with carrier wavelength λ0 is emitted by a point source,
recorded by a transducer array of size a, and then re-emitted into the medium, time-reversed.
The propagation distance L is large compared to the size a of the array. The randomly inho-
mogeneous medium fluctuates on a scale l which is short compared to a, but large compared
to the wavelength λ0. This regime is appropriate for the so-called parabolic approximation of
the wave equation, in which the waves are assumed to propagate along a preferred direction.
The z axis represents precisely that direction, whereas the x-axis represents the plane of the
coordinates (x, y) transverse to the direction of propagation. A schematic description of a
time reversal experiment is shown on Figure 2.

L

a
z

x

Fig. 2. Setup for the time reversal experiment
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The parabolic approximation

We start with the (constant density) acoustic wave equation

1

c2(x)

∂2u

∂t2
− ∆u = 0, x = (x, y, z) (7)

Taking its Fourier transform in time, we obtain the reduced wave equation (also known as
the Helmholtz equation)

∆û+ k2n2(x)û = 0,

of greatest interest when the (constant) wave number k = ω/c0 is large. Here c0 is a reference
speed, c(x) is the propagation speed, and n(x) = c0/c(x) is the index of refraction of the
medium, i.e. the ratio of the random propagation speed relative to the reference speed c0.
The transducer array is typically much smaller than the distance to the source, i.e. a � L.
This puts the problem in the narrow beam regime, and the paraxial approximation [4; 3; 54]
may be used as follows. Assuming that wave propagates in the z direction, the first step in
obtaining the parabolic equation is to recognize that its phase progresses essentially as ikz.
Therefore, writing the solution of the Helmholtz equation in the form

û(x;ω) = eikzψ(x; k),

i.e. a time harmonic standing wave of frequency ω, substitution into (7) yields a (parabolic)
initial value problem for the wave amplitude ψ, in which the direction of propagation z plays
the role of time [4]:

2ikψz + ∆ψ + k2(n2 − 1)ψ = 0

ψ
∣∣
z=0

= ψ0(x; k).
(8)

Since ψ(x) is a slowly varying function of z and varies only over the distance of the scale l
of the random fluctuations of the medium, we note that

k|ψz| � |ψzz| as long as l � λ

Therefore we can replace ∇2 by the “transversal” Laplacian ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, and

we obtain the parabolic approximation equation for ψ(x) (also known as the Schrödinger
equation)

2ikψz + ∆xψ + k2(n2 − 1)ψ = 0 (9)

where we have written x = (x, y) for the transverse coordinates.

The physical sense of the approximation of the wave equation (7) by the parabolic equation
(9) consists in the restriction of the wave field energy to the slow and rather small scattering
in the transverse direction with increasing z. This approximation ignores backscattering
(i.e. neglecting the term ψzz) but includes multiple forward scattering (multipathing) and
takes into account diffraction (in the Fresnel approximation). The parabolic approximation
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is not valid near the point source where the beam geometry is not appropriate. Moreover,
it may not be used when the typical size of the inhomogeneities l is comparable to the
wavelength λ of the signal. When kl = O(1) the variations of the index of refraction will
produce oscillations in φ in the z direction on the scale l ∼ 1/k. This in turn implies that
|ψz| and |ψzz| are comparable. Therefore, the assumption l ∼ λ violates the validity of the
parabolic approximation.

An important feature of this equation is the fact that it is first order in z. It is therefore
sufficient to have only one boundary condition in the plane z =const.

Scaling, ordering and asymptotic analysis

In order to study the effect of the (random) heterogeneities on the backpropagated wave
field, we consider the high-frequency regime, with weak fluctuations of the randomly inho-
mogeneous medium. More precisely, we consider the following scaling:

λ� l � L (10)

This is the high-frequency regime: as mentioned in the introduction and in the previous
section, multipathing is significant in this regime and the parabolic approximation may be
used.

The index of refraction of the medium is assumed to (randomly) fluctuate about a constant
background velocity:

σµ
(x

l
,
z

l

)
= n2(x, z) − 1. (11)

Here l is the correlation length, i.e. the scale at which the medium fluctuates. The parameter
σ represents the strength of the fluctuations. We assume that σ � 1, that is, we assume
weak fluctuations of the medium so that multiple scattering occurs in the forward direction
of propagation. The random field µ is assumed to be stationary, with mean zero (large scale
variations do not exist), variance σ2 and with normalized covariance (with dimensionless
arguments)

R(x, z) = 〈µ(x + x′, z + z′)µ(x′, z′)〉
which decays sufficiently fast at infinity, so that the medium is mixing, that is, there are no
long range correlations of the fluctuations. Note that large scale variations in the medium
could be accommodated for in the model, at the cost of a more complex analysis.

The asymptotic analysis is done by rewriting the Schrödinger equation (9) in dimensionless
form [10; 35]. Let Lz and Lx be characteristic length scales in the propagation direction,
and in the transverse direction, so that Lz ∼ L and Lx ∼ a. We introduce a dimensionless
wave number k′ = k/k0, with k0 = ω0/c0, and ω0 the central frequency of the source pulse.
We re-scale x and z by x = Lxx

′, z = Lzz
′, and rewrite (9) in the new coordinates (thereby
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substituting the expression (11) for the index of refraction) as

2i
k0k

′

Lz
ψz′ +

1

L2
x

∆x′ψ + (k0k
′)2σµ

(
Lxx

′

l
,
Lzz

′

l

)
ψ = 0

Multiplying through by Lz/k0, and dropping primes, we obtain

2ikψz +
Lz

k0L2
x

∆xψ + k2k0Lzσµ

(
Lxx

l
,
Lzz

l

)
ψ = 0 (12)

Note that the initial data should be scaled accordingly.

We now introduce three dimensionless parameters

δ =
l

Lx

, ε =
l

Lz

, γ =
1

k0l
=

1

2π

λ0

l

which are the reciprocals of the transverse scale relative to correlation length, the reciprocal
of the propagation distance relative to correlation length, and the central wavelength relative
to correlation length.

The high-frequency regime assumption coupled to that of weak fluctuations requires that
the dimensionless parameters γ, σ, ε, and δ are small, i.e.

γ � 1, σ � 1, ε� 1, δ � 1 (13)

To make the scaling more precise, we introduce the Fresnel number

θ =
Lz

k0L2
x

= γ
δ2

ε

Multiplying equation (12) by θ, we obtain (thereby using the above parameters)

2ikθψz + θ2∆xψ + k2 δ
2

ε2
σµ
(x

δ
,
z

ε

)
ψ = 0 (14)

We further assume that we can relate ε and γ to σ and δ by the following relations

ε = σ2/3δζ γ = σ2/3δβ, (15)

where ζ > 0 and β shall be determined. With these additional assumptions, equation (14)
becomes

ψz =
i

2k
θ∆xψ +

ik

2

σ

γε
µ
(x

δ
,
z

ε

)
ψ

⇒ ψz =
i

2k
δ2+β−ζ∆xψ +

ik

2

δ−β−ζ

σ1/3
µ
(x

δ
,

z

σ2/3δζ

)
ψ

(16)
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One way that the asymptotic regime (13) can be obtained is with the ordering

ε � θ � δ � 1. (17)

This ordering corresponds to the so-called white-noise limit which is analyzed in [10]. It is
different from the transport limit (corresponding to the case where λ ∼ l) analyzed in [9; 34]
and from the high-frequency limit treated in [35]. As the analysis in [34] shows, these various
orderings all lead to a phase-space diffusion equation of the form (28). In particular, the
validity of the parabolic approximation in the transport limit ordering (which was violated
by the fact that it presumes the scaling λ ∼ l) is restored by the so-called narrow beam

approximation.

The ordering (17) has the following interpretation: we first take the white noise limit ε→ 0
(with δ fixed), then the high-frequency limit θ → 0, and then a broad beam limit δ → 0.
We will analyze in detail these limits in the following sections.

The white noise limit

It is actually in the white noise limit ε → 0 (with Fresnel number θ and δ fixed) that the
parabolic approximation is valid, as was proved in [1]. In this limit, the wave field ψ(z,x)
satisfies an Itô-Schrödinger equation

dψδ =
{ i

2k
δ2+β−ζ∆xψ

δ − k2

8
R0(0)δ−ζ−2βψδ

}
dz +

ik

2
δ−

ζ
2
−βψδdB

(x

δ
, z
)

(18)

Here R0 is the integrated covariance of the fluctuations µ, i.e.

R0(x) =

∫ ∞

−∞

R(x, s)ds,

and B(x, z) is an infinite-dimensional Brownian field with mean zero and covariance

〈B(x, z1)B(y, z2)〉 = R0(x − y)z1 ∧ z2 = R0(|x − y|) min{z1, z2}
The Itô-Schrödinger equation is the result of the central limit theorem applied to equation
(16) (which has the form of Stratonovich’s equation). In particular, defining

Bε(x, z) =
1√
ε

∫ z

0

µ
(
x,
s

ε

)
ds

then, as ε → 0, and under certain conditions, one can show that this random process
converges weakly to the Brownian field B(x, z) with the above covariance. The extra term
in (18) is the Stratonovich correction.

The Green’s function Ĝδ = Ĝδ(z, z0;x, ξ; k) with a point source at (z0, ξ) satisfies



dĜδ =

{ i

2k
δ2+β−ζ∆xĜ

δ − k2

8
R0(0)δ−ζ−2βĜδ

}
dz +

ik

2
δ−

ζ
2
−βĜδdB

(x

δ
, z
)

Ĝδ
∣∣∣
z=z0

= δ(x − ξ)
(19)
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The Wigner equation

It is convenient to introduce here the tensor product of two Green’s functions:

{
Γ(z,x,y; ξ, η; k) = Ĝδ(z, z0;x, ξ; k)Ĝδ(z, z0;y, η; k)

Γ(z0,x,y; ξ, η; k) = δ(x − ξ)δ(y − η),
(20)

where the bar denotes complex conjugate. As we will show in a subsequent section, Γ(z,x,x; ξ, η; k)
describes the response, at the source plane, of a point source at η, whose signal is recorded
at the transducer array at x, phase-conjugated, backpropagated, and observed at η. The
concepts of time reversal and backpropagation will be made clear in a subsequent section.

From equation (19) for the Green’s function Ĝδ(z, z0;x, ξ; k), we can derive an equation for
Γ as follows. The product rule writes

d{ĜδĜδ} =
[
(dĜδ)Ĝδ + Ĝδ(dĜδ)

]
dz

where Ĝδ solves (19) with k replaced by −k (time reversal is equivalent to phase conjugation
since G is real). Writing α = 2 + β − ζ , Γ(z,x,y; ξ, η; k) satisfies





dΓ =
{ i

2k
δα (∆x − ∆y) +

k2

4
δ−ζ−2β

[
R0

(
x− y

δ

)
−R0(0)

]}
Γdz

+
ik

2
δ−

ζ
2
−βΓ

[
dB
(x

δ
, z
)
− dB

(y

δ
, z
)]

Γ
∣∣∣
z=z0

= δ(x − ξ)δ(y − η)

(21)

We introduce the following change of transverse variables:

x̃ =
x + y

2
, ỹ =

y − x

δα

so that

x = x̃ − δαỹ

2
and y = x̃ +

δαỹ

2
.

Therefore:

∆x − ∆y = (∇x −∇y) · (∇x + ∇y) = (−δα∇ey) · (2∇ex) = −2δα∇ex · ∇ey.

Equation (21) thus becomes:





dΓ =
{
− i

k
∇ex · ∇ey +

k2

4
δ−ζ−2β

[
R0

(
−δα−1ỹ

)
− R0(0)

] }
Γdz

+
ik

2
δ−

ζ
2
−βΓ

[
dB

(
x̃

δ
− δα−1ỹ

2
, z

)
− dB

(
x̃

δ
+
δα−1ỹ

2
, z

)]

Γ
∣∣∣
z=z0

= δ
(
x̃ − δαey

2
− ξ

)
δ
(
x̃ + δαey

2
− η

)
(22)
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At this point, it is convenient to introduce the Wigner distribution which is defined as

Wθ(z, x̃,p; ξ, η; k) =
1

(2π)2

∫

R2

eip·eyΓ(z, x̃, ỹ; ξ, η; k)dỹ (23)

The Wigner distribution is a convenient tool for the analysis of wave propagation in ran-
domly inhomogeneous media [9; 35]. It can be interpreted as phase space wave energy. As
we will discuss in a subsequent section, the time reversed, backpropagated wave field can
be expressed in terms of the Wigner distribution, and in particular, the properties of the
backpropagated field can be shown to be closely related to those of functionals of the Wigner
distribution.

The Wigner distribution Wθ(z, x̃,p; ξ, η; k) defined by (23) satisfies the Wigner equation

dWθ =
{
− 1

k
p · ∇exWθ +

k2

4
δ−ζ−2β

∫
R̂0(q)

[
Wθ(p + δα−1q) −Wθ(p)

]
dq
}
dz

+
ik

2
δ−

ζ
2
−β

∫
dB̂(q, z)eiq· ex

δ ·
[
Wθ

(
p − δα−1

2
q

)
−Wθ

(
p +

δα−1

2
q

)]
dq,

(24)

where we have omitted parameters other than wave numbers in the expressions for the
Wigner distribution, for clarity of expression. The Wigner equation is a stochastic transport
equation which can be obtained by taking the Fourier transform in ỹ of equation (22), with
the Fourier transform defined as

f̂(p) =
1

(2π)d

∫

Rd

eip·xf(x)dx, f(x) =

∫

Rd

e−ip·xf̂(p)dp.

Indeed, using integration by parts (note that the boundary terms vanish), it is easy to check
that

1

(2π)2

∫
eip·ey

(
− i

k
∇ex · ∇eyΓ

)
dỹ = − i

k

[
1

(2π)2

∫
eip·ey (∇ey (∇exΓ)) dỹ

]

=
i

k

[
1

(2π)2

∫ (
∇eye

ip·ey) (∇exΓ) dỹ

]

= −1

k
p · ∇ex

[
1

(2π)d

∫
eip·eyΓdỹ

]

= −1

k
p · ∇exWθ

Similarly for the second term on the right-hand-side of (24), we have (thereby omitting the
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factor in front of the integral for clarity of expression):

1

(2π)d

∫
eip·ey ·

[
R0

(
−δα−1ỹ

)
− R0(0)

]
Γdỹ

=
1

(2π)d

∫
eip·ey ·

[∫
e−iq·(−δα−1ey)R̂0(q)dq −

∫
e−iq·0R̂0(q)dq

]
Γdỹ

=
1

(2π)d

∫
eip·ey ·

[∫ (
eiδα−1

q·ey − 1
)
R̂0(q)dq

]
Γdỹ

=

∫
R̂0(q)

[
1

(2π)d

∫ [
ei(p+δα−1)·ey − eip·ey

]
Γdỹ

]
dq

=

∫
R̂0(q)

[
Wθ(p + δα−1q) −Wθ(p)

]
dq

The last term of (24) can be obtained in a similar way.

The Fourier transform in ỹ of the initial condition in (22) yields

Wθ(z0, x̃,p; ξ, η; k) =
1

(2π)d

∫
eip·eyδ

(
x̃ − δαỹ

2
− ξ

)
δ

(
x̃ +

δαỹ

2
− η

)
dỹ

To simplify this expression, we take a smooth function φ of rapid decay, and consider the
following functional:

Iφ =

∫
φ(x̃)Wθ(z0, x̃,p; ξ, η; k)dx̃ =

1

(2π)2

∫∫
eip·eyφ(x̃)δ

(
x̃ − δαỹ

2
− ξ

)
δ

(
x̃ +

δαỹ

2
− η

)
dỹdx̃

We introduce new variables:

z̃ = x̃ − δαỹ

2
− ξ, w̃ = x̃ +

δαỹ

2
− η.

Adding and subtracting these two equalities yield

z̃ + w̃ = 2x̃ − (ξ + η) and z̃ − w̃ = η − ξ − δαỹ,

so that

x̃ = 1
2
[z̃ + w̃ + ξ + η] and ỹ =

1

δα
[η − ξ + w̃ − z̃] .

Therefore, we obtain (thereby using the Jacobian of the transformation δα as well as the
scaling rule for delta functions δ(x) = |α|2δ(αx))

Iφ =

∫∫
e

ip·
“

η−ξ+ey−ex

δα

”

(2π)2
δ(x̃)δ(ỹ)φ

(
1
2
[x̃ + ỹ + ξ + η]

)
dỹdx̃ =

1

(2π)2
e

ip·
“

η−ξ
δα

”

φ

(
ξ + η

2

)

Therefore, the initial data for the Wigner distribution is

Wθ(z0, x̃,p; ξ, η; k) =
1

(2π)2
e

ip·
“

η−ξ
δα

”

δ

(
x̃ − ξ + η

2

)
≡WI(x̃,p). (25)
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Note that we have considered the Wigner distribution of Green’s functions with sources at
two different points. Therefore, this distribution needs not be real. It becomes real only
if the two source points coincide, i.e. η = ξ. The exponential factor in (25) is extremely
important. It carries the phase information that is crucial in the time-reversal refocusing
phenomenon, since it takes place mostly due to phase cancellations, as we will show later.

The high-frequency and broad beam limits

In this section, we will writeWθ as a function of the wave number p only, to ease the notation.
The first integral on the right hand side of (24) can be simplified by doing a Taylor expansion
of Wθ around δ = 0, thereby assuming that α− 1 > 0:

Wθ

(
p + δα−1q

)
= Wθ(p) + δα−1q · ∇pWθ(p) +

δ2(α−1)

2
q · ∆pWθ(p) · q + . . .

Using the fact that R̂0(q) is an even function (isotropy property), we have that

∫
qiR̂0(q)dq = 0,

and
∫

qiqjR̂0(q)dq = 0 for i 6= j,

and

∫
q2

i R̂0(q)dq =

[
∂2

∂xi
2

∫
eiq·xR̂0(q)dq

]

x=0

= −R̂′′
0(0) ≡ 4D.

Here D is the phase space diffusion coefficient. Therefore:
∫
R̂0(q)

[
Wθ(p + δα−1q) −Wθ(p)

]
dq ' 2δ2(α−1)D∆pWθ

Similarly, the second integral on the right hand side of (24) can be simplified by expanding
Wθ in the following way:

Wθ

(
p − δα−1

2
q

)
= Wθ

(
p +

δα−1

2
q

)
+ (−δα−1q) · ∇pWθ(p) + . . .

We also use the fact

d∇exB

(
x̃

δ
, z

)
= i

∫
qeiq· ex

δ dB̂(q, z)dq,

where we have used the Fourier transform of B to shift the derivative in the transverse
coordinates to a multiplication in phase space. Therefore:

∫
dB̂(q, z)eiq· ex

δ ·
[
Wθ

(
p− δα−1

2
q

)
−Wθ

(
p +

δα−1

2
q

)]
dq = iδα−1∇pWθ · d∇exB

(
x̃

δ
, z

)
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The Wigner equation (24) can therefore be rewritten as

dWθ =

[
−1

k
p · ∇exWθ +

k2

2
δ2(α−1)−ζ−2βD∆pWθ

]
dz− k

2
δα−1− ζ

2
−β∇pWθ ·d∇exB

(
x̃

δ
, z

)
(26)

In order for this stochastic partial differential equation to have a limit, we need to have α > 1
on the one hand (this condition is necessary to be able to perform the above expansions),
but also

α− 1 =
ζ

2
+ β

Recalling that α = 2 + β − ζ , we obtain

ζ =
2

3
, and β = α− 4

3
,

so that α may be chosen as a free parameter (greater than 1). With respect to the relations
(15), we obtain:

ε = σ2/3δ2/3, γ = σ2/3δα−4/3 (α > 1), and θ = δα � δ

Nevertheless, we have the desired ordering

ε� θ � δ � 1

As δ → 0 (i.e. as θ → 0), the limit of (26) is the Itô-Liouville equation

dW =

[
−1

k
p · ∇exW +

k2D

2
∆pW

]
dz − k

2
∇pW · d∇exB

(
x̃

δ
, z

)
. (27)

Going back to the initial data (25) for this equation, we can see that in the limit δ → 0, only
points η close to ξ will matter. It is also important to note that the initial condition for W
in (27) still depends on δ even though the asymptotic limit in the equation has been taken.

Moments of the Wigner distribution

From the Itô-Liouville equation (27), we can get closed equations for all the moments of
the Wigner distribution W , not only for its mean, but also for moments with different wave
numbers k. The wave number enters equation (27) as a parameter.

The average W (1) ≡ 〈W 〉 of W can be computed as the solution of






dW (1)

dz
= −1

k
p · ∇exW

(1) +
k2D

2
∆pW

(1)

W (1)
∣∣∣
z=z0

= WI(x̃,p).
(28)
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which has the form of an advection-diffusion equation in phase space.This equation is the
basis of a simple explanation of the super-resolution phenomenon. Taking the Fourier trans-
form of (28) with respect to both x̃ and p, and using the method of characteristics, the
solution can be shown to be

W (1)(z, x̃,p; ξ, η; k) =

1

(2π)2d

∫∫ [∫∫
e

i
h
r·(p−p0)

k
+w·(ex−ex0)−z w·p

k

i
−Dz

2

h
r2−(r·w)z+w2 z2

3

i

drdw

]
WI(x̃0,p0)

k
dp0dx̃0

Now, using the definition (23) of the Wigner distribution, and the definition (20) of the Γ
function, we obtain after some further computations, thereby assuming x = y:
〈
Ĝδ(z, z0;x, ξ; k)Ĝδ(z, z0;x, η; k)

〉
=

∫
W (1)(z,x,p; ξ, η; k)dp

= Ĝδ
0(z, z0,x, ξ; k)Ĝδ

0(z, z0,x, η; k)e−(k2|ξ−η|2a2
e)/(2z2),

(29)

where

ae =

√
Dz3

3
(30)

is the so-called effective aperture of the transducer array. Note that the exponential term
in the inverse Fourier transform reduced to one because x = y in this setting, and therefore
ỹ = 0. A remarkable feature of (29) is that all of the statistics of the randomly inhomo-
geneous medium is contained in ae. Furthermore, the effective aperture is independent of
frequency, and thus the same expression is valid in the time domain. The importance of this
moment formula will become clear in the next section, where we derive an explicit expression
for the time-reversed signal.

The method of characteristics can also be used to study the second moment of the Wigner
distribution at different points and in particular, to show that the processes W (z,x1,p1; k1)
and W (z,x2,p2; k2) are decorrelated for k1 6= k2, i.e.

〈W (z,x1,p1; k1)W (z,x2,p2; k2)〉 ' 〈W (z,x1,p1; k1)〉 〈W (z,x2,p2; k2)〉 ,
In particular, this yields the other key property:
〈(

Ĝδ(z, z0;x, ξ; k)Ĝδ(z, z0;x, η; k)
)2
〉

'
∫

〈W (z,x,p1; k)〉 dp1

∫
〈W (z,x,p2; k)〉 dp2

=
〈
Ĝδ(z, z0;x, ξ; k)Ĝδ(z, z0;x, η; k)

〉2

.

(31)

That is, the variance of ĜδĜδ is essentially zero (note that this result holds for fixed frequency
in this regime). This means that for any c > 0, we have

P
(∣∣∣ĜδĜδ −

〈
ĜδĜδ

〉 ∣∣∣ ≥ c
)
≤ 1

c2

〈(
ĜδĜδ −

〈
ĜδĜδ

〉)2
〉

∼ 0,
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where P (·) denotes the probability, and where we have used Chebyshev inequality and (31).
Therefore, we have

Ĝδ(z, z0;x, ξ; k)Ĝδ(z, z0;x, η; k) ≈
〈
Ĝδ(z, z0;x, ξ; k)Ĝδ(z, z0;x, η; k)

〉
, (32)

that is, ĜδĜδ is self-averaging in this asymptotic regime, even at fixed k in this scaling (so
that the stabilization is due to the decorrelation of W at different wave vectors p).

Application to time reversal

We will now apply these results to the time reversal problem described in the introduction.
A signal f(t) emitted from a point source located at y = (0, 0, L) is recorded by an array of
(point) transducers located at xr = (rh/2, 0, 0), for r = −N, . . . , N . We denote the manifold
on which the transducers lie by Σr. The range of the source with respect to the array, as
seen from the central element x0 is |x0 − y| = L. It is then reversed in time and re-emitted
into the medium. A diagram of the experiment is shown on Figure 3. We assume that the

y = (0, L)

ys = (ξs, L+ ηs)
xr

x

h/2

zOr

y

a

L

f(t)

Fig. 3. Setup for the localized source experiment

pulse f emitted by the active target has the form

f(t) = − d

dt

(
1√
2πσ2

t

e
−iω0t− t2

2σ2
t

)
=
iω0 + t

σ2
t√

2πσ2
t

e
−iω0t− t2

2σ2
t ,
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where ω0 is the carrier (central) frequency and σt represents the width of the pulse. Writing
F (t) for the time derivative of f(t) (the quantity in parenthesis above), the Fourier transform
of f is given by:

f̂(ω) =

∞∫

−∞

f(t)eiωtdt = −
∞∫

−∞

d

dt
F (t)eiωtdt =

iω√
2πσ2

t

∞∫

−∞

e
i(ω−ω0)t− t2

2σ2
t dt = iω e−

1
2

σ2
t (ω−ω0)2

where we have used integration by parts (the boundary terms vanish because of the presence
of t2 in the exponential term).

At fixed frequency ω, the two point Green’s function satisfies the Helmholtz equation

∆Ĝ(x,y, ω) + k2n2(x)Ĝ(x,y, ω) = −δ(x − y),

lim
r→∞

r
(
∂ψ̂/∂r − iknψ̂

)
= 0, r = |x − y|

(33)

The signal measured at a transducer at xr can be computed as a superposition of Green’s
functions (Duhamel’s principle):

d(xr, t) = (f(·) ∗t G(xr,y, ·)) (t) =
1

2π

∫ ∞

−∞

f̂(ω)Ĝ(xr,y, ω)e−iωtdω,

Let g(x, t) = f(t)δ(x − y) be the right-hand-side of the scalar wave equation corresponding
to (33). We now view the correspondence between the source g(x, t) and the sampled signals
d as a linear operator

L : g 7→ d. (34)

The determination of the source g of acoustic wave motion from remote measurements is
a notoriously ill-posed problem. This inverse problem can be separated into two parts: an
optimal control for the wave equation and an inverse mixed initial-boundary value problem
[53]. In the latter, the initial data of the solution of the wave equation are to be determined
from its trace on a time-like hyperplane. It is a result proved in [53] that the initial data
provide precisely the information needed to recover the source from its trace on the hyper-
plane. Suppose now that the forward model (34) is reformulated as this so-called inverse
mixed problem. To recover the initial data, we may pose it as a output least-squares prob-
lem and attempt to compute the least-squares inverse. Because the source g is typically
oscillatory, and because the normal operator L∗L is pseudodifferential (hence pseudolocal,
i.e. it preserves the locii of high-frequency components), the singularities of the initial data
localized about the source location should be reproduced by applying the adjoint operator
L∗ to the data. This is precisely the idea behind the point spread function which we will
formally introduce later in this section. We now derive an expression for the adjoint operator
L∗, thereby idealizing reality by assuming that the transducers form a continuous array of
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size a. Following the definition of adjointness, we write

〈L∗d, g〉 = 〈d, Lg〉 = 〈d, u
∣∣
Σr
〉 =

∫∫ [∫∫
G(xr,y, t− τ)g(y, τ)dτdy

]
d(xr, t)dtdxr

=

∫∫ [∫∫
G(xr,y, t− τ)d(xr,−τ)dτdxr

]
g(x, t)dtdy

Therefore, the adjoint operator applied to the data yields:

(L∗d) (y; t) =

∫∫
G(xr,y, t− τ)d(xr,−τ)dτdxr '

N∑

r=−N

d(xr,−t) ∗t G(xr,y, t) (35)

Note that because the pulse is real, i.e. f(t) = f(t) ↔ f̂(ω) = f̂(−ω), time reversal is
equivalent to complex conjugation in frequency domain:

d(xr,−t) = (f(·) ∗t G(xr,y, ·)) (−t) =
1

2π

∫ ∞

−∞

f̂(ω) Ĝ(xr,y, ω)e−iωtdω. (36)

For the sake of comparison, we first show that in a homogeneous medium, the size of the
refocused spot is approximately λL/a. The underlying assumption here is that the array
is operating in the remote-sensing regime so that a � L. There are two striking features
of this refocusing in randomly inhomogeneous media. The first one is the super-resolution
phenomenon, for which we derived a theoretical explanation in the previous section (see (29)).
An intuitive explanation for this is the following: because of multipathing, the transducer
array can capture waves that were initially moving away from it but get scattered onto it
by the heterogeneities. As the result, the array captures a larger part of the total wave
field emanating from the point source and thus appears to be larger than its physical size.
Therefore, the heterogeneities of the medium enhance the resolution. We will derive an
explicit formula which shows that the refocused spot is in this case λL/ae, where ae > a is the
effective size of the array. The other key feature is that the time-reversed and backpropagated
field is self-averaging.

Time reversal in homogeneous media

For a homogeneous medium in 3-D, the free space Green’s function is given by

Ĝ0(x,y) =
eik|x−y|

4π|x− y| ,

In time reversal, the back-propagated field is estimated at a search point yS, taken to be in the
plane determined by y and the array, at range L+η and cross-range ξ, i.e., yS = (ξ, 0, L+η).
The adjoint operator (35) is commonly referred to as the point spread function for time
reversal:

ΓTR

0 (yS; t) =
N∑

r=−N

d(xr,−t) ∗t G0(xr,y
S, t) (37)
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Using (36) we obtain:

Γ̂TR

0 (yS;ω) = f̂(ω)

N∑

r=−N

Ĝ0(xr,y;ω)Ĝ0(xr,y
S;ω)

= f̂(ω)
N∑

r=−N

eik(|xr−y
S|−|xr−y|)

16π2|xr − y||xr − yS|

(38)

In a remote sensing regime (a� L), we can use the so-called parabolic approximation of the
phase:

|xr − y| =
√
L2 + x2

r ≈ L+
x2

r

2L

|xr − yS| =
√

(L+ η)2 + (xr − ξ)2 ≈ L+ η +
(xr − ξ)2

2(L+ η)

(xr refers to the x-coordinate of xr). This yields:

|xr − yS| − |xr − y| ≈ η +
(xr − ξ)2

2(L+ η)
− x2

r

2L

= η +
ξ2

2(L+ η)
−
(

ηx2
r

2L(L+ η)
+

ξxr

L+ η

)

and
|xr − yS||xr − y| ≈ L2,

where we have used the fact that xr = rh
2

, and the relations h� L, η � L. Substitution of
these estimates into (38), thereby using the fact that k = ω

c0
, yields:

Γ̂TR

0 (yS;ω) ≈ −iω e−
1
2

σ2
t (ω−ω0)2e

i ω
c0

„
η+ ξ2

2(L+η)

«

16π2L2

N∑

r=−N

e
−i ω

c0

„
ηx2

r
2L(L+η)

+ ξxr
L+η

«

Substituting this expression into (37), we obtain:

ΓTR

0 (yS; t) ≈ − 1

32π3L2

∫ ∞

−∞

iω e−
1
2

σ2
t (ω−ω0)2e

iω

»
t− 1

c0

„
η+ ξ2

2(L+η)

«–
N∑

r=−N

e
−i ω

c0

„
ηx2

r
2L(L+η)

+ ξxr
L+η

«

dω,

Because the separation h/2 between the array elements is chosen so that the elements behave
like an array of aperture a = Nh � L and not like separate entities, the sum in the above
expression may be replaced by an integral over the (continuous) interval [−a/2, a/2], i.e.,

∫ a/2

−a/2

e
−i ω

c0

„
ηx2

2L(L+η)
+ ξx

L+η

«

dx =
h

2

N∑

r=−N

e
−i ω

c0

„
ηx2

r
2L(L+η)

+ ξxr
L+η

«
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We obtain:

ΓTR

0 (yS; t) ≈ − 1

16π3L2h

∫ ∞

−∞

iω e−
1
2

σ2
t (ω−ω0)

2

e
iω

»
t− 1

c0

„
η+ ξ2

2(L+η)

«– ∫ a/2

−a/2

e
−i ω

c0

„
ηx2

2L(L+η)
+ ξx

L+η

«

dx dω,

Evaluation of this expression at the exact range η = 0, and at the arrival time t = ξ2

2c0L

(corresponding to the parabolic shift in time) yields:

ΓTR

0

(
ξ, η = 0; t =

ξ2

2c0L

)
≈ −ic0

4π2Lhξ
e
− ξ2a2

8c0L2σ2
t sin

(
ω0ξa

2c0L

)
∼ 1

ξ
sin

(
πξa

λ0L

)
e−ξ2/2s2

where

s =
2c0Lσt

a
=

2

B

λ0L

2
, B =

2π

ω0, σt
.

Here B is the bandwidth of the pulse. This expression shows that the refocusing resolution
is roughly given by the product of a sinc-like function with a Gaussian e−ξ2/2s2

. The focal
spot size λ0L/a is easily obtained from the sinc function. However, spurious oscillations (the
so-called Fresnel zones) come along as a byproduct of the sinc. This is particularly true for
narrow-band pulses, for which s is large and therefore the Gaussian is wide. However, for
broad-band pulses, s is on the order of the spot size λ0L/a, so the refocusing resolution is
still roughly λ0L/a, but the Fresnel zones have been eliminated by the narrow Gaussian. In
either case, we have that the following (intuitive) relation between resolution and physical
aperture of the array: the larger a, the better the refocusing.

Time reversal in randomly inhomogeneous media

In a randomly inhomogeneous medium, the point spread function in frequency domain is
given by

Γ̂TR(yS;ω) = f̂(t)
N∑

r=−N

Ĝ(xr,y;ω)Ĝ(xr,y
S;ω),

where Ĝ is the random, time harmonic Green’s function. Because the time-reversed and
backpropagated field ΓTR(yS, t) is self-averaging and because in the high-frequency regime

Γ̂TR(yS;ω) is itself self-averaging, we may replace the product of the random Green’s functions
by its expectation. Then we use the moment formula (29) derived previously (see also the
appendix) to obtain:

Γ̂TR (ξ, η = 0, ω) ≈ f̂(ω)
N∑

r=−N

〈
Ĝ(xr,y;ω)Ĝ(xr,y

S;ω)
〉

≈ f̂(ω)e−
k2ξ2a2

e
2L2

N∑

r=−N

Ĝ0(xr,y;ω)Ĝ0(xr,y
S;ω)

= Γ̂TR
0 (ξ, η = 0, ω) e−

k2ξ2a2
e

2L2

(39)
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In the time domain, the point spread function evaluated at the arrival time t = ξ2/2c0L
yields:

Γ

(
ξ, η = 0, t =

ξ2

2c0L

)
≈ c0

4π2Lhξ

−i√
2πσ2

t

sin

(
ω0ξa

2c0L

)
e
−

A2
eξ2

8c2
0

L2σ2
t

= ΓTR
0

(
ξ, η = 0, t =

ξ2

2c0L

)
e
−

2π2a2
eξ2

λ2
0

L2

(40)

Here Ae is the broad-band effective aperture given by

A2
e = a2

e +

(
4πae

B

)2

The expressions (39) and (40) show the extra Gaussian arising in the random medium case.
This Gaussian factor is precisely the reason behind super-resolution. The spot size in this
case becomes λ0L/ae. The expression for the broad-band effective aperture shows that for
narrow-band signals the physical aperture a is negligible while for broad-band signals it may
contribute to super-resolution. In any case, it is often the case that a � Ae when there is
substantial multipathing.

Concluding remark

A key factor in the self-averaging of the backpropagated field (i.e. the “imaging” functional
or point spread function ΓTR) is the approximate cancellation of phases of the random
Green’s functions between the array and the point y and between the array and the point
yS, respectively. Heuristically, the random Green’s function has the form

Ĝδ(x,y; k) ∼ eikr+iφ

4πr

so the random phase φ in the product

Ĝδ(x,y; k)Ĝδ(x,yS; k)

almost vanishes. This observation is the basis for all of the ideas that will be investigated as
part of the proposed work. We present and explain these ideas in the following section.

APPLICATIONS TO SEISMIC IMAGING

The connection between the problem formulation from the previous section and that of
section where we introduced the seismic inverse problem can be made as follows. The index
of refraction contains now three distinct scales of velocity. The medium is described precisely
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as in section (see (11)), except the component of velocity on the wavelength scale is now
taken into account. We have:

n2(x) = 1 + σµ(x) + %(x), (41)

where %(x) corresponds to the high-frequency component of velocity - the reflectivity which
can be resolved via migration. The data are modeled with a Born approximation, which
yields the theoretical expression for the scattered field at a receiver at xr:

d(xs,xr, t) =

∫ ∞

−∞

k2f̂(ω)

2π

[∫

D

%(y)Ĝ(xs,y, ω)Ĝ(xr,y, ω)dy

]
e−iωtdω (42)

Note that this expression is the precise analog to (2), written in the frequency domain.
However, the Green’s functions in the above formula are random, contrary to those appear-
ing in (2). Nevertheless, the relation between the reflectivity %(x) and the predicted data
d(xs,xr, t) is linear.

We omit momentarily the fact that seismic imaging techniques deal exclusively with reduced
data set (i.e. common-offset, common shot, etc...) and we denote by tsr the deterministic
travel time

tsr(y) ≡ T (y,xs) + T (y,xr) =
|xs − y|
c0

+
|xr − y|
c0

, (43)

i.e. the time it takes for a ray to travel from a source at xs to a point y in the medium
and back to a receiver at xr. Using the Kirchhoff migration method (recall equation (5) in
section ), the reconstruction of the reflectivity % at a point y in the medium is performed as
follows:

%(y) ≡
∫∫

b (xs,xr, T (y,xs) + T (y,xr)) d(xs,xr, T (y,xs) + T (y,xr)) dxrdxs (44)

That is, backpropagation using Kirchhoff migration consists of evaluating expression (42)
at the arrival time tsr, and then summing (the discrete analog of the integral in (44)) the
backpropagated fields over (a subset of) all sources and receivers with proper weighting.

Because the fluctuations in the medium are not known a priori, the backpropagation is done
fictitiously, in a reference medium with no fluctuations. There remain random phases in such
functionals corresponding to long random paths from the source to the reflector and back to
the receiver (there is no conjugated Green’s function, hence no random phase cancellation).
The backpropagated field d(xs,xr, t) is a randomly fluctuating function, spread out over a
large time window, due to varying arrival times corresponding to different random paths
in the medium. Consequently, spurious artifacts are created in the reconstructions. These
techniques lack statistical stability.

To achieve self-averaging functionals, we must somehow cancel the random phases in d(xs,xr, t).
One way to achieve this goal, as suggested in [11], is to divide the data set into smaller subsets
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and construct local data covariances by taking the cross-correlation of nearby traces
d(xs,xr, t) and d(xs′,xr′ , t), i.e.

d(xs,xr, t) ? d(xs′,xr′, t) =
1

2π

∫ ∞

−∞

d̂(xs,xr, ω)d̂(xs′,xr′, ω)e−iωtdω,

where we have used ? to denote cross-correlation. Substitution of (44) yields

d(xs,xr, t) ? d(xs′,xr′, t) =

1

2π

∫ ∞

−∞

k4|f̂(ω)|2



∫∫

D

Ĝ(xs,y, ω)Ĝ(xs′ ,y, ω)Ĝ(xr,y, ω)Ĝ(xr′ ,y, ω)dydy′



 e−iωtdω

Clearly we obtain near cancellation of the random phases corresponding to nearby random
paths from the source at xs to a reflector at y to a receiver at xr, and from a source at xs′

to a reflector at y′ to a receiver at xr′ (see Figure 4). We assume here that |xs − xs′| ∼
|xr − xr′| = O(l).

In essence, this approach can be viewed as a pre-processing step in which, starting with the
randomly fluctuating data d(xs,xr, t), we obtain a reduced, self-averaging data set.

xsxs′xrxr′

y′y

asar

S

Reflector

Fig. 4. A data pre-processing step
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Cross-correlation tomography

We now explain how these local data covariances may be used for the purpose of estimating
the background velocity. It would seem at first that all the travel time information (hence
the velocity information) might be lost in the cross-correlation process. However, as we
now show, there is still some differential time information present in the cross-correlated
data. The problem then becomes one of somehow retrieving this information from the local
data covariances. We then construct, in the case of a layered medium, a pseudodifferential
annihilator which when applied to the (pre-processed) data with the correct background
medium yields a vanishing outcome.

We will at first restrict ourselves to media that are laterally homogeneous, that is, the
medium coefficient (the velocity) depends solely on depth. The layered medium assumption
leads to simple explicit expressions for all quantities appearing in the differential semblance
approach to velocity estimation [52]. Starting with the Kirchhoff modeling operator (3), the
layered assumption assumption coupled to a stationary phase argument leads to the so-called
convolutional model of primaries-only reflections. The derivation of this model is explained
very carefully in [59]. Although being one of the simplest model in which to pose the velocity
analysis problem, the convolutional model is widely used in the industry and therefore the
following analysis is relevant to current seismic processing practices.

A natural binning scheme for this model is the common midpoint gather. Because all the
gathers are in principle the same for a layered model, the data consists of a single common
midpoint gather. The bins contain single traces, parametrized by offset h = (xs − xr). The
velocity parameter is the interval velocity c0(z), whereas the reflectivity is regarded as bin-
dependent, i.e. r = r(z, h). We parametrize velocity and reflectivity by the two-way vertical

travel time

t0 = 2

∫ z

0

1

v(ζ)
dζ

rather than depth. Thus c0 = c0(t0) and r = r(t0, h). We denote by T (t0, h) the two-way

travel time corresponding to a depth at t0 and offset h, and by T0(t, h) the inverse function,
i.e.

T (T0(t, h), h) = t, T0 (T (t0, h), h) = t0

With these conventions, the convolutional model reads

d(t, h) = f(t) ∗t [a(t, h)r (T0(t, h), h)] ≡ (F [c0]r) (t, h),

where

r(z) = 1
2

d

dz

δc(z)

c0(z)

is yet another form of reflectivity. For simplicity, we will further assume that source signature
deconvolution has been applied so that f(t) is essentially impulsive (f ∼ δ), thus removing
the convolution from the above expression:

d(t, h) = a(t, h)r (T0(t, h), h) ≡ (F [c0]r) (t, h),
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Motivation

To motivate our approach, suppose for a moment that there are no fluctuations, and that
we have a single reflector at depth z. We sketch this oversimplified situation on Figure 5.
Because there is only one reflector, the trace has only one event at t0 (no need to use a model

offset
z

Reflector

xs xr

t0/2 T/2

t0/2 T/2 T/2

h

z = 0

z

Fig. 5. A single reflector at depth z

in this case) so
d(t, h) = f (t− T (t0, h)) ,

where f is the source pulse, and therefore

(d(h, ·) ? d(h′, ·)) (t) = f ? f (t+ T (h, t0) − T (h′, t0))

' (f ? f)′ (t)
∂T

∂h
(h, t0)(h

′ − h),

That is, the cross-correlation d ? d contains arrival time slowness (derivative of the travel
time with respect to surface location) information. This simple example shows that cross-
correlations of traces do in fact contain velocity information. We now show how to retrieve
that information.

The pseudodifferential annihilator

We denote by c∗0 the correct background velocity. The corresponding two-way travel time
and inverse travel time are denoted T ∗(h, t0) and T ∗

0 (h, t), respectively. We assume that the
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data are model-consistent (noise-free), i.e.

d(t, h) = r∗ (T ∗
0 (t, h)) ,

where we have set the amplitude factor to 1 for simplicity (it can be re-introduced with
almost no changes in the results that follow). Note that

∂d

∂t
(t, h) =

∂T ∗
0

∂t
(t, h)

∂r∗

∂t0
(T ∗

0 (t, h)) ⇒ ∂r∗

∂t0
(T ∗

0 (t, h)) =

(
∂T ∗

0

∂t
(t, h)

)−1
∂d

∂t
(t, h) (45)

and
∂d

∂h
(t, h) =

∂T ∗
0

∂h
(t, h)

∂r∗

∂t0
(T ∗

0 (t, h)) . (46)

The arrival (horizontal) slowness of the ray passing offset h at time t is defined as follows:

p(t, h) ≡ ∂T

∂h
(T0(t, h), h) (47)

The stretch factor is defined as:

s(t, h) ≡ ∂T0

∂t
(t, h) =

(
∂T

∂t0
(T0(t, h), h)

)−1

(48)

With these defined, we also have:

0 =
∂

∂h
T (T0(t, h), h) =

∂T

∂t0
(T0(t, h), h)

∂T0

∂h
(t, h) +

∂T

∂h
(T0(t, h), h)

Therefore:
∂T0

∂h
(t, h) = −s(t, h)p(t, h) (49)

Now, given a trial velocity c0, we consider the following weighted cross-correlations:

Ct(t, h, h
′) =

∫ ∞

−∞

[
d(t+ τ, h)

∂T0

∂τ
(τ, h)

∫ τ

−∞

d(·, h′)
]
dτ

Ch(t, h, h
′) =

∫ ∞

−∞

[
d(t+ τ, h)

∂T0

∂h
(τ, h)

∫ τ

−∞

d(·, h′)
]
dτ

(50)

Both (deterministic) weights contain the stretch factor (48) and can therefore be expected
to be slowly varying. In particular, we think that the self-averaging property of these cross-
correlations is preserved. Of course, that this is really the case remains to be proved.

We now define the functional:

I(t, h) =

(
∂Ct

∂h′
+
∂Ch

∂t

)
(t, h, h′ = h) (51)
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Using (45) and (46), we can compute the derivatives of (50). We have:

∂Ct

∂h′
(t, h, h′ = h) =

∫ ∞

−∞

d(t+ τ, h)
∂T0

∂τ
(τ, h)

[∫ τ

−∞

∂T ∗
0

∂h
(τ ′, h)

∂r∗

∂t0
(T ∗

0 (τ ′, h)) dτ ′
]
dτ

=

∫ ∞

−∞

d(t+ τ, h)
∂T0

∂τ
(τ, h)

[∫ τ

−∞

∂T ∗
0

∂h
(τ ′, h)

(
∂T ∗

0

∂τ ′
(τ ′, h)

)−1
∂d

∂τ ′
(τ ′, h)dτ ′

]
dτ

Now, thereby using integration by parts,

∫ τ

−∞

∂T ∗
0

∂h
(τ ′, h)

(
∂T ∗

0

∂τ ′
(τ ′, h)

)−1
∂d

∂τ ′
(τ ′, h)dτ ′ ' ∂T ∗

0

∂h
(τ, h)

(
∂T ∗

0

∂τ
(τ, h)

)−1

d(τ, h) − . . . ,

where the elided terms are of lower frequency content than the term explicitly displayed.
They are of the same relative order of frequency as the terms neglected in the derivation of
the convolutional model from the acoustic wave equation. We finally obtain:

∂Ct

∂h′
(t, h, h′ = h) '

∫ ∞

−∞

d(t+ τ, h)

(
∂T0

∂τ

∂T ∗
0

∂h

)
(τ, h)

(
∂T ∗

0

∂τ
(τ, h)

)−1

d(τ, h)dτ

Similarly,

∂Ch

∂t
(t, h, h′ = h) =

∫ ∞

−∞

∂d

∂t
(t+ τ, h)

∂T0

∂h
(τ, h)

[∫ τ

−∞

d(τ ′, h)dτ ′
]
dτ

We use a first integration by parts to shift the time integral to the other terms of the
integrand (thereby assuming that the weight ∂T0/∂h is slowly varying):

∂Ch

∂t
(t, h, h′ = h) = −

∫ ∞

−∞

d(t+ τ, h)
∂T0

∂h
(τ, h)

[∫ τ

−∞

∂d

∂τ ′
(τ ′, h)dτ ′

]
dτ

= −
∫ ∞

−∞

d(t+ τ, h)
∂T0

∂h
(τ, h)

[∫ τ

−∞

∂T ∗
0

∂τ ′
(τ ′, h)

(
∂T ∗

0

∂τ ′
(τ ′, h)

)−1
∂d

∂τ ′
(τ ′, h)dτ ′

]
dτ

Note that we can neglect the boundary terms because they are of lower frequency content.
We proceed then as above to obtain

∂Ch

∂t
(t, h, h′ = h) = −

∫ ∞

−∞

d(t+ τ, h)

(
∂T0

∂h

∂T ∗
0

∂τ

)
(τ, h)

(
∂T ∗

0

∂τ ′
(τ, h)

)−1

d(τ, h)dτ.

Therefore, (51) becomes:

I(t, h) =

∫ ∞

−∞

d(t+ τ, h)

[(
∂T ∗

0

∂h

∂T0

∂τ
− ∂T ∗

0

∂τ

∂T0

∂h

)
(τ, h)

(
∂T ∗

0

∂τ
(τ, h)

)−1
]
d(τ, h)dτ

=

∫ ∞

−∞

d(t+ τ, h)s(τ, h) [p(τ, h) − p∗(τ, h)] d(τ, h)dτ

(52)
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This functional vanishes when p∗ = p, i.e. when c0 = c∗0. It measures the mismatch of
event slowness, weighted by data autocorrelation. This functional is precisely an annihilator
in the sense of Section refsec:two. A procedure to determine the optimal velocity c0 can be
formulated as the following optimization problem:

min
c0

J = 1
2
‖I(t, h)‖2, (53)

where ‖·‖ denotes the L2 norm. This is a variant of differential semblance optimization which
we introduced in Section . It also appears to be a waveform variant of stereotomography [7]
(an innovative approach to slope tomography).

Statement of the hypothesis

In this section, we formulate a set of conjectures which form the central points that the
proposed work will address with respect to the velocity analysis problem. These conjectures
are based on similar results that have been proved for other variants of differential semblance
optimization (see for example [52]. It may be the case that we need to adopt the so-called
hyperbolic moveout approximation of the two-way traveltime function:

T (t0, h) ≈
√
t20 +

h2

v2
RMS

(t0)
, (54)

where

vRMS(t0) =

√
1

t0

∫ t0

0

v2 (55)

is the root-mean-square velocity. This approximation, also known as the Dix formula, is
derived and explained carefully in [52]. It allows, in particular, to obtain explicit formulations
of terms such as the stretch factor (48) and the arrival time slowness (47).

The proposed thesis will seek to validate the following set of conjectures:

1. All stationary points of the objective function (53) are (asymptotic) global minima.

2. In the case where intermediate scale random fluctuations are allowed in the model,
the cross-correlations (50) with slowly varying weights are statistically stable, as is
the case without weights. Therefore, the objective function (53) is self-averaging, i.e.
deterministic.

3. The gradient of the objective function J is also self-averaging. Thus, the optimization
problem is itself statistically stable.

4. The stationary points of J with cross-correlation weights computed from the long-scale
velocity component are optimal estimators of the background velocity.
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Note that the demonstration of the validity of the above conjectures would entail that,
under the assumptions made, velocity analysis is essentially stable against random

fluctuations on the medium scale l.

Assessing the quality of migration

We consider in this section the second part of the seismic inverse problem. Assuming that we
can reconstruct the background velocity in the way described in the last section, what can we
say about the reconstruction of the reflectivity? As we mentioned in the introduction, it is
quite clear that the uncertainty at the medium scales of velocity can be expected to pollute
the resolution of migration techniques. Is it possible to quantify that (loss of) resolution
explicitly?

Using the theory of time reversal and wave propagation in randomly inhomogeneous media,
the resolution problem has been addressed in [11], but in a slightly different context. The
problem considered in that paper is that of imaging the reflectivity % of an extended target
compactly supported in a domain D ⊂ R

3. By using a variant of the so-called matched field

imaging functional [5; 13], the authors of [11] manage to transform the imaging problem into
a deterministic deblurring problem. How relevant these results are to the quantification of
the (loss of) resolution in practical migration techniques is unclear, but they are certainly
worth understanding, with the hope that we can find a way to apply them for practical
purposes.

The setup is as shown on Figure 6. The diameter of the target is assumed small compared
to both Ls and Lr. We assume a remote-sensing regime, i.e. as � Ls and ar � Lr. The
system of coordinates has its origin at Os, the center of the sub-array of sources. The z-axis
passes through Os and y0, a reference point in the target.

The matched field approach is extended in this case by taking the convolution of d(xs,xr, t+
tsr(y

S)) with d(xs′,xr′,−t−ts′r′(yS)) and evaluating at zero lag t = 0 (tsr and ts′r′ are defined
according to (43)):

ΓIM(yS) =

∫ ∞

−∞

k4|f̂(ω)|2
2π

{∫∫

D

ρ(y)ρ(y′)
∑

s,s′

Ĝ(xs,y, ω)Ĝ(xs′,y
′, ω)eik(|xs−y

S |−|xs′−y
S |)

∑

r,r′

Ĝ(xr,y, ω)Ĝ(xr′ ,y
′, ω)eik(|xr−y

S |−|xr′−y
S |)dydy′

}
dω

(56)

We assume that the sources lie on the surface orthogonal to the axis Os − y0, and that the
receivers lie on a surface orthogonal to Or − y0. Note that this approach in effect supposes
that the target D shrinks to the point y0. We write:

xs = (us, 0), xr = (ur, 0)
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Fig. 6. The setup for distributed reflectivity imaging

Because we are in the remote sensing regime, we have near cancellation of the random phases
in the pairs of Green’s functions in (56), and by summing over the frequencies, we obtain a
self-averaging operator. In particular, we can replace these pairs of random Green’s functions
by their respective expectations. We again idealize reality by assuming that the sources and
receivers form a continuum indexed by us and ur, respectively. We obtain:

ΓIM(yS) =∫∫

D

8%(y)%(y′)

πh4

[∫ ∞

−∞

k4|f̂(ω)|2
〈
F̂s(Os,y,y

′,yS, ω)
〉〈

F̂r(Or,y,y
′,yS, ω)

〉
dω

]
dydy′,

where

〈
F̂s(Os,y,y

′,yS, ω)
〉

=

∫∫ 〈
Ĝ(xs,y, ω)Ĝ(xs′,y

′, ω)
〉
eik(|xs−y

S |−|xs′−y
S |)dusdus′

〈
F̂r(Or,y,y

′,yS, ω)
〉

=

∫∫ 〈
Ĝ(xr,y, ω)Ĝ(xr′,y

′, ω)
〉
eik(|xr−y

S |−|xr′−y
S |)durdur′

The second moments in the above expression involve Green’s functions at four distinct points.
Such general moment formula is derived in [27; 40] and given explicitly in [22]. In the
appendix, we show that the formula as given in [22] can be reduced in our context to the
following expression:

〈
Ĝ(xs,y, ω)Ĝ(xs′,y

′, ω)
〉
≈ Ĝ0(xs,y, ω)Ĝ0(xs′,y

′, ω)e−
k2DLs

6 [|us−ys′ |
2+(us−us′)·(y−y

′)⊥+|(y−y
′)⊥|2]
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In the system of coordinates described previously, and with the notation

y = (ξ, Ls + η), y′ = (ξ
′, Ls + η′), yS = (ξ

S, Ls + ηS),

we obtain:〈
F̂s(Os,y,y

′,yS, ω)
〉

=

∫∫
eik(|xs′−y

′|−|xs′−y
S |−|xs−y|+|xs−y

S |)

16π2|xs − y||xs′ − y′| e−
k2DLs

6 [|us−us′ |
2+(us−us′ )·(ξ−ξ′)⊥+|(ξ−ξ′)⊥|2]dusdus′

The phases and amplitudes can now be approximated with the parabolic approximation,
and with some additional approximations (see [11] for details), we finally obtain:

〈
F̂s(Os,y,y

′,yS, ω)
〉
≈ a2

s

8πk2DLs|Os − yS|2 e
ik(η−η′)− 3k2DLs|ξ−ξ′|2

8
− |ξ+ξ′−2ξS |2

8DL3
s

The calculation of the term corresponding to the sources is very similar. With these results,
and after further simplifications that we omit here, expression (56) becomes, thereby writing
η ≡ y1 and ξ ≡ (y2, y3)) :

Γ(yS) ≈ C̃(yS, D, f)

∫

D

%2(y)e
−

(y2−yS
2 )2

2

„
1

DL3
s
+ 1

DL3
r

«
−

(y1−yS
1 )2

2DL3
s

−
[(y1−yS

1 ) cos α−(y3−yS
3 ) sin α]

2

2DL3
r dy (57)

This functional does not reconstruct the reflectivity % pointwise, but rather the squared
reflectivity %2 averaged over an area defined by the intersection of three Gaussians (one for
each component) centered at yS and with variance proportional to the effective apertures
(recall that ae =

√
DL3/3). As can be seen from the expression (57), some range information

remains in the matched field functional. However, as the angle α decreases, the variance of the
Gaussian in the range direction increases (the Gaussian is quite elongated in depth), so that a
single array completely loses depth information. The key to resolution enhancement appears
therefore to obtain multiple views of the reflectivity from the source-receiver sub-arrays.
Then, the reflectivity could be obtained by estimating %2 via a least-squares deblurring
method using data for several source-receiver offset angle α. This remains to be investigated,
though.

Practical aspects

A large part of the proposed work relies naturally on a numerical investigation of the prop-
erties laid out in the previous section. The implementation of all the operators (modeling,
migration) and functionals that we have defined thus far will be done in the framework of the
following software packages. The Standard Vector Library (SVL) is a collection of C++ base
classes which implement the basic mathematical components of calculus in Hilbert space such
as vectors and operators, among others key concepts. It also implements numerous Newton-
based optimization algorithms. The Timestepping Simulation for Optimization (TSOpt)
provides a framework to construct efficient simulation-driven optimization applications, and
serves as the interface to SVL.
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DISCUSSION AND CONCLUSIONS

As discussed in this proposal, we wish to address the seismic inverse problem from a very
innovative point of view. In essence, the proposed work represents an attempt to connect
two very well established yet inherently different theories. On the one hand, seismic imag-
ing techniques, typically deterministic, are based on the commonly assumed dichotomy of
the velocity field between long and short scales. On the other hand, the theory of wave
propagation in stochastic media, based on the conviction that classical (i.e. deterministic)
models and theories are too idealized and do not adequately reflect the complexity and het-
erogeneities of numerous real media, usually views the short and medium scales of velocity
as random fields. The proposed work will make the distinction more subtle. In particular,
only the intermediate scale of velocity is regarded as randomly fluctuating and it is precisely
the uncertainty at this scale that we wish to understand, and especially its influence on the
resolution of the long (background velocity) and short (image) scales. Using ideas on time-
reversed acoustics developed by G. Papanicolaou and his group, we propose to pre-process
the seismic data in such a way that we obtain self-averaging data subsets, that is, data that
are essentially stable with respect to the random fluctuations at the intermediate scale of
velocity. Because the pre-processing step involves the cross-correlation of nearby traces, it
would seem that all of the travel time information (hence information on the background
medium) is lost. We demonstrated in this proposal, using the convolutional model (thereby
assuming a laterally homogeneous medium), that this is not the case, and that the cross-
correlated data do contain slowness information. We then formulated an explicit velocity
analysis algorithm to retrieve that information, hence the background medium, as well as
a certain number of hypothesis which constitute the main points that this thesis plans to
address in a first stage. With respect to the quality of seismic images, we have described
how the matched field functional can be used to transform the imaging problem into a de-
terministic deblurring problem. We propose to investigate how these ideas can be used in
practice for the purpose of estimating the resolution of migration techniques.

APPENDIX A: THE MOMENT FORMULA

The mutual coherence function or second moment of Ĝ as given in [22] is:

〈
Ĝ(r1, r2, ω)Ĝ(r3, r4, ω)

〉
= Ĝ0(r1, r2, ω)Ĝ0(r3, r4, ω)e−H(rc,ρ13,ρ24),

where the (free space) two-point Green’s function is

Ĝ0(x,y) =
eik|x−y|

4π|x − y| , k =
ω

c0

and where

H (rc, ρ13, ρ24) =
k2|rc|

4

∫ 1

0

{R(0) − R [(1 − ζ)ρ24 + ζρ13]} dζ. (58)
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These equations allow for four distinct spatial points r1, r2, r3, and r4. The center coordinate
and the projected difference coordinates are given by

rc =
(r1 − r2) + (r3 − r4)

2

ρij = (ri − rj) −
(

rc · (ri − rj)

|rc|

)
rc

|rc|

In the remote-sensing regime, the mean-square phase deviation of the signal

k2|rc|R(0)

4

will be a reasonably large number [22]. This allows the use of a second-order Taylor expansion
of R(ρ) about ρ = 0 in the integrand of (58) since the exponentiated error produced by such
an expansion will be very small. The Taylor expansion of R(ρ) about ρ = 0 yields:

R(ρ) = R(0) + ρR′(0) +
ρ2

2
R′′(0) + . . .

We use the assumption that R is isometric, i.e. R(ρ) = R(|ρ|) to cancel the first derivative:

R′(0) =
R(0 + h) − R(0 − h)

2h
= 0

Therefore, thereby using the fact that R′′(0) = −4D, we obtain:

R(0) −R(ρ) = −ρ
2

2
R′′(0) = 2Dρ2,

and

∫ 1

0

{R(0) −R [(1 − ζ)ρ24 + ζρ13]} dζ = 2D

∫ 1

0

[(1 − ζ)ρ24 + ζρ13]
2 dζ

=
2D

3

(
ρ2

24 + ρ2
13 + ρ24 · ρ13

)

Therefore, we obtain:

H (rc, ρ13, ρ24) ≈
k2D|rc|

6

[
ρ2

24 + ρ2
13 + ρ24 · ρ13

]

and the second moment formula becomes:

〈
Ĝ(r1, r2, ω)Ĝ(r3, r4, ω)

〉
= Ĝ0(r1, r2, ω)Ĝ0(r3, r4, ω)e−

k2D|rc|
6 [ρ2

24+ρ2
13+ρ24·ρ13].
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