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The scale gap

• Primary-based seismic methods can be established theoretically on the basis of
the Born approximation (Lailly, 1983):

– Long scale fluctuations (km for sediments) of the velocity are resolved via
velocity analysis.

– Short scale variations (10’s m) of the velocity (i.e. the reflectivity) are re-
solved viamigration .

• Seismic imaging techniques donot appear to estimate the medium scale (∼ 60m
- 300m) wavelengths (Claerbout, 1985, Tarantola, 1989).

• The medium scale component is assumed not to influence the seismic response
(Lailly and Delprat-Jannaud, 2003).
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Proposed work

• Provide a new way to look at this familiar ”fact”.

• Try to understand the influence of the medium scale on the resolution of the long
(background velocity) and short (image) scales.

• Take this intermediate scale velocity into account and treat it as arandom pro-
cessto model the associated uncertainty (and its consequences).

• Goal: Estimate the background velocity bycombining ideas on time reversal
and imaging in randomly inhomogeneous media set forth by Borcea, Papanico-
laou et al., and the velocity estimation methods of differential semblance type.
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Agenda

• Motivation

• Wave propagation in random media

• Cross-correlation tomography

• Assessing statistical stability

• Conclusions and future work
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Three-scale asymptotics

Setting: single scattering approximation, 3-scale asymptotics:

• “Deterministic” reflectors on wavelength scaleλ (short-scale component).

• Propagation distanceL: scale of the background velocity “macro-model”.

• The medium scale velocity is assumed to randomly fluctuate onthe scalea.

Asymptotic assumption: high-frequency regimeλ ≪ a ≪ L
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Wave propagation in random media

• Application to time-reversed acoustics:

– the refocusing of a time-reversed, backpropagated signal is better in random
media than in homogeneous ones.

– the refocusing property does not depend on the particular realization of the
random medium: it isstatistically stable(in the limit a/L → 0).

• Key to self-averaging: near cancellation of the random phases. Heuristically:

G ∼
ei(kr+φ)

4πr

and since the time-reversed back-propagated field containsGG, the random
phasesφ nearly cancel (for nearby paths).
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Application to seismic imaging

• With the Born approximation, the scattered field measured ata receiverr is:

d(s, r, t) =
1

2π

∫ ∞

−∞

dω (iω)2e−iωt

[
∫

dx r(x)G(s,x, ω)G(r,x, ω)

]

• Idea (Borcea et al., 2003):

d(s, r, t) ⋆ d(s′, r′, t) =
1

2π

∫ ∞

−∞

dω D(s, r, ω)D(s′, r′, ω)eiωt

Note that we obtain the terms:

G(s,x, ω)G(s′,x′, ω) and G(r,x, ω)G(r′,x′, ω)

• Pre-processing step: start with the fluctuating datad(s, r, t), and obtain a re-
duced, self-averaging data set .
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Agenda

• Motivation

• Wave propagation in random media

• Cross-correlation tomography

• Assessing statistical stability

• Conclusions and future work
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Cross-correlation tomography (1/4)

• The convolution model for the linearized forward map is (Symes, 1999):

d(t, h) = r(Z(t, h)).

HereZ(t, h) is the inverse Fourier transform of the two-way travel time function.

• To obtain the background velocity, construct an operator which when applied to
the data with thecorrect background medium yields a vanishing outcome.

• Denote byv∗ the correct background velocity, with corresponding traveltime
T ∗(z, h) and inverse traveltimeZ∗(t, h).

• Assume model-consistent data (i.e. noise-free):d(t, h) = r∗(Z∗(t, h)).
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Cross-correlation tomography (2/4)

Choose a trial velocityv, compute correspondingZ, and define the weighted cross-
correlations of nearby traces:

C1(t, h, h′) =

∫ ∞

−∞

d(t + τ, h)p2(τ, h)d(τ, h′)dτ

C2(t, h, h′) =

∫ ∞

−∞

d(t + τ, h)p(τ, h)

[
∫ τ

−∞

d(·, h′)

]

dτ

C3(t, h, h′) =

∫ ∞

−∞

[
∫ τ

−∞

d(t + ·, h)

] [
∫ τ

−∞

d(·, h′)

]

dτ
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Cross-correlation tomography (3/4)
• Define the functional:

I(h) =

(

C1 +
∂2C3

∂h∂h′
+ 2

∂C2

∂h′

)

(t = 0, h, h′ = h).

• After some algebra, we obtain:

I(h) =

∫ ∞

−∞

|d(τ, h)|2 [p(τ, h) − p∗(τ, h)]2 dτ

• I(t, h) vanishes whenp∗ = p. It measures the mismatch of event slowness,
weighted by data autocorrelation.

• Velocity analysis algorithm:

min
v

J = 1
2‖I(h)‖2

Use gradient-based optimization methods (assumingJ is smooth inv).
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Cross-correlation tomography (4/4)
Conjectures:

• Objective just defined hasglobal minimums, as has been proved for other DSO
variants (e.g. the layered medium case).

• When intermediate scale random fluctuations are allowed, the cross-correlations
with (slowly-varying) weights are statistically stable, as is the case without weights.

• The gradient ofJ is also statistically stable.

• Stationary points ofJ with cross-correlation weights computed from long-scale
velocity component are optimal estimators of background velocity.

Ultimately : Velocity analysis is essentially stable against random fluctuations on
the medium scalea!
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Agenda

• Motivation

• Wave propagation in random media

• Cross-correlation tomography

• Assessing statistical stability

• Conclusions and future work
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Constructing a statistically stable data set

• Task: construct a 3-scale velocity model with the appropriate scaling.

• The medium scale fluctuationsδv have the following characteristics:

– zero mean〈δv(x)〉 = 0

– specified autocorrelation function of the form:

〈δv(x)δv(x′)〉 = σ2R(r), r = |x − x
′|

– For simplicity, we consider a Gaussian autocorrelation function:

R(r) = ε2e−r2/a2
, ε2 = R(0) =

1

σ2

〈

δv2(x)
〉

• Conducted100 linearized simulations. To measure statistical stability, usesam-
ple meanandsample variance.
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Conclusions

• Next step: velocity analysis

– using regular differential semblance optimization (c.f. talk by Jintan Li and
W.W. Symes) on the raw data.

– using the new formulation on the cross-correlated data.

• Future work:

– Extension to more complex models.

– Investigation of the applicability of the imaging results obtained by Borcea,
Papanicolaou and to migration.
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