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The scale gap

e Primary-based seismic methods can be established thedhetn the basis of
the Born approximation (Lailly, 1983):

—Long scale fluctuations (km for sediments) of the velocity eesolved via
velocity analysis

— Short scale variations (10’s m) of the velocity (i.e. theeaetivity) are re-
solved viamigration.

e Seismic imaging technigues dot appear to estimate the medium scaleg0m
- 300m) wavelengths (Claerbout, 1985, Tarantola, 1989).

e The medium scale component is assumed not to influence raisaesponse
(Lailly and Delprat-Jannaud, 2003).




Proposed work

e Provide a new way to look at this familiar "fact”.

e Try to understand the influence of the medium scale on théutsso of the long
(background velocity) and short (image) scales.

e Take this intermediate scale velocity into account and itee arandom pro-
cessto model the associated uncertainty (and its consequences)

e Goal: Estimate the background velocity lmpmbining ideas on time reversal
and imaging in randomly inhomogeneous media set forth bg&mrPapanico-
laou et al., and the velocity estimation methods of diffie¢rsemblance type.
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Three-scale asymptotics

Setting: single scattering approximation, 3-scale asphqst:

e “Deterministic” reflectors on wavelength scaléshort-scale component).
e Propagation distanck: scale of the background velocity “macro-model”.

e The medium scale velocity is assumed to randomly fluctuath®scale:.

Asymptotic assumption high-frequency regime < a < L




Wave propagation in random media

e Application to time-reversed acoustics:

—the refocusing of a time-reversed, backpropagated sigriatter in random
media than in homogeneous ones.

—the refocusing property does not depend on the particusdizetion of the
random medium: it istatistically stable(in the limita/L — 0).

e Key to self-averaging: near cancellation of the random esalleuristically:
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and since the time-reversed back-propagated field conti#sthe random
phases nearly cancel (for nearby paths).




Application to seismic imaging
¢ With the Born approximation, the scattered field measuredraceiver is:

d(s,r,t) = QL /_OO dw (iw)*e™ ™! [/ dx r(x)G(s,x,w)G(r, X, w)

n o0

e |dea (Borcea et al., 2003):

R |
d(s,r,t)xd(s',r',t) = —/ dw D(s,r,w)D(s', 7", w)e™!

2T J_ o

Note that we obtain the terms:

G(s,x,w)G(s,x',w) and G(r,x,w)G(r' x' w)

e Pre-processing step: start with the fluctuating détar,t), and obtain a re-
duced, self-averaging data set .
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Cross-correlation tomography (1/4)

e The convolution model for the linearized forward map is (8gnl999):
d(t,h) =r(Z(t,h)).
HereZ(t, h) is the inverse Fourier transform of the two-way travel timedtion.

e To obtain the background velocity, construct an operatackvivhen applied to
the data with theorrect background medium yields a vanishing outcome.

e Denote byv* the correct background velocity, with corresponding thave
T*(z, h) and inverse traveltimg*(¢, h).

e Assume model-consistent data (i.e. noise-frdé):h) = r*(Z*(t, h)).




Cross-correlation tomography (2/4)

Choose a trial velocity, compute corresponding, and define the weighted cross-
correlations of nearby traces:

Ci(t,h, 1) = / d(t 4 7, h)p*(T, h)d(r, B )dr
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Cross-correlation tomography (3/4)

e Define the functional:
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e After some algebra, we obtain:

I(h) = (Cl+ )(t:(),h,h’:h).
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e /(t,h) vanishes whemn* = p. It measures the mismatch of event slowness,
weighted by data autocorrelation.

¢ \elocity analysis algorithm:
min J = %H](h)||2

Use gradient-based optimization methods (assuniirggsmooth inv).
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Cross-correlation tomography (4/4)

Conjectures

e ODbjective just defined hagobal minimums, as has been proved for other DSO
variants (e.g. the layered medium case).

e When intermediate scale random fluctuations are allowed;bss-correlations
with (slowly-varying) weights are statistically stabls,iathe case without weights.
e The gradient of/ is also statistically stable.

e Stationary points off with cross-correlation weights computed from long-scale
velocity component are optimal estimators of backgroundoiy.

Ultimately: Velocity analysis is essentially stable against randowtdiations on
the medium scale!
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Constructing a statistically stable data set

e Task: construct a 3-scale velocity model with the appraersaaling.

e The medium scale fluctuatiors have the following characteristics:
—zero meanjv(z)) =0

— specified autocorrelation function of the form:
(bv(x)dv(x)) = c*R(r), r=|x—X|
— For simplicity, we consider a Gaussian autocorrelatiorctiom:
R(r) =%, 2 = R(0) = 5 (50(x))

e Conducted 00 linearized simulations. To measure statistical stabilisesam-
ple meanandsample variance
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Conclusions

e Next step: velocity analysis

— using regular differential semblance optimization (cdlktby Jintan Li and
W.W. Symes) on the raw data.

—using the new formulation on the cross-correlated data.

e Future work:

— Extension to more complex models.

— Investigation of the applicability of the imaging resultstaned by Borcea,
Papanicolaou and to migration.
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