Aspects of wave equation migration

Chris Stolk
Department of Applied Mathematics, University of Twente, The Netherlands

Includes parts joint with Martijn de Hoop, and joint with Bill Symes

Topics

- Wave equation migration as solution of a high-frequency linearized inverse problem
- Angle CIG's in media with multipathing: free of kinematic artifacts

Migration as a linearized inverse problem

Series of papers, e.g. Cohen-Bleistein, Beylkin, Rakesh, Ten Kroode-Smit-Verdel, Nolan-Symes).

Model data by

- Born approximation: write $\frac{1}{c^{2}(x)}=\frac{1}{c_{0}^{2}(x)}(1+\alpha(x))$
- Ray-theory

Linearized forward map, given $c_{0} \operatorname{maps} \alpha \mapsto$ data.

Kirchhoff migration reconstructs most singular part of $\alpha(x)$, if

- Proper weight factors/amplitudes
- Absence of caustics (unstacked), or much less restrictive TIC condition (stacked with "maximal data").

Question: Can you show something similar for wave-equation migration?

Angle CIG's

- Multiple reflected rays for a single offset \rightarrow images sorted by angle
- Artifacts

Example medium, some rays and wave fronts

Kirchhoff angle migration (Xu et al. 2001) for $x_{1}=0 \mathrm{~km}$

- Artifacts invalidate use of angle gathers for velocity analysis
- Artifacts confuse AVO/AVA analysis

Topics

- Wave equation migration as solution of a high-frequency linearized inverse problem
- Solutions of one-way wave equations \leftrightarrow solutions to full equation
- Double-square root forward modeling (Stolk \& De Hoop, to appear in SIAM J. on Appl. Math)
- Remarks about imaging
- Angle CIG's in media with multipathing: free of kinematic artifacts
- Wave equation migration (almost) artifact free (preprint Stolk \& De Hoop)
- Example with both Kirchhoff and wave equation angle gathers

One-way wave equations analysis: summary

Model: Propagation for velocities inside θ_{1}-cone, strong damping outside θ_{2}-cone. Subset of wave fronts computed from point source.
x denotes horizontal variable(s) $u=u(z, x, t)$ a wavefield.

$G_{-}\left(z, z_{0}\right)$ extrapolation operator.
For $G_{-}\left(z, z_{0}\right)$ to be unitary for propagating waves, work with a normalized wave field u_{-}

$$
\begin{aligned}
u_{-}(z, \cdot, \cdot) & =G_{-}\left(z, z_{0}\right) u_{-}\left(z_{0}, \cdot \cdot \cdot\right), \\
u(z, \cdot, \cdot) & =Q_{-}^{*}\left(z, x, D_{x}, D_{t}\right) u_{-}(z, \cdot, \cdot), \\
Q & =\left|\partial_{t}\right|^{-1 / 2}\left(\left(c(z, x)^{-2}-\partial_{t}^{-2} \partial_{x}^{2}\right)^{-1 / 4} .\right.
\end{aligned}
$$

In this way one obtains correct amplitudes in a smoothly varying medium.

Theoretically we can make this such that

- G_{-}solves a one way wave equation

$$
\begin{aligned}
& \left(\frac{\partial}{\partial z}-i B_{-}\left(z, x,-i \partial_{x}, i \partial_{t}\right)-C\left(z, x,-i \partial_{x}, i \partial_{t}\right)\right) G_{-}\left(z, z_{0}\right)=0, \\
& G_{-}\left(z_{0}, z_{0}\right)=\text { Id } .
\end{aligned}
$$

B the square root operator, selfadjoint; C is damping (new).
Square root operator B
Damping operator C

Re $k_{z}=-\omega \sqrt{c^{-2}-\omega^{-2} k_{x}^{2}}$

- The Green's function is replaced by

$$
G\left(z_{r}, x_{r}, t ; z_{s}, x_{s}\right) \approx\left(Q_{-}^{*} G_{-}\left(z_{r}, z_{s}\right) \frac{1}{2} \mathcal{H}_{t} Q_{-}\right) \delta_{t=0} \delta_{x=x_{s}}
$$

with \mathcal{H} the Hilbert transform, on the "upgoing part" of the rays.

- The approximation above is to highest order singularities, modulo a smoother term.

Modeling and upward continuation

Acoustic Born: data modeled by

$$
w *_{t} \delta G, \text { with } w=w(t) \text { source wavelet, }
$$

$\delta G\left(z_{r}, x_{r}, t ; z_{s}, x_{s}\right)$ given by linearization $\frac{1}{c(z, x)^{2}} \rightarrow \frac{1}{c_{0}(z, x)^{2}}(1+\alpha(z, x))$

$$
\begin{aligned}
\delta G\left(z_{r}, x_{r}, t ; z_{s}, x_{s}\right)= & \int d z \int d x \int d t_{0} \\
& G\left(z_{r}, x_{r}, t-t_{0} ; z, x\right) \frac{(-\alpha(z, x))}{c_{0}^{2}(z, x)} \partial_{t}^{2} G\left(z_{s}, x_{s}, t_{0} ; z, x\right)
\end{aligned}
$$

Introduce Claerbout's "subsurface offset" h

$$
\begin{aligned}
& \delta G\left(z_{r}, x_{r}, t ; z_{s}, x_{s}\right)=\int d z \int d x \int d t_{0} \int d h \int d t^{\prime} \\
& G\left(z_{r}, x_{r}, t-t_{0} ; z, x+h\right) \underbrace{\underbrace{\frac{(-\alpha(z, x))}{c_{0}^{2}(z, x)} \delta(h) \delta\left(t^{\prime}\right)} \partial_{t}^{2} G\left(z_{s}, x_{s}, t_{0}-t^{\prime} ; z, x-h\right)}_{\text {"DSR reflectivity" } r\left(z, x-h, x+h, t^{\prime}\right) .}
\end{aligned}
$$

$x-h=$ "sunken source position" $; x+h=$ "sunken receiver position"

Replace G by extrapolator $G_{-}\left(z, z_{0}\right)$. Let $G_{-, s}$ act in $\left(x_{s}, t\right)$ variables, $G_{-, r}$ in $\left(x_{r}, t\right)$ variables. We let

$$
H\left(z, z_{0}\right)=G_{-, s}\left(z, z_{0}\right) G_{-, r}\left(z, z_{0}\right)
$$

upward continuation (kernel contains a time convolution)

Modeling formula

Let Z be some large depth below which $\alpha=0$. Then

$$
\delta G \approx \int_{0}^{Z} d z\left(\partial_{t}^{2}\right)\left(Q_{-, s}^{*} Q_{-, r}^{*}\right) H(0, z)\left(Q_{-, s} Q_{-, r}\right) \frac{1}{4} \partial_{t}^{2} r\left(z, y_{s}, y_{r}, t\right)
$$

with

$$
r\left(z, y_{s}, y_{r}, t\right)=\frac{\alpha}{c_{0}^{2}}\left(z, \frac{y_{s}+y_{r}}{2}\right) \delta\left(\frac{y_{r}-y_{s}}{2}\right) \delta(t)
$$

DSR equation for $H\left(z, z_{0}\right)$
Using that $B_{-, r}, C_{-, r}$ commute with $G_{-, s}$, we find that

$$
\left(\frac{\partial}{\partial z}-i B_{-, s}-i B_{-, r}-C_{s}-C_{r}\right) H\left(z, z_{0}\right)=0
$$

and

$$
H\left(z_{0}, z_{0}\right)=\mathrm{Id}
$$

DSR assumption

All reflections contributing energy to the data are along a downward traveling incoming ray, and an upward traveling reflected ray.

Adjoints and imaging

Adjoint of upward continuation is downward continuation.

Adjoint of map

$$
\frac{\alpha(z, x)}{c_{0}^{2}(z, x)} \rightarrow r\left(z, y_{s}, y_{r}, t\right)
$$

gives Claerbout's imaging condition $t=0$ and $y_{s}=y_{r}$ in downward continuation imaging.

Amplitude factors can also be derived

WE angle transform

Let $R\left(z, x_{m}, h, t\right)$ be downward continued data in midpoint-offset coords.

$$
\begin{aligned}
f_{\text {stack }}(z, x) & =R(z, x, 0,0) \\
& =\frac{1}{(2 \pi)^{n}} \iint \hat{R}(z, x, \theta, \omega) d \theta d \omega .
\end{aligned}
$$

$p=\frac{\theta}{\omega}$ is a difference of horizontal slownesses. The angle transform is obtained by taking p constant (De Bruin et al. 1990, Prucha et al. 1999)

$$
\begin{aligned}
f_{\mathrm{WE}-\text { angle }}(p, z, x) & =\frac{1}{2 \pi} \int \hat{R}(z, x, p \omega, \omega) d \omega \\
& =\frac{1}{(2 \pi)^{n}} \iiint e^{i(\theta-p \omega) \cdot h} \widehat{R}(z, x, \theta, \omega) d h d \theta d \omega \\
& =\int R(z, x, h, p \cdot h) d h .
\end{aligned}
$$

Kinematics of downward continuation

High-frequency asymptotic Green's function with multivalued traveltimes

$$
G\left(z_{r}, x_{r}, z_{s}, x_{s}, t\right) \approx \sum_{(j)} a^{(j)}\left(z_{r}, x_{r}, z_{s}, x_{s}\right) \mathcal{H}_{t}^{\sigma^{(j)}} \delta\left(t-\tau^{(j)}\left(z_{r}, x_{r}, z_{s}, x_{s}\right)\right) .
$$

Downward continued data
$R\left(z, \frac{y_{s}+y_{r}}{2}, \frac{y_{r}-y_{s}}{2}, t\right)=\iint(\ldots) d\left(x_{s}, x_{r}, t+\tau^{(j)}\left(\left(0, x_{r}\right),\left(z, y_{r}\right)\right)+\tau^{(k)}\left(\left(0, x_{s}\right),\left(z, y_{s}\right)\right)\right) d x_{s} d x_{r}$.

Consider an event at $t=T_{\text {data }}\left(x_{s}, x_{r}\right)$.
Large contribution to integral: integration traveltime surface tangent to data traveltime surface by stationary phase.

Result of stationary phase

$$
\begin{aligned}
t+\tau^{(j)}\left(\left(0, x_{r}\right),\left(z, y_{r}\right)\right)+\tau^{(k)}\left(\left(0, x_{s}\right),\left(z, y_{s}\right)\right) & =T_{\text {data }}\left(x_{s}, x_{r}\right) \\
\frac{\partial}{\partial x_{s}}\left(\tau^{(j)}\left(\left(0, x_{r}\right),\left(z, y_{r}\right)\right)+\tau^{(k)}\left(\left(0, x_{s}\right),\left(z, y_{s}\right)\right)\right) & =\frac{\partial}{\partial x_{s}} T_{\text {data }}\left(x_{s}, x_{r}\right) \\
\frac{\partial}{\partial x_{r}}\left(\tau^{(j)}\left(\left(0, x_{r}\right),\left(z, y_{r}\right)\right)+\tau^{(k)}\left(\left(0, x_{s}\right),\left(z, y_{s}\right)\right)\right) & =\frac{\partial}{\partial x_{r}} T_{\text {data }}\left(x_{s}, x_{r}\right)
\end{aligned}
$$

$\frac{\partial \tau^{(j)}}{\partial x_{s}}\left(\left(z, y_{s}\right),\left(0, x_{s}\right)\right)$ and $c\left(0, x_{s}\right)$ fix direction of ray from $\left(z, y_{s}\right)$ to $\left(0, x_{s}\right)$ at $\left(0, x_{s}\right)$, therefore
(z, y_{s}) must be on the ray determined by $\left(0, x_{s}\right)$ and $p_{s}=\frac{\partial T_{\text {data }}}{\partial x_{s}}$,
$\left(z, y_{r}\right)$ must be on the ray determined by $\left(0, x_{r}\right)$ and $p_{r}=\frac{\partial T_{\text {data }}}{\partial x_{r}}$.

Energy in $R(z, x, h, t)$ propagates downward along DSR raypairs ("double rays")

Focusing property: If $T_{\text {data }}$ due to reflection at $\left(z_{\text {refl }}, x_{\text {refl }}\right)$, then for $t=0$, energy is focused at $(z, x, h)=\left(z_{\text {refl }}, x_{\text {refl }}, 0\right)$.

Focusing \Rightarrow angle gathers are artifact free

Angle transform

$$
f_{\mathrm{WE}-\text { angle }}(p, z, x)=\int R(z, x, h, p \cdot h) d h
$$

Suppose $c(z, x)<C$ then for focusing rays, energy is present only if

$$
h<C t
$$

Now assume $\|p\|<C^{-1}$. Then we have a unique contribution to $f_{\text {WE-angle }}$, with the DSR assumption.

Synthetic example: A simplified model for gas lenses observed in the Valhall field. Top: The model. Bottom: Data, a typical shot.

Angle CIG's at position (1) for synthetic data from the lens using the correct velocity model. Left: Using the wave equation method. Right: Using the Kirchhoff method. Artifacts are present in the Kirchhoff CIG, but absent in the wave equation CIG.

Conclusions

- The DSR modeling formulation provides a way to go from the wave equation to DSR imaging and migration.

Claerbout's imaging conditions are explained in this way, and amplitude factors can be derived.

- Wave equation angle gathers are artifact free, under the DSR condition. This allows for caustics, unlike with Kirchhoff angle gathers.

