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Topics

e \Wave equation migration as solution of a high-frequency lin-
earized inverse problem

e Angle CIG’'s in media with multipathing: free of kinematic arti-
facts



Migration as a linearized inverse problem

Series of papers, e.g. Cohen-Bleistein, Beylkin, Rakesh, Ten Kroode-
Smit-Verdel, Nolan-Symes).

Model data by
_ : . : 1 1

Born approximation: write 2@ = 2@ (1+ a(x))
- Ray-theory

Linearized forward map, given cg maps a +— data.

Kirchhoff migration reconstructs most singular part of a(x), if

- Proper weight factors/amplitudes

- Absence of caustics (unstacked), or much less restrictive TIC
condition (stacked with “maximal data”).

Question: Can you show something similar for wave-equation
migration?



Angle CIG’s

offset

e Multiple reflected rays for a single offset
— images sorted by angle

identical offset
but different
scattering angle

e Artifacts
Example medium, some rays Kirchhoff angle migration (Xu et
and wave fronts al. 2001) for z1 = 0 km
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e Artifacts invalidate use of angle gathers for velocity analysis

e Artifacts confuse AVO/AVA analysis



Topics

e \Wave equation migration as solution of a high-frequency lin-
earized inverse problem

— Solutions of one-way wave equations « solutions to full equation

— Double-square root forward modeling (Stolk & De Hoop, to appear in
SIAM J. on Appl. Math)

— Remarks about imaging

e Angle CIG’'s in media with multipathing: free of kinematic arti-
facts

— Wave equation migration (almost) artifact free (preprint Stolk & De
Hoop)

— Example with both Kirchhoff and wave equation angle gathers



One-way wave equations analysis: summary

Model: Propagation for velocities inside
61-cone, strong damping outside #,-cone.
Subset of wave fronts computed
from point source.

x denotes horizontal variable(s)
u = u(z,z,t) a wavefield.
G_(z,zp) extrapolation operator.
For G_(z,zp) to be unitary for propagating waves, work with a
normalized wave field u_

u_(z, ) ) — G_(Z,ZO)’LL_(ZO, ) ')7
’U(Z, "y ) — Q*—(ZaaniCa Dt)u—(za "y ')7

Q =10:"12 ((c(z,2) 72 - 0;%07)

In this way one obtains correct amplitudes in a smoothly varying
medium.
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T heoretically we can make this such that
e (G_ solves a one way wave equation

_(zo, zo) = Id :
B the square root operator, selfadjoint; C is damping (new).
Square root operator B Damping operator C

Rek, =—wVc" —oo:kz
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e [ he Green’s function is replaced by

G(ZT7 Lr, tr <8 xS) ~ (Q*— G—(Z’I“a ZS) %HtQ—)5t205$:$57
with 'H the Hilbert transform, on the “upgoing part” of the rays.

e [ he approximation above is to highest order singularities, mod-
ulo a smoother term.



Modeling and upward continuation

Acoustic Born: data modeled by

w *¢ 0G, with w = w(t) source wavelet,

0G (zr,zr,t; zs,Ts) given by linearization c(z,la;)Q e x)Q(l—I—a(z x))

0G(zr, xr, t; 25, Ts) = /dz/da:/dto
G(zr,xr,t — tg; 2, ) (za(z 2))

c3(z,x)
Introduce Claerbout’s “subsurface offset” h

0G (zr,xr,t;, 25, Ts) = /dz/dx/dto
(—a(z,z))

“B(z2)

~"

“DSR reflectivity” r(z,z — h,x + h,t').

GEG(zs,xs,to; 2, )

8752G(z3,af;5,t0 2z, x—h)

G(zr,xr, t —tg; z,x-+h)

r—h = ‘“'sunken source position” : x+h = ‘'sunken receiver position”
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Replace G by extrapolator G_(z,z2p). Let G_ s actin (zs,t) variables,
G_ , in (zr,t) variables. We let

H(Zv ZO) — G—,S(za ZO)G—,T(Za ZO)7

upward continuation (kernel contains a time convolution)

Modeling formula
Let Z be some large depth below which o« = 0. Then

A
5G ~ /O dz(atQ)(Q*—,SQ*—,T) H(07 Z) (Q—,SQ—,T’)%atQT(za Ys, Yr, t)
with

(@ —
r(2usyr, 1) = —5 (2 BFI) 6(25%) 6(1).
0

DSR equation for H(z,zq)
Using that B_,,C_ , commute with G_ 5, we find that

(& —iB_ s —iB_, — Cs— Cp)H(z,20) = 0,
and
H(zp,z0) = Id.



DSR assumption
All reflections contributing energy to the data are along a downward
traveling incoming ray, and an upward traveling reflected ray.

X X, Xg X,
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Z
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(Zrefs Xref) (Zrefh Xref
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Adjoints and imaging
Adjoint of upward continuation is downward continuation.

Adjoint of map
a(z,z)
c§(z, x)
gives Claerbout’s imaging condition t =0 and ys = y, in downward
continuation imaging.

- ’I“(Z, Ys, yr,t)

Amplitude factors can also be derived
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WE angle transform

Let R(z,zm,h,t) be downward continued data in midpoint-offset
coords.

fstack(z, ) = R(Z z,0,0)
//R(z x,0,w) dl dw.

(27T)”

p = % is a difference of horizontal slownesses. The angle transform

is obtained by taking p constant (De Bruin et al. 1990, Prucha et
al. 1999)

1 ~
fWE—angIe(pazan) — —/R(Z X, pw, w) dw

(277)”/// 0PI hR (% 2, 0,w) dh df dw

— /R(z,x,h,p - h)dh.
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Kinematics of downward continuation

High-frequency asymptotic Green's function with multivalued trav-
eltimes

G(zr, Ty, 25, s, t) = Za(j)(zr, Ty, Zs, xS)Hg(j)cS(t — T(j)(zr, Ty, Zs, Ts)).

()
Downward continued data

R(z, Ys ;‘ yr’ Yr ; ys,t) — //()d(%, z,, t + 790, 2,), (z,9r)) + 75 (0, z5), (2, ys))) dzs dz,.

Consider an event at t = Tyata(xs, xr).

LLarge contribution to integral: integration traveltime surface tan-
gent to data traveltime surface by stationary phase.
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Result of stationary phase

t+ 790, 2r), (z,9r)) + 7F((0, 25), (2,95)) = Tyata(zs, zr)

858133 (T(])((O, CUT)? (Z, y’l“)) + T(k)((O, ,CUS), (Z, ys))) = 6iSTdata(ajS7 xr)
8ir,~ (T(])((O, 337“)7 (Z, yT)) + T(k)((O, 333), (Z, ys))) = aierata(iUSa CUT)

%T—a?((z,ys),(o,xs)) and ¢(0,xzs) fix direction of ray from (z,ys) to

(0,z5) at (0, xs), therefore

oT,
(z,ys) must be on the ray determined by (0,zs) and ps = adata :
Ls
: aTdata
(z,yr) must be on the ray determined by (0,z,) and p, = 5 :
Lr

14



Energy in R(z,xz,h,t) propagates downward along DSR raypairs

(“double rays")

t decreasmg
with depth

A\\t 0

Focusing property: If Tyat5 due to reflection at (zref, xref)), then for
t = 0, energy is focused at (z,z,h) = (zrefl, Trefl, 0).
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Focusing = angle gathers are artifact free

Angle transform

fWE—angIe(pa 2, 33) — /R(Z,CIZ, h,p . h)dh
Suppose c(z,x) < C then for focusing rays, energy is present only if

h < Ct

Now assume ||p|| < C~1. Then we have a unique contribution to
JWE—angle; With the DSR assumption.

» fronts
R —rays

planes
t=p-h

: offset
ique
cogibution
to inteqral

t=3C1h
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Synthetic example: A simplified model for gas lenses observed in
the Valhall field. Top: The model. Bottom: Data, a typical shot.
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Angle CIG’'s at position (1) for synthetic data from the lens using
the correct velocity model. Left: Using the wave equation method.
Right: Using the Kirchhoff method. Artifacts are present in the
Kirchhoff CIG, but absent in the wave equation CIG.
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Conclusions

e [he DSR modeling formulation provides a way to go from the
wave equation to DSR imaging and migration.

Claerbout’s imaging conditions are explained in this way, and
amplitude factors can be derived.

e \Wave equation angle gathers are artifact free, under the DSR
condition. This allows for caustics, unlike with Kirchhoff angle
gathers.
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