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Topics

• Wave equation migration as solution of a high-frequency lin-

earized inverse problem

– Solutions of one-way wave equations ↔ solutions to full equation

– Double-square root forward modeling (Stolk & De Hoop, to appear in
SIAM J. on Appl. Math)

– Remarks about imaging

• Angle CIG’s in media with multipathing: free of kinematic arti-

facts

– Kinematic artifacts in Kirchhoff angle migration (Stolk & Symes, Geo-
physics 2004)

– wave equation migration (almost) artifact free (math preprint Stolk &
De Hoop going to Inverse Problems, working on a second paper)
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Migration as a linearized inverse problem

Series of papers, e.g. Cohen-Bleistein, Beylkin, Rakesh, Ten Kroode-

Smit-Verdel, Nolan-Symes).

Model data by

- Born approximation: write 1
c2(x)

= 1
c20(x)

(1 + α(x))

- Ray-theory

Linearized forward map, given c0 maps α 7→ data.

Kirchhoff migration reconstructs most singular part of α(x), if

- Proper weight factors/amplitudes

- Absence of caustics (unstacked), or much less restrictive TIC

condition (stacked with “maximal data”).

Question: Can you show something similar for wave-equation

migration?
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Angle CIG’s

• Multiple reflected rays for a single offset source receiver

identical offset
but different
scattering angle

offset

θ1 θ2

→ images sorted by angle

• Artifacts
Example medium, some rays
and wave fronts

Kirchhoff angle migration (Xu et
al. 2001) for x1 = 0 km
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• Artifacts invalidate use of angle gathers for velocity analysis

• Artifacts confuse AVO/AVA analysis
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Topics

• Wave equation migration as solution of a high-frequency lin-

earized inverse problem

– Solutions of one-way wave equations ↔ solutions to full equation

– Double-square root forward modeling (Stolk & De Hoop, to appear in
SIAM J. on Appl. Math)

– Remarks about imaging

• Angle CIG’s in media with multipathing: free of kinematic arti-

facts

– Wave equation migration (almost) artifact free (preprint Stolk & De
Hoop)

– Example with both Kirchhoff and wave equation angle gathers
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One-way wave equations analysis: summary

Model: Propagation for velocities inside

θ1-cone, strong damping outside θ2-cone.

θ2

θ1

v
x

v
z

0

Subset of wave fronts computed

from point source.

z

x

x denotes horizontal variable(s)

u = u(z, x, t) a wavefield.

G−(z, z0) extrapolation operator.

For G−(z, z0) to be unitary for propagating waves, work with a

normalized wave field u−

u−(z, ·, ·) = G−(z, z0)u−(z0, ·, ·),

u(z, ·, ·) = Q∗
−(z, x,Dx, Dt)u−(z, ·, ·),

Q = |∂t|
−1/2

(
(c(z, x)−2 − ∂−2t ∂2x

)−1/4
.

In this way one obtains correct amplitudes in a smoothly varying

medium.
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Theoretically we can make this such that

• G− solves a one way wave equation
(

∂
∂z − iB−(z, x,−i∂x, i∂t)− C(z, x,−i∂x, i∂t)

)
G−(z, z0) = 0,

G−(z0, z0) = Id .

B the square root operator, selfadjoint; C is damping (new).

Square root operator B Damping operator C

ω−1kxθ2

−ω

0

Rekz = c −2ω−2 k2
x−

−1c sin( ) ω−1kx

Im kz

0 −1 θ1sin( )c
−1 θ2sin( )c

• The Green’s function is replaced by

G(zr, xr, t; zs, xs) ≈ (Q∗
−G−(zr, zs)

1
2HtQ−)δt=0δx=xs,

with H the Hilbert transform, on the “upgoing part” of the rays.

• The approximation above is to highest order singularities, mod-

ulo a smoother term.
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Modeling and upward continuation

Acoustic Born: data modeled by

w ∗t δG, with w = w(t) source wavelet,

δG(zr, xr, t; zs, xs) given by linearization 1
c(z,x)2

→ 1
c0(z,x)2

(1+α(z, x))

δG(zr, xr, t; zs, xs) =
∫

dz
∫

dx
∫

dt0

G(zr, xr, t− t0; z, x)
(−α(z, x))

c20(z, x)
∂2t G(zs, xs, t0; z, x)

Introduce Claerbout’s “subsurface offset” h

δG(zr, xr, t; zs, xs) =
∫

dz
∫

dx
∫

dt0

∫
dh

∫
dt′

G(zr, xr, t− t0; z, x+h)
(−α(z, x))

c20(z, x)
δ(h)δ(t′)

︸ ︷︷ ︸
∂2t G(zs, xs, t0−t′; z, x−h)

“DSR reflectivity” r(z, x− h, x+ h, t′).

x−h = “sunken source position”; x+h = “sunken receiver position”
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Replace G by extrapolator G−(z, z0). Let G−,s act in (xs, t) variables,
G−,r in (xr, t) variables. We let

H(z, z0) = G−,s(z, z0)G−,r(z, z0),

upward continuation (kernel contains a time convolution)

Modeling formula

Let Z be some large depth below which α = 0. Then

δG ≈
∫ Z

0
dz(∂2t )(Q

∗
−,sQ

∗
−,r) H(0, z) (Q−,sQ−,r)

1
4∂

2
t r(z, ys, yr, t)

with

r(z, ys, yr, t) =
α

c20
(z, ys+yr

2 ) δ(yr−ys
2 ) δ(t).

DSR equation for H(z, z0)
Using that B−,r, C−,r commute with G−,s, we find that

( ∂
∂z − iB−,s − iB−,r − Cs − Cr)H(z, z0) = 0,

and

H(z0, z0) = Id.
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DSR assumption

All reflections contributing energy to the data are along a downward

traveling incoming ray, and an upward traveling reflected ray.

(zrefl, x refl)
(zrefl, x refl)

xs xr xs xr

z
x z

x
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Adjoints and imaging

Adjoint of upward continuation is downward continuation.

Adjoint of map

α(z, x)

c20(z, x)
→ r(z, ys, yr, t)

gives Claerbout’s imaging condition t = 0 and ys = yr in downward

continuation imaging.

Amplitude factors can also be derived
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WE angle transform

Let R(z, xm, h, t) be downward continued data in midpoint-offset

coords.

fstack(z, x) = R(z, x,0,0)

=
1

(2π)n

∫ ∫
R̂(z, x, θ, ω) dθ dω.

p = θ
ω is a difference of horizontal slownesses. The angle transform

is obtained by taking p constant (De Bruin et al. 1990, Prucha et

al. 1999)

fWE−angle(p, z, x) =
1

2π

∫
R̂(z, x, pω, ω) dω

=
1

(2π)n

∫ ∫ ∫
ei(θ−pω)·hR̂(z, x, θ, ω) dh dθ dω

=
∫

R(z, x, h, p · h)dh.
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Kinematics of downward continuation

High-frequency asymptotic Green’s function with multivalued trav-

eltimes

G(zr, xr, zs, xs, t) ≈
∑

(j)

a(j)(zr, xr, zs, xs)H
σ(j)

t δ(t− τ(j)(zr, xr, zs, xs)).

Downward continued data

R(z,
ys + yr

2
,
yr − ys

2
, t) =

∫ ∫
(...)d(xs, xr, t+ τ (j)((0, xr), (z, yr)) + τ (k)((0, xs), (z, ys))) dxs dxr.

Consider an event at t = Tdata(xs, xr).

Large contribution to integral: integration traveltime surface tan-

gent to data traveltime surface by stationary phase.
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Result of stationary phase

t+ τ(j)((0, xr), (z, yr)) + τ(k)((0, xs), (z, ys)) = Tdata(xs, xr)

∂

∂xs
(τ(j)((0, xr), (z, yr)) + τ(k)((0, xs), (z, ys))) =

∂

∂xs
Tdata(xs, xr)

∂

∂xr
(τ(j)((0, xr), (z, yr)) + τ(k)((0, xs), (z, ys))) =

∂

∂xr
Tdata(xs, xr)

∂τ(j)

∂xs
((z, ys), (0, xs)) and c(0, xs) fix direction of ray from (z, ys) to

(0, xs) at (0, xs), therefore

(z, ys) must be on the ray determined by (0, xs) and ps =
∂Tdata
∂xs

,

(z, yr) must be on the ray determined by (0, xr) and pr =
∂Tdata
∂xr

.
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Energy in R(z, x, h, t) propagates downward along DSR raypairs

(“double rays”)

z

, prxr

t decreasing
with depth

, ps

t=0

sx

x−h x+h

Focusing property: If Tdata due to reflection at (zrefl, xrefl), then for

t = 0, energy is focused at (z, x, h) = (zrefl, xrefl,0).
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Focusing ⇒ angle gathers are artifact free

Angle transform

fWE−angle(p, z, x) =
∫

R(z, x, h, p · h)dh.

Suppose c(z, x) < C then for focusing rays, energy is present only if

h < Ct

Now assume ‖p‖ < C−1. Then we have a unique contribution to

fWE−angle, with the DSR assumption.

_1
2

(DSR −rays)

planes

−1

wave fronts
tim

e

t=  C   h

.t=p h offset
unique
contribution
to integral
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Synthetic example: A simplified model for gas lenses observed in

the Valhall field. Top: The model. Bottom: Data, a typical shot.

0
0.5
1.0
1.5
2.0de

pt
h 

(k
m

)

0 2 4 6 8 10 12
inline direction (km)

(1)

0

1

2

3

tim
e (

s)

-1 0 1 2
inline direction (km)

17



Angle CIG’s at position (1) for synthetic data from the lens using

the correct velocity model. Left: Using the wave equation method.

Right: Using the Kirchhoff method. Artifacts are present in the

Kirchhoff CIG, but absent in the wave equation CIG.
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Conclusions

• The DSR modeling formulation provides a way to go from the

wave equation to DSR imaging and migration.

Claerbout’s imaging conditions are explained in this way, and

amplitude factors can be derived.

• Wave equation angle gathers are artifact free, under the DSR

condition. This allows for caustics, unlike with Kirchhoff angle

gathers.
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