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Ray-tracing based
tomography

m Traveltime between S and R: ¢(S, R) = 5 ds.

m Fermat’s principle serves as the foundation:
First-Arrivals (FA) based.

m Both ray path and velocity (1/slowness) are unknown.

m Linearize the equation around a given background
slowness with an unknown slowness perturbation.

m Discretize the interested region into pixels of
constant velocities.

m [race rays in the Lagrangian framework.

m ODbtain a linear system linking slowness perturbation
with traveltime perturbation.



Seismic traveltime
tomography

B [ransmission traveltime tomography estimates
wave-speed distribution from acoustic, elastic or
electromagnetic first-arrival (FA) traveltime data.

m [ravel-time tomography shares some similarities with
medical X-ray CT.

m Geophysical traveltime tomography uses travel-time
data between source and receiver to invert for
underground wave velocity.

m Seismic tomography usually is formulated as a
minimization problem that produces a velocity model
minimizing the difference between traveltimes
generated by tracing rays through the model and
those measured from the data: Lagrangian

approaches.



Traveltime tomography:
PDE-based (1)

m We develop PDE-based Eulerian approaches to
traveltime tomography to avoid ray-tracing.

m Part |: FA-based traveltime tomography via eikonal
egns, adjoint state methods and fast eikonal solvers.

m Sei-Symes’94, ‘95 formulated FA based traveltime
tomography using paraxial eikonal egns; they only
illustrated the feasibility of computing the gradient
by using the adjoint state method.

m QOur contribution: formulating the problem in terms
of the full eikonal egn, solving the eikonal egn by
fast sweeping methods and designing a new fast
sweeping method for the adjoint egn of the
linearized eikonal eqgn.



Traveltime tomography:
PDE-based (2)

m Part lI: multi-arrival (MA)-based traveltime
tomography via Liouville egns and adjoint state
methods.

m QOur contribution: to our knowledge this is the
approach to taking into account all
arrivals systematically in the seismic tomography.

m Delprat-dJannaud and Lailly’95: handling multiple
arrivals (MAs) in reflection tomography in the
ray-tracing framework, a Lagrangian approach.



Part |I: Eikonal-based
tomography

m [raveltimes between a source S and receivers R on
the boundary satisfy

c(x)|VT| =1, T(xs)=0.

O given ¢ > 0, compute the viscosity
solution based FAs from the source to receivers.
O given both FA measurements on

the boundary 012, and the location of the point
source x; € 052, invert for the velocity field c¢(x)
inside the domain €2,,.



FA-based tomography: idea

O fast eikonal solvers; they are
essential for inverse problems.
O essential steps.

= Minimize the mismatching functional between
measured and simulated traveltimes.

m Derive the gradient of the mismatching functional
and apply an optimization method.

m Linearize the eikonal egn around a known
slowness with an unknown slowness perturbation.

m Solve the eikonal egn for the viscosity solution:
only FAs are used.



FA-based tomography:
formulation

® The mismatching functional (energy),

1
Bo=5 [ m-TF,

where T*|sq, is the data and T|yq, is the eikonal
solution.

m Perturb ¢ by e¢ = Perturbation in T by €7 and in E by
OFE:

5E—efaQ (T — T*)+O( 2).
T,T, —I—TT + 1.7, =—%.

C

m Difficulty: 6 E depends on ¢ implicitly through T and
the linearized eikonal equation. Use the adjoint state
method.



FA-based tomography:
adjoint state

m Introduce ) satisfying

()M + [(=Ty)Aly + [(=T2) A = 0,
(n-VI)A=T*—T,0n 0€,.

m Impose the BC to back-propagate the time residual
into the computational domain.

m Simplify the energy perturbation further,

oL cA
e  JQ, 3

m Choose ¢ = —)\/c? = Decrease the energy:
0B = —e¢ [o ¢ <0.
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FA-based tomography:

regularization
m Enforce
1. 5|an = 0;

2. il = ¢k 1 ¢ smooth.

m [he first condition is reasonable as we know the
velocity on the boundary.

®m The second condition is a requirement on the
smoothness of the update at each step.

m Reqgularize, v > 0, by using a Sobolev space,

e (- ) (3),

0E = —¢ [o (& +v|VE)?) 0.
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FA-based tomography:
multiple data sets (1)

m A single data set is associated with a single source.

m [ncorporate multiple data sets associated with
multiple sources into the formulation.

m Define a new energy for NV sets of data:

where T; are the solutions from the eikonal equation
with the corresponding point source condition

T(x%) = 0.
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FA-based tomography:
multiple data sets (2)

m Perturbation in the energy,

where ); is the adjoint state of 7; (i = 1,--- , N)
satisfying

{[=(T)a] itz + {[—=(T0)y Aty + {[-(T2):]Ni}: = 0.
(n-VT)N =T — T,

® To minimize the energy E"V(c), choose

¢=—(—vA)! (C%in\, .



Fast sweeping for eikonal
and adjoint equations

m Fast eikonal solvers: fast marching (Sethian, ...),
ENO-DNO-Postsweeping (Kim-Cook), fast sweeping
on Cartesian and triangular meshes (Zhao, Tsali,
Cheng, Osher, Kao, Qian, Cecil, Zhang,...); see
Engquist-Runborg’03 for more.

m The eikonal egn is solved by the fast sweeping
method (Zhao, Math. Comp’05).

m The adjoint equation for the adjoint state can be
solved by fast sweeping methods as well.

m We have designed a new fast sweeping method for
the adjoint egn. (Leung-Qian’05)
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Fast sweeping for the
adjoint equation (1)

m Take the 2-D case to illustrate the idea:
(aX)z + (bA), =0,

where a and b are given functions of (x, z).
m Consider a computational cell centered at («;, z;) and
discretize the equation in conservation form,

1
A (Git1/2,01725 = Gi12,71/2,)

1
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Fast sweeping for the
adjoint equation (2)

m )\ on the interfaces, \;1/5; and A; ;1 /5, determined
by the propagation of characteristics, ie, upwinding,

where a; | 1,; denote the positive and negative parts

17
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Fast sweeping for the
adjoint equation (3)

m Rewriting as

+ - + -
N Qir1/2, ai—1/2,j_|_bz',j—|—1/2 bi,j—l/Q
Ax Az
+ S = L
aq;—1/2,j)‘z—1d ai+1/2,j>‘Z+1aJ
OAij = Ax
+ = .
+bz',j—1/2)‘w—1 bz’,j+1/2)‘z,y+1
Az

which gives us an expression to construct a fast
sweeping type method.

m Alternate sweeping strategy applies.

|
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Other implementation
details

m The Poisson eqgn is solved by FFT.

m The gradient descent method needs too many
iterations.

m Use the limited memory Broyden, Fletcher, Goldfarb,
Shanno (L-BFGS) method: a quasi-Newton
optimization method (Byrd, Lu, Nocedal and Zhu'95).

m |deal illuminations are assumed.
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2-D two-Gaussian (1): 10

sources
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2-D two-Gaussian (2): 10
sources
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2-D two-Gaus
noise (1): 10
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2-D two-Gaussian with 5%
noise (2): 10 sources
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3-D Constant: 98 sources
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Marmousi: 20 sources
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Figure 1: True synthetic Marmousi vs inversion
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Marmousi: 20 sources
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Figure 2: Refined mesh and residual history
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Part Il: Liouville-based
tomography

m Question: can we take into account multi-arrivals
(MA) to possibly improve resolution?

m Multi-arrival(MA) based traveltime tomography via
Liouville egns.

m Liouville + Level set methods + adjoint state
methods.

m QOur contribution: to our knowledge this is the
approach to considering all arrivals
systematically in the traveltime tomography.

m Delprat-dJannaud and Lailly’95: handling multiple
arrivals in reflection tomography in the ray-tracing
framework: a Lagrangian approach.
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Tomography via Liouville
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Figure 3: Use multi-arrivals from received time se-
ries via Liouville in phase space
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MA tomography: Liouville

m Liouville based phase space geometrical optics
(Engquist and Runborg'03; many others).

m Paraxial Liouville egns are based on paraxial
eikonals and level sets (Leung-Qian-Osher'04):

2
% o \/max ((%2 _ (%) ,COSQCgmaX>7
Oz + uPy + vog = 0,
T, +uly, +vip = L

ccos@

where u = (u,v) = (tanf, m, tan — my,),

m = m(c) = logc; ¢ and T are the level set and
traveltime functions in the reduced phase space
() = {(Ia (9) ! Tmin < T < Tmax; —Omax < 0 < Hmax}-

31



MA tomography: complete
data

m |.B.C. (n being the outward normal of 09):

¢(207’7’) = &
B o if (u-n)<O0
25 0)lon = { no b.c. needed if (u-n)>0
T(Z()a'?.) = 0
T* if (u-n)<0
T . . —
(2,5 )log { no b.c. needed if (u-n)>0

m Use (-)* to denote the measured value on the outflow
boundary of 92 and on the final level z = z;.

B Such measurements can be picked by suitably
pairing as in Delprat-Jannaud and Lailly'95.



MA tomography: energy

mO=0x (Z(),Zf), Qp — (xminaxmax) X (Z(),Zf).

m Data: ¢*(z,-,-)|an and T*(z, -, ) |so on the outflow
boundary; ¢*(zy,-,-) and T (z¢,-,-) at z = zy; m|aq, -

m Minimize the energy:

E(m) = % fQ(Qb — ¢*)2‘Z:Zf T % fz faQ(u -n) (¢ — €b*)2
+5 Jo(T = T2y + 5 [ Jyq(u-n)(T = T%)2.

m Derive the gradient of the nonlinear functional by the
adjoint state method.

m Linearize the Liouville egns and the energy around a
known background slowness with an unknown
slowness perturbation. "



MA tomography:
linearization

m Perturb m by emn; changes in ¢ and T by ¢4 and €7T:

ggz + qua: + ?)ggg — [maz — m, tan 9]¢97
T, +uly, +vip = [ﬁlw — m, tan Q]Tg —

ccos@ -

m Perturbation in energy:
OF = E(m+em) — E(m),

where u = (0,0) = (0, m, tan € — my).
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MA tomography: adjoints

m Choose \{ and )\ such that

m With boundary conditions ...



MA tomography: gradient

m Boundary conditions

(

Moo = ¢* — ¢ if (u-n)>0
no b.c. needed if (u-n) <0
Mm:: T —T if (u-n)>0
no b.c. needed if (u-n) <0

\

m Perturbation in energy (f;, i=1:4 computable):

SE = ¢ Jo, m{ (F)e = (f2)s + 25+ fu



MA tomography:
regularization

m o decrease the energy, choose by Tikhonov
regularization

m=—(I —vA)" g

where

g=(f1)e — (f2): + 2 f3+ fu.

5E:e/ - —e/ (12 + v Vi2) < 0.
Q, 0

p

m Implementations: HJ-WENO, HJ-Central-WENO,
FFT and gradient descent methods.
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Waveguide vel.: (2)
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2-D two-Gaussian vel.: (1)
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2-D two-Gaussian vel.: (2)
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Two-Gaussian vel. with
noisy data
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Two-Gaussian: FA vs MA

Figure 4: (a): FA with 10 sources;

C)
<
>
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MA tomography: incomplete
data

m Only have the measurement on the final level z = z;.
mData: I'(zf) = {¢(x,0,2¢), T (2,0, 2¢) : (z,0) € Q}.

m Paraxial assumption implies that relevant rays will not
touch the boundary of the domain 2 = Q x (0, z¢).

m [gnore the contribution from inflows in the energy.
m Simplify the energy:

B(m) = 5 [ (0= 600 +
+§/Q(T—T*)25(F(zf)).

m Simplify the gradient as well. 1



Conclusion and future work

m Developed PDE-based approaches to traveltime
tomography: FAs and MAs.

m Validated accuracy and efficiency of the approaches
under ideal illuminations.
m Future work consists of

m taking into account the partial illumination of the
computational domain (Joint with TRIP);

m formulating FA-based reflective traveltime
tomography (Leung-Qian’05)

m formulating MA-based high resolution reflective
traveltime tomography
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