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Transmission traveltime
tomography
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Well 1: Well 2: 

3



Ray-tracing based
tomography

Traveltime between S and R: t(S,R) =
∫ R
S

ds
c .

Fermat’s principle serves as the foundation:
First-Arrivals (FA) based.
Both ray path and velocity (1/slowness) are unknown.
Linearize the equation around a given background
slowness with an unknown slowness perturbation.
Discretize the interested region into pixels of
constant velocities.
Trace rays in the Lagrangian framework.
Obtain a linear system linking slowness perturbation
with traveltime perturbation.
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Seismic traveltime
tomography

Transmission traveltime tomography estimates
wave-speed distribution from acoustic, elastic or
electromagnetic first-arrival (FA) traveltime data.
Travel-time tomography shares some similarities with
medical X-ray CT.
Geophysical traveltime tomography uses travel-time
data between source and receiver to invert for
underground wave velocity.
Seismic tomography usually is formulated as a
minimization problem that produces a velocity model
minimizing the difference between traveltimes
generated by tracing rays through the model and
those measured from the data: Lagrangian
approaches. 5



Traveltime tomography:
PDE-based (1)

We develop PDE-based Eulerian approaches to
traveltime tomography to avoid ray-tracing.
Part I: FA-based traveltime tomography via eikonal
eqns, adjoint state methods and fast eikonal solvers.

Sei-Symes’94, ’95 formulated FA based traveltime
tomography using paraxial eikonal eqns; they only
illustrated the feasibility of computing the gradient
by using the adjoint state method.
Our contribution: formulating the problem in terms
of the full eikonal eqn, solving the eikonal eqn by
fast sweeping methods and designing a new fast
sweeping method for the adjoint eqn of the
linearized eikonal eqn.
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Traveltime tomography:
PDE-based (2)

Part II: multi-arrival (MA)-based traveltime
tomography via Liouville eqns and adjoint state
methods.

Our contribution: to our knowledge this is the first
Eulerian approach to taking into account all
arrivals systematically in the seismic tomography.
Delprat-Jannaud and Lailly’95: handling multiple
arrivals (MAs) in reflection tomography in the
ray-tracing framework, a Lagrangian approach.
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Part I: Eikonal-based
tomography

Traveltimes between a source S and receivers R on
the boundary satisfy

c(x)|∇T | = 1, T (xs) = 0.

Forward problem: given c > 0, compute the viscosity
solution based FAs from the source to receivers.
Inverse problem: given both FA measurements on
the boundary ∂Ωp and the location of the point
source xs ∈ ∂Ωp, invert for the velocity field c(x)
inside the domain Ωp.
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FA-based tomography: idea
Forward problem: fast eikonal solvers; they are
essential for inverse problems.
Inverse problem: essential steps.

Minimize the mismatching functional between
measured and simulated traveltimes.
Derive the gradient of the mismatching functional
and apply an optimization method.
Linearize the eikonal eqn around a known
slowness with an unknown slowness perturbation.
Solve the eikonal eqn for the viscosity solution:
only FAs are used.
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FA-based tomography:
formulation

The mismatching functional (energy),

E(c) =
1

2

∫

∂Ωp

|T − T ∗|2 ,

where T ∗|∂Ωp
is the data and T |∂Ωp

is the eikonal
solution.
Perturb c by εc̃ ⇒ Perturbation in T by εT̃ and in E by
δE:

δE = ε
∫

∂Ωp
T̃ (T − T ∗) + O(ε2) .

TxT̃x + TyT̃y + TzT̃z = − c̃
c3 .

Difficulty: δE depends on c̃ implicitly through T̃ and
the linearized eikonal equation. Use the adjoint state
method.
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FA-based tomography:
adjoint state

Introduce λ satisfying

[(−Tx)λ]x + [(−Ty)λ]y + [(−Tz)λ]z = 0 ,

(n · ∇T )λ = T ∗ − T, on ∂Ωp.

Impose the BC to back-propagate the time residual
into the computational domain.
Simplify the energy perturbation further,

δE
ε =

∫

Ωp

c̃λ
c3 .

Choose c̃ = −λ/c3 ⇒ Decrease the energy:
δE = −ε

∫

Ωp
c̃2 ≤ 0.
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FA-based tomography:
regularization

Enforce
1. c̃|∂Ωp

= 0;
2. ck+1 = ck + εc̃k smooth.
The first condition is reasonable as we know the
velocity on the boundary.
The second condition is a requirement on the
smoothness of the update at each step.
Regularize, ν ≥ 0, by using a Sobolev space,

c̃ = −(I − ν∆)−1
(

λ
c3

)

,

δE = −ε
∫

Ωp
(c̃2 + ν|∇c̃|2) ≤ 0 .
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FA-based tomography:
multiple data sets (1)

A single data set is associated with a single source.
Incorporate multiple data sets associated with
multiple sources into the formulation.
Define a new energy for N sets of data:

EN (c) =
1

2

N
∑

i=1

∫

∂Ωp

|Ti − T ∗

i |
2,

where Ti are the solutions from the eikonal equation
with the corresponding point source condition
T (xi

s) = 0.
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FA-based tomography:
multiple data sets (2)

Perturbation in the energy,

δEN

ε
=

∫

Ωp

c̃

c3

N
∑

i=1

λi ,

where λi is the adjoint state of Ti (i = 1, · · · , N )
satisfying

{[−(Ti)x]λi}x + {[−(Ti)y]λi}y + {[−(Ti)z]λi}z = 0 ,

(n · ∇Ti)λi = T ∗

i − Ti .

To minimize the energy EN (c), choose

c̃ = −(I − ν∆)−1

(

1

c3

N
∑

i=1

λi

)

.
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Fast sweeping for eikonal
and adjoint equations

Fast eikonal solvers: fast marching (Sethian, ...),
ENO-DNO-Postsweeping (Kim-Cook), fast sweeping
on Cartesian and triangular meshes (Zhao, Tsai,
Cheng, Osher, Kao, Qian, Cecil, Zhang,...); see
Engquist-Runborg’03 for more.
The eikonal eqn is solved by the fast sweeping
method (Zhao, Math. Comp’05).
The adjoint equation for the adjoint state can be
solved by fast sweeping methods as well.
We have designed a new fast sweeping method for
the adjoint eqn. (Leung-Qian’05)
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Fast sweeping for the
adjoint equation (1)

Take the 2-D case to illustrate the idea:

(aλ)x + (bλ)z = 0 ,

where a and b are given functions of (x, z).
Consider a computational cell centered at (xi, zj) and
discretize the equation in conservation form,

1

∆x

(

ai+1/2,jλi+1/2,j − ai−1/2,jλi−1/2,j

)

+
1

∆z

(

bi,j+1/2λi,j+1/2 − bi,j−1/2λi,j−1/2

)

= 0 .
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Fast sweeping for the
adjoint equation (2)

λ on the interfaces, λi±1/2,j and λi,j±1/2, determined
by the propagation of characteristics, ie, upwinding,

1

∆x

(

(a+

i+1/2,j
λi,j + a−

i+1/2,j
λi+1,j)

)

−
1

∆x

(

(a+

i−1/2,j
λi−1,j + a−

i−1/2,j
λi,j)

)

+
1

∆z

(

(b+

i,j+1/2
λi,j − b−

i,j+1/2
λi,j+1)

)

−
1

∆z

(

(b+

i,j+1/2
λi,j−1 − b−

i,j+1/2
λi,j)

)

= 0 ,

where a±
i+1/2,j

denote the positive and negative parts
of ai+1/2,j. 17



Fast sweeping for the
adjoint equation (3)

Rewriting as

α =

(

a+

i+1/2,j
− a−

i−1/2,j

∆x
+

b+

i,j+1/2
− b−

i,j−1/2

∆z

)

αλi,j =
a+

i−1/2,j
λi−1,j − a−

i+1/2,j
λi+1,j

∆x

+
b+

i,j−1/2
λi,j−1 − b−

i,j+1/2
λi,j+1

∆z

which gives us an expression to construct a fast
sweeping type method.
Alternate sweeping strategy applies.
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Other implementation
details

The Poisson eqn is solved by FFT.
The gradient descent method needs too many
iterations.
Use the limited memory Broyden, Fletcher, Goldfarb,
Shanno (L-BFGS) method: a quasi-Newton
optimization method (Byrd, Lu, Nocedal and Zhu’95).
Ideal illuminations are assumed.
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2-D Constant (1): 10 sources
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2-D Constant (2): 10 sources
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2-D two-Gaussian (1): 10
sources
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2-D two-Gaussian (2): 10
sources
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2-D two-Gaussian with 5%

noise (1): 10 sources
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2-D two-Gaussian with 5%

noise (2): 10 sources
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3-D Constant: 98 sources
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Marmousi: 20 sources
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Figure 1: True synthetic Marmousi vs inversion
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Marmousi: 20 sources
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Figure 2: Refined mesh and residual history
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Part II: Liouville-based
tomography

Question: can we take into account multi-arrivals
(MA) to possibly improve resolution?
Multi-arrival(MA) based traveltime tomography via
Liouville eqns.

Liouville + Level set methods + adjoint state
methods.
Our contribution: to our knowledge this is the first
Eulerian approach to considering all arrivals
systematically in the traveltime tomography.
Delprat-Jannaud and Lailly’95: handling multiple
arrivals in reflection tomography in the ray-tracing
framework: a Lagrangian approach.
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Tomography via Liouville

z = 0, Well 1
x: x1≤ x≤ x2

z=zf, Well 2
x: x1≤ x ≤ x2

x=x1: surface
z: 0≤ z ≤ zfΩ={(x,θ)}:

reduced
phase
space

x=x2: subsurface
     z: 0≤ z≤ zf

θ: phase

θ: phase

*
*
*
*

O

o

o

o
Initial
conditions

MA Data:
collected
by pairing

Ω={(x,θ)}:
reduced
phase
space

Figure 3: Use multi-arrivals from received time se-
ries via Liouville in phase space
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MA tomography: Liouville
Liouville based phase space geometrical optics
(Engquist and Runborg’03; many others).
Paraxial Liouville eqns are based on paraxial
eikonals and level sets (Leung-Qian-Osher’04):

∂τ
∂z =

√

max
(

1
c2 −

(

∂τ
∂x

)2
, cos2 θmax

c2

)

,

φz + uφx + vφθ = 0,

Tz + uTx + vTθ = 1
c cos θ ,

where u = (u, v) = (tan θ,mz tan θ − mx),
m = m(c) = log c; φ and T are the level set and
traveltime functions in the reduced phase space
Ω = {(x, θ) : xmin ≤ x ≤ xmax,−θmax ≤ θ ≤ θmax}. 31



MA tomography: complete
data

I.B.C. (n being the outward normal of ∂Ω):

φ(z0, ·, ·) = x

φ(z, ·, ·)|∂Ω =

{

φ∗ if (u · n) < 0

no b.c. needed if (u · n) ≥ 0

T (z0, ·, ·) = 0

T (z, ·, ·)|∂Ω =

{

T ∗ if (u · n) < 0

no b.c. needed if (u · n) ≥ 0
.

Use (·)∗ to denote the measured value on the outflow
boundary of ∂Ω and on the final level z = zf .
Such measurements can be picked by suitably
pairing as in Delprat-Jannaud and Lailly’95. 32



MA tomography: energy

Ω̃ = Ω × (z0, zf ); Ωp = (xmin, xmax) × (z0, zf ).
Data: φ∗(z, ·, ·)|∂Ω and T ∗(z, ·, ·)|∂Ω on the outflow
boundary; φ∗(zf , ·, ·) and T ∗(zf , ·, ·) at z = zf ; m|∂Ωp

.
Minimize the energy:

E(m) = 1
2

∫

Ω
(φ − φ∗)2|z=zf

+ 1
2

∫

z

∫

∂Ω
(u · n)(φ − φ∗)2

+β
2

∫

Ω
(T − T ∗)2|z=zf

+ β
2

∫

z

∫

∂Ω
(u · n)(T − T ∗)2.

Derive the gradient of the nonlinear functional by the
adjoint state method.
Linearize the Liouville eqns and the energy around a
known background slowness with an unknown
slowness perturbation. 33



MA tomography:
linearization

Perturb m by εm̃; changes in φ and T by εφ̃ and εT̃ :

φ̃z + uφ̃x + vφ̃θ = [m̃x − m̃z tan θ]φθ,

T̃z + uT̃x + vT̃θ = [m̃x − m̃z tan θ]Tθ −
m̃

c cos θ .

Perturbation in energy:

δE = E(m + εm̃) − E(m),

where ũ = (0, ṽ) = (0, m̃z tan θ − m̃x).
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MA tomography: adjoints
Choose λ1 and λ2 such that

(λ1)z + (uλ1)x + (vλ1)θ = 0,

(λ2)z + (uλ2)x + (vλ2)θ = 0 ,

with the “initial” conditions on z = zf ,

λ1(z = zf ) = φ∗ − φ

λ2(z = zf ) = T ∗ − T .

With boundary conditions ...
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MA tomography: gradient
Boundary conditions

λ1|∂Ω =

{

φ∗ − φ if (u · n) > 0

no b.c. needed if (u · n) ≤ 0

λ2|∂Ω =

{

T ∗ − T if (u · n) > 0

no b.c. needed if (u · n) ≤ 0

Perturbation in energy (fi, i=1:4 computable):

δE = ε
∫

Ωp
m̃
{

(f1)x − (f2)z + β
c f3 + f4

}

.
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MA tomography:
regularization

To decrease the energy, choose by Tikhonov
regularization

m̃ = −(I − ν∆)−1g

where
g = (f1)x − (f2)z + β

c f3 + f4.

δE = ε

∫

Ωp

m̃g = −ε

∫

Ωp

(|m̃|2 + ν|∇m̃|2) ≤ 0.

Implementations: HJ-WENO, HJ-Central-WENO,
FFT and gradient descent methods.
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Constant vel.
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Waveguide vel.: (1)
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Waveguide vel.: (2)
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2-D two-Gaussian vel.: (1)

41



2-D two-Gaussian vel.: (2)
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Two-Gaussian vel. with
noisy data
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Two-Gaussian: FA vs MA
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Figure 4: (a): FA with 10 sources; (b): MA.
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MA tomography: incomplete
data

Only have the measurement on the final level z = zf .
Data: Γ(zf ) = {φ(x, θ, zf ), T (x, θ, zf ) : (x, θ) ∈ Ω}.

Paraxial assumption implies that relevant rays will not
touch the boundary of the domain Ω̃ = Ω × (0, zf ).
Ignore the contribution from inflows in the energy.
Simplify the energy:

E(m) =
1

2

∫

Ω

(φ − φ∗)2δ(Γ(zf )) +

+
β

2

∫

Ω

(T − T ∗)2δ(Γ(zf )) .

Simplify the gradient as well. 45



Conclusion and future work
Developed PDE-based approaches to traveltime
tomography: FAs and MAs.
Validated accuracy and efficiency of the approaches
under ideal illuminations.
Future work consists of

taking into account the partial illumination of the
computational domain (Joint with TRIP);
formulating FA-based reflective traveltime
tomography (Leung-Qian’05)
formulating MA-based high resolution reflective
traveltime tomography
...
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