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ABSTRACT

Wave equation migration velocity analysis by differential
semblance optimization

by

Peng Shen

Differential semblance measures the deviation from flatness or focus of image gath-
ers. The differential semblance objective function posed on sub-surface offset do-
main responds smoothly to velocity changes. Therefore gradient descent methods
are uniquely attractive for velocity updating by differential semblance optimization.
Because of their kinematic fidelity, wave equation (depth extrapolation) migration
methods are natural platforms for velocity analysis in complex structure. The gradi-
ent of the objective function with respect to velocity is fomulated through the adjoint
of differential migration. Limited memory BFGS algorithm is used for the velocity
optimization. The method for wave equation velocity analysis developed in this thesis

study is applied to both synthetic and real data examples.
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Chapter 1
Thesis introduction

1.1 Thesis structure

The thesis is written to consist of chapters in logical steps towards explanation of
what I did on “wave equation migration velocity analysis by differential semblance
optimization”. This thesis work is composed of five major components in sequence:
one-way wave equation prestack depth migration, construction of differential sem-
blance objective function, gradient calculation, B-spline smoothing scheme and in-

version, and synthetic and real data examples.

The principal problem this thesis addresses is how to jointly optimize the image of
reflectivity and the velocity. By stating the problem this way, we have already used
the concept of separation of scales to differentiate the image, the singular part of the
medium, from the velocity which is considered to be of smooth functions at least twice
contiguously differentiable. The solution of the problem requires to understand how
to measure the optimality of the image and how to project the image residual back
to the velocity model. The answer to the first question brings out the construction of
the differential semblance objective function, while the answer to the second is pro-

vided in the formulation of the gradient of the objective function. The wave equation



prestack depth migration is running as a platform on which both the objective func-
tion and the gradient for velocity updating are evaluated. The construction of the
objective function is isolated as a chapter to emphasize its importance as a connecting
step between wave equation migration and wave equation migration based velocity
analysis. The gradient calculation formulated by one way wave equation migration
is the major contribution of my thesis work. Analysis of smoothing properties of
the gradient and the B-spline smoothing scheme are also important contributions to
the complete solution of the inverse problem. Finally, the algorithm described in the

thesis has been tested on synthetic as well as real data sets.

1.2 Separation of scales: a mathematical account of seismic
inversion

The main objective of exploration geophysics is to characterize the physical properties
of the medium through which seismic waves propagate. Mathematically, the physical
properties of the medium are identified as coefficients of wave equation, which can be
separated into two parts: part I contains all the singularities of the coefficients; part
IT is separated from part I by eliminating the singularities and remains as a smooth

representation of the medium. The total coefficient is considered as summation of



these two parts. The seismic inverse problem is posed as a combination of two steps
correspondingly, reconstruction of the singular part of the coefficient and reconstruc-
tion of the smooth part of the coefficient. The former is referred to as imaging, usually
obtained by migration, whereas the latter is called the velocity analysis in the litera-
ture of exploration geophysics. The complete account of singularities is given by the
concept of wavefront set which provides a refined characterization of singularities in
phase-space and therefore draws the connection to the forward wave propagation by
propagation of singularities on bicharacteristic curves. The reconstruction of the sin-
gular part of the coefficient is then formally posed as reconstruction of the wavefront

set, of the coefficient.

1.3 Why velocity analysis is important

Strictly speaking, the wavefront set of the coefficient can not be exactly recovered
because of its singular nature. One can only reconstruct the singular behavior asymp-
totically. In order to do so, the knowledge of the rays (bicharacteristic curves) are
required so that the phase carried on each ray can meet at correct spatial locations
to establish constructive interference. The rays, however, are sensitive to the smooth
part of the coefficient of the wave equation which is mentioned in before as velocities.

This analysis thus reveals the relationship between velocity analysis and imaging. Mi-



gration, viewed as an operator defined on certain velocity function, will reconstruct
the wavefront set of the coefficient asymptotically if the velocity is accurate. At in-
accurate velocity, the reconstructed wavefront set deviates from the true one. The

quality of the imaging result relies on the accurateness of the velocity function.

1.4 Historical development of velocity analysis

1.4.1 Classification of data domain method and image domain method

From a methodological point of view, velocity analysis is considered as applications
of optimization theory combined with geophysical analysis. Depending on how the
objective function is constructed, methods of velocity analysis divide into two cate-
gories: data domain method in which the objective function is formulated to measure
the data residual obtained by subtracting predicted data from observed data; and
image domain method in which the objective function measures the quality of the
reconstructed image. The former is posed as an optimization problem of the first

type, which is to minimize the data residual.



min ||d0bs —dPe|,
[

likely, the latter is posed as an optimization problem of the second type
min || PI||
c

where P provides required measurement on the image, and || - || indicate a proper

norm for both data domain method and image domain method.

1.4.2 Data domain method

Early methods of velocity analysis try to find models that best explain the data and
therefore fit in the category of data domain method. When the observed data is
simplified and restricted to arrival times, the associated velocity analysis is often re-
ferred to as travel time tomography. Algorithms of travel time tomography are well
developed by Nolet, 1987 [16]. Clearly travel time tomography is limited to fitting
the first few phases of the observed data neglecting important information carried by

later arrivals.

Waveform type of optimizations treat the observed data as it is and try to fit it



by solving wave equations. Least-squares waveform inversion require the starting ve-
locity model be close enough to the true model in the sense that the predicted data
are within half wavelength distanced from the observed data for the highest frequency
used. The velocity updating is mainly driven by the gradient calculation which is for-
mulated by the adjoint of the Born modeling. The physical meaning of the adjoint
of Born modeling is understood as projection of the data residual back to the model
space through downward continuation of source and receiver wave-fields. For low
frequencies, such projection (gradient only) produces reasonable search directions for
velocity updating. For high frequencies, the back projected data residual (assuming
to be the Born data) reconstruct the image asymptotically, and thus is equivalent to
reverse time prestack depth migration. The velocity analysis of data domain method
usually takes the increasing frequency scheme where the data correspond to lower
frequencies are first fitted, and then gradually increase to higher frequenciesPratt,
1999 [17], Pratt, at el., 1996(18]. Time domain implementations using wave equation
of such methods have been presented by Tarantola 1987 [27], Tarrantola & Vallette,

1982 [28].

The main disadvantages of data domain methods is that the predicted data using
the current velocity model has to be within half wavelength to the observed data.

This condition restricts the velocity inversion away from the highly nonlinear situa-



tion where the starting velocity model is far from the true velocity model. In another
word, the objective function in data domain is easily trapped in local minima when
the “half wavelength” condition is violated. Another disadvantage of the data domain
methods is that the image obtained by migration using the optimized velocity may
not be the optimum image because the methods do not directly pursue the optimal-
ity of the image. Finally, the data domain method depends on simulations of seismic
wave propagation at correct physical model. Errors in assumptions of physical model

often transforms into errors of the optimized velocity.

1.4.3 Image domain method

Recent researches of velocity analysis focus on image domain methods, in which ob-
jective functions are posed directly to improve the quality of the image. This brings
out the fundamental question of how to quantify the quality of the image. The answer
amounts to finding different ways to measure the singularities since image is under-
stood as reconstructed wavefront sets of the medium. We shall mention two principal
geophysical methods of measuring the singularities, angle domain measurements and
subsurface offset domain measurements, each has a clear physical meaning through

asymptotic analysis Stolk & Symes, 2003 [24], Shen P. at el. 2003 [22]. When ve-



locity is correct, the pair of rays from source and receiver should bring constructive
interference at the same spatial location regardless of the scattering angles enclosed
between them. This gives the criterion of velocity analysis in angle domain: the
common image gathers expanded in scattering angle should be flat. On the other
hand, the criterion in subsurface offset domain takes a different thought, that is if the
velocity is correct then the constructive interference should happen only when the
pair of rays from source and receiver intersect. The distance in between rays are pa-
rameterized by the so called subsurface offset. The criterion for velocity analysis can
thus be posed as that the common image gathers in subsurface offset is concentrated

at zero offset.

1.4.4 Optimization criteria

We shall compare two image domain optimization criteria, one is differential sem-

blance criteria, the other minimum image perturbation criterion.



1.4.4.1 Differential semblance criteria

The differential semblance criteria seek for differential semblance operators P that
annihilate singularities of image gathers I(x,h) or I(x,0) at the correct velocity,
where h and 6 is subsurface offset and scattering angle, respectively. At incorrect
velocities the application of operator P removes part of the singularities of the image.
The result image gathers PI is called the image residual. The velocity updating is
driven by minimizing the magnitude of the image residual defined by the objective
function of the form

7= lPI)P (1.1)
with a proper norm || - ||. The operator P has several choices each of which measures

the local properties of the image by taking differentials. In scattering angle domain,
operator 0/00 or 0/0(tan(f)) measure the non-flatness of the angle image gathers
I(x,0). In subsurface offset domain, the operator A measures the deviation from con-
centration of offset gathers I(x,h) near h = 0. The differential semblance operator
used in this thesis is simply multiplication by subsurface offset parameter P = h. This
differential semblance operator h requires no picking on offset (subsurface) domain
image gathers, therefore is particular suitable for automatic velocity analysis. The
corresponding objective function taken by L? norm is J = ||hI||3. This differential

semblance objective function varies smoothly with respect to the change of velocities
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Stolk & Symes, 2003 [24], which can be optimized by gradient type of methods.

1.4.4.2 Minimum image perturbation criterion

The image perturbation 61 (z), introduced by Sava & Biondi, 2003, [20], measures the
perturbation of image §I(x) due to perturbations of the velocity model dc. The image
perturbation, evaluated only in spatial variables x not in its semblance form, usually

contains the singularities of the image. I will give a brief outline of the algorithm

developed by Sava & Biondi, 2003, [20].

An image obtained at the true velocity c; is expressed by Taylor expansion to the

first order at the current velocity iterate ¢, as

I(z;¢) = I(z;¢5) + Loc (1.2)
where
0I(z; ¢y)
L=—""|_- L.
L (13
and

de=ct— ¢ (1.4)
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The image perturbation is defined by

0 (z; ¢, cp) = I(z5¢0) — I(z; ) (1.5)

The optimization criterion expressed in the image perturbation is

min |51 (z; ¢, cp) || (1.6)

Cb

which is achieved through solving a sequence of linear optimization problems

min ||0] — Lic|| (1.7)

The major difficulty for minimizing image perturbation is to obtain /. As a matter

of fact 61 can never be obtained because the true velocity is unknown. Introduce the

ratio of the improved velocity ¢ and the current velocity ¢y,

= (1.8)

the image perturbation is instead approximated through a differential form

dl(x,c
0 (x5 ¢4, 0p) & El )|p:15p (1.9)
0
which can be further approximated as
dl(z,c) ol ok,
—10p~ (=——)|p)=10 1.10
dp |P*1 P (akz ap )‘pfl p ( )

The image perturbation §I in equation (1.9) is evaluated in three steps. First, the
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image derivative in the Fourier domain, 01/0k,, is straightforward to compute at

p=1

dl
dk,

|p=1 = —iz] (1.11)
Secondly, the derivative of the depth wavenumber with respect to velocity ratio is

formulated through the Double-Square-Root equation as, Sava, 2003[21]

ok, 7 %
— =1 = + 1.12
5P‘p1 24/ = |ks|  24/p? — |k, | (112
where
4k? k| — |ks|)?|[4k? k, kg|)?
2 RS+ (] = PR, + (el Il )

16k2,
k., ks and k,, are spatial wavenumbers for the sources, receivers, and vertical compo-
nent corresponds to the current background velocity, respectively. Equations (1.11)
and (1.12) provide means to calculate (dI/dp)|,=:. Finally, an optimum velocity ratio
ps can be obtained from the set of residually migrated images at various values of the
parameter p, Sava, 2000[19]. The residual migration explained in Sava, 2000[19] is
fast to compute and only works for constant velocity ratio p(z) = const. The opti-
mality conditions for p, is the flatness of the angle-domain image gathers, which can

be measured through stack power, semblance or differential semblance.By setting

op=p,—1 (1.14)

we obtain an approximate of dp. Combining equations (1.11) (1.12) and (1.14) we
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can calculate the image perturbation 6/(x). Once the image perturbation is calcu-
lated, the velocity perturbation dc can be obtained by solving the linear least-squares
problem (1.7) using the conjugate gradient method. The velocity model is updated
through ¢, < ¢, 4+ dc, and the process repeats until the image perturbation is suffi-

ciently minimized.

1.4.4.3 Relationship between differential semblance criteria and the min-
imum image perturbation criterion

Minimization of image perturbation and differential semblance optimization are closely

related. A Taylor expansion of residual image at the current velocity is

ol
PI(¢;) = PI(cy) + P%|c:cbéc (1.15)

The differential semblance optimization criteria implies PI(c¢;) = 0, therefore we have

oI
—Pl(c) = P%|c:cb50 (1.16)

which relates to equation (1.7) by replacing the image perturbation by the negative

image residual PI and replacing L by PL. The image perturbation maintains the

singularities of both the current image and the residually migrated image, whereas the
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residual image tends to remove the singularities of the image. In this thesis I do not
use equation (1.16) to optimize the differential semblance objective function, instead
it is directly optimized by quasi-Newton algorithms which can provide quadratic up-

date.

1.4.5 Kirchhoff migration based velocity analysis

Kirchhoff migration based velocity analysis usually works with image gathers in an-
gle or surface offset domain. Residual move-outs in angle or surface offsets can be
picked from semblance gathers (common image gathers) Docherty at al., 2000, [4].
Search directions of the velocity updating are obtained by projecting residual move-
outs alone the ray path through ray tracing. Problems of Kirchhoff migration based
velocity analysis are deeply rooted in ray tracing. Kinematic artifacts and lack of
ray coverage in low velocity zones are unavoidable problems for both migration and

associated velocity analysis in ray tracing regime.
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1.5 Wave equation migration based velocity analysis

Wave equation migrations provide certain wave-field coverage on low velocity zones.
Wave equation migrations using full bin data are free of kinematic artifacts and are
therefore ideal platforms for velocity updating. We shall, for time being, consider
the image residual as some kind of imperfectness of the image, intuitively. Similar to
Kirchhoff migration velocity analysis, the wave equation migration velocity analysis
also needs to provide mechanism of projecting image residual back to model space
alone the ray path. The information of ray path is not explicitly known in wave
equation approach. In this thesis I define the differential migration as the Frechet
derivative of migration as an operator with respect to the velocity. An important
component of this thesis is to demonstrate that the adjoint of differential migration
serves to find the ray paths (in high frequency asymptotic) that are implicitly used in
wave equation migration. The gradient of image domain objective function (objective
function of the second type) is formulated, in closed form, as the adjoint of differen-
tial migration as an operator applied to the image residual. It has a clear physical
meaning of projecting image residuals smoothly alone the ray paths (section 4.2.2)
instead of purely a mathematical treatment for solving inverse problems. When high
frequency data are used, this gradient effectively reconstructs ray paths compatible

with data and the velocity used in migration, and thus not directly useable for veloc-
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ity updating because of the nonsmoothness introduced by singular behaviors of the
ray paths. It should not be surprising to see that the gradient with low frequency

data are smoother than that of the high frequency.

The central machinery for wave equation migration based velocity analysis is the
computation of adjoint of differential migration implemented by extensive use of ad-
joint state analysis Giering & Kaminski, 1998 [7]. the conservative scheme for wave
equation migration preserves the total energy for downward extrapolated wavefields.
The adjoint of differential migration using conservative scheme consists of three parts,
the depth reverse wave-field recalculation, adjoint of wave-field perturbations, and the
adjoint of velocity perturbations. The computational cost for each gradient using con-

servative method is approximated four times of that of migration.

1.6 Thesis chapter summery

Chapter 2, Migration
The chapter gives introduction to basic concept and treatment of wave equation mi-
gration which is used as a platform for velocity analysis. The chapter answers why

wave equation migration reconstruct the singularities of the subsurface structure and
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how the implicit finite difference wave equation migration is implemented.

Chapter 3, Velocity analysis by differential semblance optimization

The chapter mainly discusses the differential semblance minimization criteria. Angle
domain and offset domain differential semblance criteria are compared, the relation-
ship between them is explained. I give construction of objective function and set up

of optimization problem in this chapter

Chapter 4, Adjoint state calculation and inversion

The chapter answers how the velocity analysis as an optimization problem is solved
by gradient type of method. The focus is the gradient calculation, it formulation,
computation, and physical meaning. Inverse problem is solved by L-BFGS method

with the aid of B-spline smoothing scheme.

Chapter 5, Data examples
The chapter demonstrates data examples that uses algorithm developed in this the-
sis. It shows that the this algorithm of automatic velocity analysis by differential

semblance optimization works well for complex geology structures in two dimensions.



Chapter 2
Wave equation migration

Prestack depth migration is an important and effective tool in identifying the poten-
tial targets for oil and gas exploration. The Kirchhoff approach for prestack depth
migration relies on the high-frequency asymptotic ray-tracing. Problems of ray trac-
ing remain in caustics, multiple arrivals and shadow zones [5]. It is expected that the
wave equation based methods can avoid these difficulties. Approaches by solving full
wave equation is capable to handle very complex media. Such methods are usually
very time consuming. One-way methods based on paraxial wave equation are much
more efficient for reasons which will be explained in section (2.3.1). For completeness
of the thesis writing, I shall give an outline on theories and practice of depth migra-

tion.

2.1 Forward propagation

Migration reconstructs the singular behavior of the reflectivity distribution from the

reflection seismic data which, in turn, can be considered as the response to the sin-
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gularities of the reflectivity distribution. Therefore it is important to understand the

phenomena of forward wave propagation.

2.1.1 Seismic wave propagation

Mechanical waves propagating in elastic medium can be described

2
pamsilent) = i)+ 3 (e (,0) (2.1)
Jkl

where u;(x,t) is the displacement of a particle moving in the direction 7 at point z

and time ¢, f is the force per unit volume, and c;j;i; is the elastic moduli. For isotropic

material
Cijht = Aij0j0 + p(indjt + 0udje) (2.2)
with A and g known as Lame constants. The equation of motion reduces to

2

0
pwuz(x, t) = fz(ﬂﬁ, t) =+ Z O-ij,j(x, t) (23)
J
where

Oi5 = A Zekk(Sij + 2/1,61']' = )\051] + 2,U'6ij (24)
k

1
eij = 5(%;‘ + uj) (2.5)
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and
k
known as the dilatation, which has physical significance because it gives the change

in volume per unit volume associated withe the deformation. Equation (2.4) can also

be written as
2 2
oij = (A0 + §N9)5z‘j + 2pe;; — §M95ij (2.7)
to separate the diagonal and the off-diagonal elements. We are interested in the case

where the stress is lithostatic. The stress can be simply related to the pressure p

through
oij = —pdij (2.8)
From equation(2.7), it is clear that
—dp=(\+ %u)d@ (2.9)

The bulk modulus & is introduced as the ratio of the change of pressure to the change

of fractional volume.

9
e N 2.10
7 +gh (2.10)

In the same time, the equation of motion for lithostatic pressure is

82
pﬁui = fi — Dy (2-11)
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The pair of equations equation(2.10) and equation(2.11) are usually re-written as

9

— _kV. 2.12
5 KV - v (2.12)
9 = _v (2.13)
Pog” = — VP '

here, v is the particle velocity defined as v = %u. Taking the divergent of equation(2.11)

and assume p is constant, it follows from equation(2.10) and equation(2.11) that

This equation is usually referred as acoustic wave equation of constant density with

sound velocity ¢ = /k/p.

2.1.2 Forward Born modeling

The acoustic wave equation with constant density function can be written as

1 02
(6'2—(1‘)@ - Vg)p(l', l‘s,t) =—-V,- f(x,:vs,t) (2.15)

here f is the body force per unit volume, p is the pressure wavefield, and ¢’ is the
sound velocity of the medium. For convenience, let’s assume —V - f = §(x — z,)0(1).
The fundamental solution é(x,xs,t) for wavefield observed at x subject to source

located at x, satisfies
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1 02 o\ A~ _
(mﬁ - V31)G(z,xs,t) = §(x — x5)6() (2.16)

One can decompose ¢’ as summation of reference velocity ¢ which is assumed to be

smooth and perturbation velocity dc,
d(z) = e(x) + de(z) (2.17)

where we can make the singular support of perturbation velocity dc be equal to that

of the total velocity sing supp(dc) = sing supp(c’). Substitute into equation(2.15)
and replace p by G, it yields

1 8 . - -
(Crsepmar ~ VoG +00) (@ 20t) = iz — 2.)3() (2.18)

where G is assumed to satisfy

1 02 o\ A _
(02(3;) proie Vio)G(z, zs,t) = 0(z — z5)0(t) (2.19)

Subtracting equation(2.19) from equation(2.18), and keeping only the first order terms
by the Born approximation, we get

926G 2 t) = 2
c?(x) Ot? * Tt t) =

oclz) w” 8—263(35, ) (2.20)

Using the Green’s function representation, we can write the solution evaluated at

receiver location z, on surface as

2

6G (xy, x4, 1) = /2r(x)02uzx)@(x,xs,w)@(x,mr,w)emdxdw (2.21)
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Here
r(z) = dc(x)/c(x) (2.22)
is the reflectivity function. G (z,y,w) solve the two-way Hemholtz equation

w2

@@

— V2)G(z,y,w) =d(z —y) (2.23)

The Green’s function satisfies the two-way Helmholtz equation is called the two-way

Green’s function. It propagates to all directions in the medium. If we consider the

solution to equation(2.15) as the result of the map
G = F(c) (2.24)

then the solution to equation(2.21) is the result of the differential map

oF

0G =~ -r (2.25)

Let’s call %—IZ the Born operator which is a Fourier integral operator. Discussion of

properties of the Fourier integral operator is beyond the scope of this thesis. Read-
ers should refer to Hérmander [11] for more details. Later in this chapter we shall
introduce the adjoint of %—IZ defined as the imaging operator. In seismic literature,
%—IZ* is usually referred to as migration operator. It reconstructs part of the wavefront

set of the reflectivity distribution = dc/c from the wavefront set of dp observed on,

usually, surface of the earth. To understand how the wavefront set is reconstructed,
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we need to have certain knowledge of propagation of singularities by differential and

pseudo-differential operators.

2.2 Migration as adjoint of Born modeling

Migration can be formulated by the adjoint of Born operator. In view of the forward
Born mapping 0F/0c : v — 6p, dp contends the information of the wavefront set
of reflectivity distribution. The adjoint operator (0F/dc)* : ép — 7 can be used to
reconstruct the wavefront set of r. The wavefront set of r is used as a definition of
“image” through out the thesis. The concept of wavefront set is well explained in
Hérmander 1990[10]. Taking the adjoint of operator in equation(2.21) and applying

it to data, we obtain

2
I(z) = /2d(xr, Zs, t)w—QG(aj, Ts,w)G(, ., w)e™ ' dr,dzdtdw
c
0 -
= /dxsdw Q%G(x, Ts, W) / dz,G(z, z,,w) / dt e"*“'d(z,, z,,t) (2.26)
The migration procedure described by equation (2.26) can be understood as in process

of 4 steps. First taking the Fourier transform of the data with respect to time ¢, we

obtain the data in frequency domain

d(z,, x5, w) = /dt e d(zy, 5, 1) (2.27)
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Second, solve the adjoint state wavefield

R(z,z,,w) :/dxré(x,xr,w)d(xr,xs,w) (2.28)

where R can be shown to satisfies a two-way Helmholtz equation. Third, propagate

the source wavefield complex conjugated
S(x, s, w) = G(x, x4 w) (2.29)

Finally, inverse Fourier transform the product of S and R weighted by ‘;’—j at each x

evaluated at time zero and stack for all sources

2

I(z) = /dms/dw eiwt\tzog(x,xs,w)}?(x,a:s,w)(z—Z (2.30)

Because their associated Green’s functions are two-way Green’s functions, both R

and S satisfy two-way Helmholtz equations. The adjoint of Born modeling formu-
lated through two-way Green’s functions may be called the reverse time migration.
The “revers time” can be understood in view of equation ( 2.26) by its convolution

representation in time.

T 82 1 ~ IAVa ! !
I(z) = 5 / %d(aﬁr, z5, V)G (2, 24,8 )G (2, xp, t — t')dt' dtdz, dz (2.31)

A migration process that calculates step 2 and 3 separately is called shot-record mi-

gration. The source and receiver wavefields are propagated in the model through the

smooth background velocity ¢(z). The objective for migration velocity analysis is to
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find the optimum ¢(x) such that migration gives the best image. The method of wave
equation migration velocity analysis presented in this thesis is under the frame work
of shot-record migration. In high frequency asymptotic, the equation of migration
equation(2.26) produces singularities of two types, one is the image, the other the

refraction ray path. The statement is verified through the stationary phase analysis.

2.2.1 Method of stationary phase analysis

The Green’s function G(z,y,w) can be approximated by
G(z,y,w) = a(x,y,w)e w@y) (2.32)

assuming that the wavefront is smooth and the rays from y do not intersect each

other. Where a(z,y,w) = Z;’“LN a;(x,y) ((iz-(:);- When the differential operator P

of Helmholtz equation acts on it this expression decays as w™" for any non-negative
integer N if x # y. The sequence of amplitude terms {a;} satisfy the recursive system
of transport equations, the first of which is called the first transport equation Ikava,
2000 [12]

2V, 6(x,y) - Voo + Vad(z,y) = 0. (2.33)

See appendix B. The phase term can be shown to satisfy the eikonal equation
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Vad(e, )P = (2.31)

With proper choice of initial values of a; the Helmholtz equation can be made to sat-

isfy PG = 6(x — y) modulo a C*® function. In high frequency regime the expression
of equation(2.32) is considered as a good a approximation for solutions of Helmholtz

equation.

In the Green’s function representation the data, in an first order approximation,
can be expressed as summation of two terms, refracted arrival and reflection of single

reflected arrival

A(zy, T, w) = afmy, T, w)e WHET) 4 (2.35)

/ o (x)a(z, 5, w)a(z,, Tw)e W O@T) @ 2) 4y

Substitute d(z,, zs,w) into equation of migration equation(2.26) and use the asymp-

totic expression for GG, we derive

2
I(x) = /2(;)—214((1;7" Ts, T, w)elw[¢($aws)+¢(wr7$)*¢(wryws)}dl.rd$sdw +

2
/ 2w_2B(:L-T’ xs’ y’ w)ezw[(b(x)xs)—i—d)(z”‘7$)_¢(y7$3)_¢($7‘!y)]dydx’rdmsdw (2.36)
&

where A and B are products of amplitude terms with

A = a(zy, zs,w)a(z, x5, w)a(x,, x,w)

B = a(z,z,,w)a(z,, z,w)a(x, zs,w)a(z,, ', w).
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The first term of equation (2.36) becomes singular if

oz, zs) + oz, x) — Pp(xr,25) =0 (2.37)
Joshi [13]. The point z that satisfies equation(2.37) lies on the refracted ray path,

thus produces the singularities of the first type. A stationary phase analysis presented
in appendix C shows that the integral of second term picks up pairs of rays connecting
source, point of reflection and receiver. The wavefront set of reflectivity distribution
r is reconstructed when the migration is carried through the correct background ve-

locity, and thus produces the singularities of the second type.

Refracted arrivals (including direct arrivals) can be removed from data using proper
preprocessing. With the assumption that d corresponds only to data of single re-
flected reflections as described by the Born modeling equation(2.21), equation of mi-
gration equation(2.26) produces singularities of the second type, the image of velocity
medium. The assumption may be violated when multiple reflections exist. Problems

of de-multiple are not discussed in this thesis.

2.3 Wave equation migration

The migration of seismic data requires solving scalar wave equations in multidimen-
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sions. Time domain solutions are natural which implicitly solves for all frequencies
by stepping through the required time window. The stability condition for finite
€1

difference time stepping schemes is assured if time interval satisfies At < —=—h for

spatial interval h determined by h = %, where ¢pin, Cmaez are minimum and max-
imum velocities, e; is the coefficient related to finite difference approximations to the
Laplacian operator. For 3D 4 order scheme, e, is taken by 1/2, Wu et al., 1996 [29].
The numerical dispersion relation requires e; to be at least 5.* Geological velocity
models usually exhibit high velocity contrast with ¢az/Cmin greater than 3. With

these estimations made above the number of time steps for a reasonable time window

t = 2sec needs

t maxr*~maxr
N, = HmarCmaz®s 1900y (2.38)

Cmin€1
for fimaz &~ 20Hz. The computational cost for each time stepping is O(N?) for models
of size N3. Obviously the total computational cost for all time steps is N;O(N?)
which is at the order of 1030 (N?). The number of time steps at the order of 10? for
a reasonable simulation makes the time domain finite difference solution computa-
tionally prohibitive. On the other hand, the number of frequencies needed is much
less then the number of time steps. The Nyquist frequency fy for time interval At is

fn= ﬁ. The frequency interval is determined by Af = 2fy/N; = 1/t. The number

*The number of grid points per wavelength varies according to different finite difference approx-
imations to the Laplacian operator. A reasonable high order approximation usually requires
no less than five grid points per wavelength. The smallest possible number of grid points per
wavelength is two for the Nyquist frequency.
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of frequencies Ny needed to reconstruct the time domain solution is

Nf = fmam/Af = tfmaz (239)

which agrees with the number of frequencies used in practice at the order of 10%. It

follows from equation(2.39) and equation(2.38) that the relation

N,/Nj = “maz2 1, 60) (2.40)

Crmin€1
indicates the number of time steps is at one order of magnitude greater than the

number of frequencies for reasonable parameter estimations.

The Helmholtz equation is therefore a substitute for modeling of wave propagation.

Write the receiver wavefield as
Rz, ,,w) = / Gz, mr: ), 25 ) d, (2.41)

which satisfies the full Helmholtz equation:

0? 0? 0?2 W -
z ‘W) = — : 2.42
(833% + o1 + o2 + YR(z1, T2, 23; W) /(5(:1: z,)d(zy, T5; w)d, (2.42)

The full Helmholtz equation (2.42) solved using matrix inverse by Gaussian elimina-
tion needs O((IN?)?) floating point operations for each frequency, where the model is
assumed to be of size O(N3). Fast algorithms for solving equation (2.42) can be de-

rived by paraxial approximation, namely the one-way wave equation Claerbout, 1985
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[1]. The implicity finite difference solution for one-way wave equation provides O(N?3)
floating point operations per frequency. We will give analysis of the computational

cost of implicit finite difference method later in section (2.3.3).

2.3.1 One-way wave equation

The key in connection from two-way Helmholtz equation to one-way Helmholtz equa-
tion is to realize that the full wavefield Green’s function in the Born modeling

equation(2.21) is essentially one way traveling if the assumption

k1| > e\/k2+ k2, €—0 (2.43)

is valid everywhere for waves propagated in the model, where k& € R® is the wavenum-

ber for full wavefield Green’s functions and k; is the corresponding vertical wavenum-
ber Stolk € De Hoop, 2001 [25]. The case when k; = 0 corresponds to turning waves
which propagate horizontally in space. Much of the turning waves are refracted waves.
The assumption is usually satisfied for most part of the model by removing refracted
arrivals from the data. We shall then limit ourselves to consider the data that is
contributed from waves either going up or down but never turns to horizontal. The

Green’s function in the Born modeling equation(2.21) can therefore be replaced by
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their one way approximates and yet still explains roughly the same physics under the
assumption of |k;| > 0. The one-way Green’s function satisfies the one-way Helmholtz

equation written as

o . iw 2 92
— - — 14+ —=(— 4+ —)G* = — )
95, G (@ 4:w) = \/ + wz(aa:% + axg)G (z,y,w) =6(z —y) (2.44)
or
0 iw ¢, 0? 0?
. . - s _
92, ¢ @YW+ \/ + w—g(—axg + axg)G (z,y,w) =d0(z —y) (2.45)

We use convention for the Fourier transform with kernel e~**. This means the

plane wave decomposition of G* is expressed in linear combinations of basis function
e’®. Take vertical wave number be positive downward, then G* in equation(2.44)

correspond to downgoing and G~ in equation(??) corresponds to upcoming waves.

The one-way Helmholtz operator

0 0 w
2 4ip="2 4+ “
0x; ! 0x; c w?

c2 02 02
(a_xg + a—x%) (2.46)

is defined as a pseudo-differential operator of order one

(L i) =

9 (—iky & ib(x, w, ky, ks))p(k)e**dk + q(x)
1

(—iky £ ib(z, w, ks, k3))p(z")e* =) dkdz’ + ¢(x)

— —

(2.47)

for g € C® and p € {f(z) : f(k) = O(k| ™) for ky < e/k2+kZ at € — 0 and
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N any integer }. Here b(x,w, ko, k3) is the full symbol of the square-root operator

\/ 1+ az >.). The operator (2.46) preserves part of the bicharacteristics of

the full Helmholtz equation on which |k;| > e/k2 + k2 at ¢ — 0

The wavefront set of the Born modeling for 6G is preserved in its one-way version 6G

under the assumption of equation(2.43)

0G(xp, x5, 1) = /QT(x)C;Ex)G“L(x,xs,w)G(a:,«,x,w)emdxdw (2.48)

A useful relation of one-way Green’s functions concerning switching source point y

and observation point x can be easily shown as
G~ (z,y,w) = G (y,z,w) (2.49)

and is frequently used to write the one-way Born modeling equation(2.48) in the form

2

5G(xr,x8,t):/2r d Gt (z, 2,5, w)G (2, 2,, w)e™ drdw (2.50)

c*(x)

We have thus derived the one-way Born operator. The adjoint of the one-way Born

operator applies to data is considered as one-way migration

~ 2 .
I(z) = /2(;)—26”'(33,:rs,w)G+(x,x,,w)e_ZWtd(:Er, Tg, t)dx, dzsdtdw (2.51)

A complete analysis of this integral requires the concept of the double exploding
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model Symes, 2002 [26] and survey sinking Claerbout, 1985 [1] . We shall delay this
discussion to the next chapter where a generalized Born modeling is introduced which
is closely related to the double exploding model. The straight forward explanation of
one-way migration formulated in equation(2.51) can be pursued in view of shot-record

migration. Set
R(z,zs,w) = /G+(x,xr,w)d(xT,acs,w)dacr (2.52)

as the downward continued receiver wavefield and S(x,zs,w) = G+ (z, x5, w) as the

downward continued source wavefield complex conjugated. The wavefields R and S
differ from their two-way versions R and S not only in the directions they travel but
also in amplitudes. The one-way wavefields preserve the downgoing kinematics of the
two-way wavefields. Using one-way wave equation equation(2.44) with a G* taking

complex conjugate, we have

(5 —iB)G (o 5,0) = 0o — ) (2.53)

where G+ and G satisfy the same one-way Helmholtz equation understood by looking

at their Fourier integral representation. Notice the vertical coordinates of x; and =z,

are zero. Introduce notation 2’ = (0, z93) for x5 € R*. We apply operator % —1B

to R and S, obtain

0 0 ——
= = _iB)G+
(8x1 iB)R(x,zs,w) /(8x1 iB)Gt(z, z,,w)d(z,, T5,w)dz,
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= /(5(:E — 2,)d(zy, Ts, w)dT,

= §(z)d(2, x5, w) (2.54)
((%1 —iB)S = (% —iB)G*(z, zs,w)

The downward continued receiver and complex conjugated source wavefields are mod-

eled by the same one-way wave equation of single square root but using different source
terms. We are now ready to show algorithms for solving such single square root equa-

tions deployed in this thesis.

2.3.2 Computation of single square root equation

The solution to the one-way Helmholtz equation (taking minus sign only)

(a% —iB)p=0 (2.56)

is achieved through several steps of approximations. First we will ignore the smooth

function ¢(z) in equation (2.47).

0 1

/(—ik1 — ib(z,w, ko, k3))p(z")e* @) dkda’ (2.57)
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By ignoring the smooth function ¢, we keep the wavefront set of p unchanged. Second,

the full symbol 5(3:, w, ko, k3) of the square root operator B is often approximated by

its principal symbol

b(z,w, k1, ko) = o1(b) = ﬂ\/ - 2@ (k2 + k2) (2.58)

c(x) w?
The symbol of the difference b — b corresponds to a pseudo-differential operator of

order zero and is often ignored due to asymptotic arguments. The one-way Helmholtz

equation is further approximated as

0 vy L iy _iw _cQ(x) ) 20\ 5( ) (o= o
(——zB)p(x)fv—/( ik — i )\/1 — (k2 + k2))p(a")e* @) dkd

014 (2m)3 (x
(2.59)
Introduce p(z) that satisfies the following equation
0 1 0 \/ c2(x) o
— = — — 4/1 = k2 4 |2 N ik (z—z') / 9.
370) = G / i\ 1= SR+ () ekl (260)

The wavefield p agrees with p in its leading order and preserves its wavefront set. The

equation (2.60) is what we solve as a substitute for the one-way Helmholtz equation.

For convenience, we will denote p(k) as the multi-dimensional Fourier transform
p(k) = [ p(z)e~**dk, and p(z1, ks, k3) as a partial inverse Fourier transform p(z1, ko, k3) =
% [ p(k)e*'* dk;. Taking partial inverse Fourier transform with respect to k, and

ks, we obtain
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. w A(x . il gt ke
z@\/ 1- —L‘EQ ) (k3 + k3)D(x1, ko, k3)e k222 k573) d g,

ib(x, w, ka, ks) (a1, ko, ks)e'®2m2 k373 ) gy (2.61)

— —

(27)?

Equation (2.61) has an solution in the integral form

p($1, T, .Tg) _ /ﬁ(xO, ko, kg)effﬂl b(z'l,mz,ms,w,lcz,ks)dz’lez’(k2x2+k3w3)dk2dk3 (2.62)
which can be approximated in the finite difference limit 1 — zo = Az; — 0,

1

(2m)?

p(.??o + A.Tl, T, .Tg) = /ﬁ(.??o, kz, kg)eibAwl ei(k2$2+k3m3)dk2dk3 (263)

Although p(zo, ko, k3) can be easily obtained by the Fast Fourier Transform, it is

difficult to compute at each (z2,z3) the wavenumbers (ko,ks) and therefore b =
b(x,w, ko, k3) are hard to evaluate. Alternative methods are developed to transform
¢ik222+ks73) into derivatives in 2o and 3. To do so, we need rational expansion of the
symbol b. The rational expansion of the symbol b through an series of polynomial
ratios originates from a continued-fraction expansion Claerbout, 1985 [1]. The poly-
nomial coefficients can be further optimized for large propagation angles Lee € Sang,

1981 [14]. Let

02(33) 2
Sy = — 2 k5
*(z)
Sg = - w2 ]{332,
() ()
S=5p+ 8y = ——57k — 37k
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we have

LW c2(x) iw 2 oS
zbzz—\/l— (k§+k§)%?{1+zl+ﬁis} (2.64)

2
c(x) w —

where a; and f; are coefficients derived by Lee and Suh [14]. Commonly, one term of

the series expansion (m = 1) is accurate for propagation angles up to 75°. We shall

use m = 1 for the rest of the discussion. Approximation (2.64) can be further derived

form=1
. w a1 S
L +515}
_ E{l n 152 153 —1 515255 — 1 87(525255 + S253S3)
c 14+ 518 1435 (14 61S)(1 + £1S2)(1 + £1Ss)

and dropping the cross-product terms *

011S2 + 01183
1+ 815 1+p5153

W
b~ —{1
i c{—i—

} (2.65)

and substitute into equation(2.63), it yields

*

oS ar(S2 4+ S3)(1 + B1S2)(1 + B1Ss)
1+/4S A+ S+ BiS2)(1 + B1Ss)
a1S2(1+ B1S)(1+ B1S3) + a1 S3(1 + B1S)(1 + B1.S2) — a1 87 (5355 + S253)
(14 B1S)(1 + B1S2)(1 + B1S3)

_ 0152 a153 —a1 315253 — @182(525253 + $25353)
14+ 615 14 6153 (14 B1S)(1 + B1S2)(1 + B1.S5)
— a1S; o153 ) ,
= 1355 T 1155, T O()0(55)+0(52)0(55) + 0(85)0(55)
15, o153

Q

14615 1+ 3153
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1 iw 1S a1 S z 5
p(zo + Azy,29,23) = (2m)? /ﬁ(fﬁo,kmk?,)ec (55 ¥ a5y A1 gilkavathaa) g, g,
™
1 iw .
LY / D(20, iy, ky)e’s (ot hniatfk)Ania) gilkaathana) g,
(e /w?)k2 (e /w? k2
where f(kg) = —%, f(kg) = M and Al‘ll = A.Tlg = A.Ilg =

A (e Jw?)k3

Ax1. We solve p(zo + Axq, T2, x3) in three steps. Introduce

Pt o= (2;)2 / B(0, kz, ky)e'® Ao eitkezthazs) gy g, (2.66)
P = (27102 / (o, ko, kg)e € (Arutflka)oiz) gilkozathazs) g g, (2.67)
v (271r)2 / B(@o, by, ky)e @ (AmntI k) Amztfhs) Amia) gilhara thass) g, iy
(2.68)
Obviously, p? is what we want to solve,
p® = p(z1 + Az, 7o, 73)
The intermediate wavefields p', p?, and p® have finite difference relations
o _v-p (2.69)
0(Az2) Axy
o _pr-p (2.70)

6(A$13) N A.Tl

This can be verified by direct substitution. Take equation (2.69) as an example

2 _ .1 . © fky)Azy _
P’ —p 1 . @ Azyy i(kawathsrs) € © 1
— ko k o Az11 2T2+k3x3 dkodk
Az, (2m)? /p(xo’ 2 Rg)ee e Az, o
1 . 1w @ Agyy i(kaws+kss)
= )2 p(xo, ko, k3)?f(k2)e ce dkydks
op?
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Equation (2.70) can be similarly verified. The thin lens term p' can be evaluated

straight forward from integral equation (2.66)

P = p(0, 22, w3)e AT (2.71)

The diffraction terms, p? and p?, can be shown to satisfy the differential equations

2 2 92 . 2
2 ¢t 0 0 9 W 0 9
—23G ) = M a s 2.72
3(A$12)p +ﬁlw2 a:rg(a(Axm)p) M 3(A:c12)2p (2.72)
2 2 9 - 2
3 ¢t 0 0 3 c” 1w 0 3
T < o\ —— = —_— 2'
a(Al"l?»)p +Blw2 a«’rg(a(Al‘w)p ) e 3(Ax13)2p (2.73)

Combining equations (2.71), (2.72), (2.73), (2.69), and (2.70) a implicit finite differ-

ence scheme can be used to solve for p(zg + Azxy, 29, x3).
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2.3.3 Solution by implicit finite difference scheme

We consider depth extrapolation in a thing screen with thickness Az;. We wan to
calculate p® = p(zo+ Az, To, x3) from p° = p(xy, T2, 73). According to equation(2.71)

p! can be implemented as
p' = ple An (2.74)

The Crank-Nicholson method is used to discretize equation(2.72) on the right hand

side (likewise to equation(2.73))

S = 8 4 B g — )
= Jlan(@h) T+ Yol f) 2 (2.75)

The second order compact finite-difference operator can be introduced

62 52
2.
8x2 1+ )\Aa:§(52 (2.76)
where
5 u— u(zy + Azy) — 2u(zy) + u(ze — Axs) (2.77)

2
Azs

is the central-difference operator, and A = 1/12 is the compact coefficient to increase

the finite-difference accuracy. Thus this finite-difference scheme becomes

1
A—xl{p2 —p" 4+ (AAz3 + B (02/"‘)2))[5§2PQ - 53:2101]}

1 W 1 W
= 5[%(02/@2)?552172] + 5[041(02/‘*)2)?552191] (2.78)



42

Denote pf,j = p?(-,1Azq, jAz3) discretised with interval Az, and Az in zo and z3

directions, (likewise for p® and p?)
+1 ket
QA 2 - 50“/1 Ax%)[pifl,j zng +pz+1 J]

2
=pF AN+ 8 _laﬂ)[k —2pF 4+ pF ]
ng 17 oA 2 W2AT 2 9 1AZL‘% Di—1,5 Dij T Pit,j

pfjl(/\ + b5

This can be rewritten as

2 2 2 _oox 1 *
@iP;_1; + bip;; + Cibi1 = 40 1 T b ng +a; pz+1]

where

Bic? 1 Az iw

%= A A T 2M A ¢
a; = complex conjugate of q;
b, = 1-—2q;

b; = complex conjugate of b;
G = a

(2.79)

(2.80)

With the set of coefficients as above, the right hand side of equation(2.80) is viewed

as a tridiagonal evaluation. A tridiagonal solver can be used to solve the vector of

p? on the left hand side of equation(2.80). With the same set of coefficients as above

except changing Az3 to Az, the equation in z3 direction can be solved similarly

aip?,j—l + bip?,j + Cz'pg,j—i—l = a;p?—u b*ng +a; pH—l]

(2.81)
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For both tridiagonal evaluation and tridiagonal solver the computational cost is ap-

proximately 3N on z, and z3 for the model of size N3. It justified the statement
in the beginning of the section(2.3) that the computational cost of solving one-way

Helmholtz equation is O(N?).



Chapter 3
Velocity analysis by differential semblance
optimization

Singularities of seismic waves propagate along the bicharististic curves (rays) before
they meet the reflector. The wavefront set of the reflectivity distribution, WF(r),
determines where the reflection happens as well as which pairs of incident and re-
flected rays are responsible for the arrival. Migration reconstructs the wavefront set
of reflectivity by migrating singularities of reflection signals alone the rays path and
bring constructive interference at correct position. The ray paths are sensitive to the
change of velocity. At wrong velocities the constructive interference occurs at wrong
position due to incorrect ray paths. Therefore, the reconstructed reflectivity by the
wrong velocity deviate from the true reflectivity. How to measure this deviation is
the main question we pursue to answer in this chapter. It will be not surprised for us
to see that there are several valid measurements, and all the justified measurements
should be equivalent in the sense that they all capture a image residual defined at
the vicinity of reflection point x with singularities of the image removed. Project this
image residual back to the velocity model is the main computational machinery for
the velocity analysis. The back-projection of the image residual is formulated as the

gradient of the objective function which we shall introduce in this chapter. Analyzing
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the smoothing properties of gradient is important for the purpose of velocity updating

and will be discussed in section(4.2.2).

The reconstructed reflectivity (image) obtained by migration deviates from the true
reflectivity. This deviation can by measured in common image gathers (CIGs) where
the image is expanded using one additional variable. We will discuss two major types
of CIGs, one in offset domain, the other in angle domain. Differential semblance

criteria based on local properties of CIGs is used for automatic velocity updating.

3.1 Generalized Born modeling

In order to study common image gathers at inexact velocities, we first generalize the
Born modeling so that it invokes the inexact background velocity in the formulation.

Introduce the generalized reflectivity distribution r4(x,y) such that it satisfies

2

0G(z,, x5, t) = | 2r,(x,y ~ G (z, x5, w)GH (y, 2y, w)e™ drdydw 3.1
g c

()
where ¢ is not necessarily the exact background velocity. The Born wavefield evaluated

at an inexact velocity indicates that there can be a pair of a wrong velocity ¢ and

a generalized reflectivity distribution r4(z,y) such that the observed data can be
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explained by a general reflection due to r4(z,y) just as well as the physical reflection
due to r, = r(z)d(xr — y). Notice equation (3.1) is reduced to equation(2.50) if
re(z,y) = r(z)d(x —y) for r(x) the physical reflectivity distribution and the velocity

c is exact.

2
0G(zy,x5,t) = /2r(:z:)5(x—y)w—2G+(m,333,w)GJ“(y,x,,w)ei“’td:rdydw
c

2
= / 2r(x) L;)—QG’L (z, 2, w)GT (2, T, w)e“ dzdydw

It is clear that a physical reflection corresponds to the pair of the exact velocity and

the physical reflectivity distribtion r(x), which is a special case of equation (3.1).
The generalized Born modeling can be understood from a point of view of the double
exploding model, Symes, 2002 [26]. Using the relation G*(z,y,w) = G~ (y,z,w),
equation (3.1) is expressed in terms of G~ as

2

0G (zy, s, 1) 2/27“9(33,3;) G*(a:s,a:,w)G*(:vr,y,w)ei“’td:vdydw (3.2)

@
which characterize the same data due to wave propagation as if there are two explo-

tions of sources ry(z,y)d(z) and r4(z,y)d(y). Each of them propates one-way waves

up to the surface.

The generalized born operator F, can be introduced, Fy : 7y — 6p. The adjoint opera-

tor of Fyy will map the data to singularities of the generalized reflectivity, Fy : dp — 7.
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3.2 Adjoint of generalized Born modeling

Application of operator F; to data can be read from equation (3.1) as

2

re(T,y) = /d(ac,,xs,t)céc—)QGJf(x,xs,w)G+(y,acr,w)e_i“tdxsdxrdtdw (3.3)

In this section, we shall discuss the calculation of r; through double-squre-root wave

equation. It then follows naturally that the solution of double-square-root migration
are equavalent to that of shot-record migration. Applying a change of variables on r7,
we introduce subsurface offset image gathers on which the offset domain differential

semblance optimization is posed.

3.2.1 Double-square-root wave equation

Recall the downward continued source and receiver wavefields are defined, respec-

tively, as

S(z,z5,w) = Gz, 1,,w)
R(z,z5,w) = /G+(:c,xr,w)d(x,,xs,t)ei‘“tdtd:rr

= /G+(a:, T, w)d(Ty, Ts, w)dx,
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Let the correlation product of source and receiver wavefields be written as

u(z,y,rs,w) = S(x,zs,w)R(y, x5, w)

= G+(m,xs,w)/G+(y,m,,w)d(xr,x5,w)da§,, (3.4)

and introduce U(z, y,w) to be the integral of u with respect to z,, we arrive at

Ulz,y,w) = /u(:v,y,xs,w)dxs (3.5)

When z and y are restricted to have the same vertical coordinates z; = y;, U(z,y,w)

can be shown to satisfy the double-square-root wave equation equation. Introduce a

notation of the double-square-root operator

Lt (z,y, —10,, —i0y,w) = 8% — iB(z, —i0y,w) — iB(y, —i0y,w)
1

Applying L' to u and using equations (2.54) and (2.55), we have

0 — —=, O
Lty = [(a—xl—iB(x, —iaz,w))G+]R+G+[(a—$l—iB(y, —i0y, w)) R

= d(z — z5)R(y, x5, w) + Gt (2, 25, w) / My — zp)d(zr, x5, w)dz,
Using notations

r = (371,332,3), Yy = (yl,y2,3)
! /

X = (05 CUQ’?,), Yy = (Oa y2,3)a x2,3,Y23 € R21

and noticing that z; and z, are essentially surface coordinates



49

Ts = (0,%2,3),% = (0,337«2,3), Ts2,3, Tro3 € R?

we can further derive equation (3.6) as

Lty = §(z1)6(z' — z5) R(Y', x5, w) + GH (!, 25, w)0 (y1)d (Y, 5, W)

= 5(x1)5($l - l‘s)d(y,, Ts, w) + 5(%" - xs)é(yl)d(y,a Ts, w) (36)

7

In the second ”=" we have used the relations of source and receiver wavefields at the

surface

R(y’,acs,w) = d(y’,xs,w)

Gt (' zs,w) = (' — xy)

The double-square-root equation can be then written as

LU = /L+uda:5
= /(5(x1)5(ac' — 25)d(Y, s, w) + 8(x" — x5)0(y1)d(Y', T4, w)di
= d(z1)d(y, 7', w) +d(y1)d(y', 7', w)

= 20(z1)d(y, 2, w) (3.7)

where the last “=" is valid because z; = y;. The surface coordinates ¥’ and 2’ in

d(y',x',w) corresponds to the source and receiver locations spanning the entire sur-
face. Equation (3.7) is understood as modeling of survey sinking through the double-
square-root continuation Clarebout, 1985 [1]. Written with complete dependencies,

the equation
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(aix2 — iB(x, —i0,,w) — iB(y, =10y, w))U(z, y,w) = 26(y1)d(y, z, w) (3.8)

is known as the double-square-root wave equation. It is clear from the construction
of Uz,y,w) = me(y,ms,w)dxs that it can be solved also by shot-record
migration approach, where source and receiver wavefields are downward continued
separately to x and y with the restriction x; = y; and then correlate. The adjoint
of generalized Born modeling in this thesis is implemented through the shot-record

migration approach.

3.2.2 Sub-surface offset image gathers

Apply a change of variable h = (y — z)/2 to eq(3.3), we can write the generalized

reflectivity distribution to the symmetric form

re(x —h,z 4+ h)* = /Qd(acT, T, w)cz—;G“L(x + h, z5, w)GH (2, 7 — h,w)e™ dz,dz dtdw

(3.9)
where h is understood as sub-surface offset. In view of survey sinking modeling, |h/|
is half of the horizontal distance between the points at which the downward contin-
ued source and receiver wavefields are evaluated. The physical meaning of equation

(3.9) can be explained as the reflection signals received at z — h due to a source
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2w?

located at z + h through the Born propagation. Neglecting the weight factor =3 in
equation(3.3), the singularities of r} is preserved. We may simply write the image

with offset parameter A as

In(z,h) = /S(aj + h,z5,w)R(x — h, x4, w)dxdw

= /d(xr,xs,w)G+(:v + h,xs,w)Gt(z — h, 2, w)dr,drsdw (3.10)

In view of shot-record migration A is not necessarily horizontal, however, for practical

Figure 3.1 I,(z,h) is obtained by correlation of S(z + h,zs,w) and R(z — h,z,,w) at
each point z in the model. The point of correlation z is not necessarily on the surface.

considerations, h will be taken only as horizontal offset. The image parameterized
by offsets is called the common image gathers in domains of sub-surface offset, or
in short, offset domain. A geometric interpretation is shown in Figure(3.1), where a
sequence of horizontal offsets are used to correlate between S and R. When migrated

at true velocity, we see clearly that the constructive interference is obtained only at
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h = 0. Reconstructed general reflectivity distribution with point support on A at

origin can be written as

In(z,h) = I(x)d(h) (3.11)
where I(z) is the image obtained by correlation of S and R at zero offset, I(z) =
[ S(z, x5, w)R(x, x5, w)d(2,, x5, w)drsdw. The equation(3.11) suggest the Euclidean
norm

1 2

J = §|\Ih(x, h)h|| (3.12)

be minimized at the true velocity. We thus obtain an objective function that gives

its minimum at the true velocity.
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3.3 Differential semblance criteria

I, (x, h) is considered as a common image gather for I(x) expanded by an offset pa-
rameter h, where |h|, according to equation(3.3), is the half of the correlation distance
between downward continued source wavefield and the receiver wavefield inside the
model. There are several other ways to expand the image I(z) by introducing one
an additional parameter, one of which is to use scattering angle 6 (see Fig(3.2)).
The geometrical meaning of # is half of the angle enclosed by the wave number k£, of
downward continued source wavefield S and the negative of the wave number £, of
downward continued receiver wavefield R at image point. A common image gather
expanded in scattering angle is called an angle domain CIG, Ip(z, ). The common
image gather Iy(z,0) is obtained by correlating the local plane wave decomposed for
S and the local plane wave decomposed for R with their wave numbers bisected by

the migration dip vector 1 Fig(3.2).

Differential semblance operator (DSO) provides measurements of common image
gathers in some differential sense local to the imaging point z. We will compare
and explain the relationship between two differential semblance operators, one in

offset domain, the other in angle domain.
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3.3.1 Offset domain DSO

We introduce operator P, not dependent on velocity

Ph ZIhI—)hIh (313)

as the offset domain differential semblance operator. The operator P, annihilates the

singularities of I,(x,h) supported at h = 0 and magnifies signals of Iy (z,h) away
from h = 0. It thus provides a way to measure the deviation of offset domain CIG
away from concentration in offset. The operator P, justifies itself as a differential
semblance operator on image gather Ij(xz, h) for reasons which will be given later in
this chapter. The offset h is not only an offset on surface but also an offset in the
model. For practical reasons, offset parameter h will only be taken as horizontal vec-
tors. This choice of h is proved to have maximum resolution power when subsurface
structures are horizontal, Solk & Symes, 2003[24], which is, in general, the case of

sedimentary structure in the earth.

The offset domain CIGs are closely related to angle domain CIGs. Sava (2001) gives
an geometrical analysis between them and showed that Ip(z,0) relates to Ij(z,h)

through the Radon transform

Iy(x1,29,0) = /Ih(xl + qh, x9, h)dh (3.14)
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where ¢ = —tanfl. For convenience, we have used two dimensional space variable

x = (x1,2), and h is restricted to horizontal one-dimensional. The conclusion can be

easily extended to three dimensions with careful treatment of the line of integration.

3.3.2 Relationship between I, and I,

I shall give in here an independent analysis on relationship between I, and Iy, which
is, hopefully, able to lead to more general conclusions. Let the downward continued

source wavefield S(z) have a plane wave decompostion locally at image point
S(x,xs,w) = /S’(ks,a:s,w)eiks'zdks (3.15)
Similarly, for downward continued receive wavefield
R(z,zs,w) = /R(kr,:cs,w)eik"””dkr (3.16)

For a given angular frequency w, the wavenumbers k; and k, are restricted for prop-
agating plane waves as

ksl = [kr| = w/c(x) (3.17)
Let ks be decomposed into vertical and horizontal components (ks1, ks2), likewise,

k. be decomposed as (k,1, kr2). Substituting equation(3.15) and equation(3.16) into
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equation(3.10), we obtain

Iz, h) = / S(ky, x5, w)R(ky, x5, w)e* ~*)2dz dk dk, dw (3.18)

= / S(ky, g, w)R(ky, &5, w)e~ Hermr—ksa(@ath) gikriorthralea=h) o gy ke, dk,

~

Introduce local coordinate (¢,7) as shown in fig(3.2) with n the unit vector of mi-

gration dip and ¢ the unit vector bisects the angle in between k, and k,. It can be
shown through a stationary phase analysis that the constructive interference in I, is
due to plane waves associated with wavenumbers k; and k£, such that the following is

satisfied

k, = = (tsin § + 7 cos 0)

C’a|€ 0|E

™
S

(tsin@ — 7 cos 6) (3.19)

The Radon transform of I;(z, h) with respect to h in ¢ = can be shown

(R, ) (w,0) = / Tu(es + gh, a9, h)dh
B / ks, T4y ) Rlly, 3, )0 bt o
gthri(@itah)tikea(z2=h) g do dwdkdk,
= /S ks, zs,w k“ms,w)ei(kr—ks).z v
“hora—kerthna—keh qhdy dk,dk, dw

- /g(ks’:USaw)R(k’.T’J“Saw)ei(kT—k‘S).m X
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218[q(kr1 — k1) — (kg + kyo)]dz dk,dk,dw
= 271'/ Wﬁz(kraxs;w)ei(kr_kr)'zdksdkrdxsdw
L(ks,kr,q)=0

(3.20)

where the integration with respect to k. and k; is taken along the curve in wavenumber
domain
kr? + st

Liks, kr,q) = - ——— o, 4= (3.21)

Combining equation(3.21) and equation(3.19), it is not difficult to see that ¢ =

—tan(#)*. This integral of the Fourier components of S and R restricted to con-
dition L(ks, k,,q) = 0 with ¢ = —tan(f) can be viewed as a definition of angle

domain image gathers Iy(z, 6)
Iy(z,0) = / S(ky, 24, w)R(ky, x5, w)eFs+r) Tk dk, da yduw (3.22)
L(ks;kT’q):O

We have thus verified that the angle domain image Iy relates to the offset domain

image through the Radon transform

Iy == 14(2, q)|q=—tan(0) = [ZoIn(x, h)|(Z; @)|g=— tan(o) (3.23)

*Let a be the angle enclosed by Z, and i, substituting { = #,cosa — &;sina, 7 =
—Zysina + &2 cosa into equation(3.19), regrouping terms in £; and £2, we have kg =
¢(—sinasinf+cosacosf), kss = %(cosasinf—sinacosb), kr; = <(cos asin§+sin a cosd),
kro = “(—sinasinf — cosacosf). The result follows by direct substitution —tanf =
(kr2 + ksZ)/(k’rl - ksl)
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Figure 3.2 7 migration dip unit vector, 6 scattering angle. The wavenumber of
Gt (z,z,,w) points downward. So the wavenumber of G*(z, z,,w) points upward
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3.3.3 Angle domain DSO

For convenience of the writing we shall always set
q = — tan(6)
and write when there is no confusion.
Iy =1,
It is clear that at the true velocity, I(x, h) has the form
In(xz,h) = I(x)d(h) (3.24)

Thus, due to discussion from last section, we have

I,(z,q) = /Ih(acl + qh, z9, h)dh = I(x) (3.25)

which is independent of the choice of ¢g. This result implies that the common im-
age gathers in angle is flat with respect to tan='¢q. A geometric interpretation is
shown in figure(3.3). The statement suggests another measurement of the recon-
structed reflectivity as apposed to common image gathers in offset domain. Introduce

Iy(z,0) = I,(z, q)|g=—tano- At the true velocity we have



60

Xk ______ A___A___A

Figure 3.3
0l
Y 3.26
50 " (3.26)
in the same time
oI,
— =0 3.27
o (3.27)

Equations (3.26) and (3.27) provide measurements of deviation from flatness for angle

domain image gathers. The vanishing derivative indicate incident and reflected rays

meet at the same imaging point for all scattering angles 6. Introduce P, = a% as
angle domain differential semblance operator, the angle domain differential semblance

criterion is posed as

1
min §\|quq\|2 (3.28)
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3.3.4 Relationship between P}, and P,

A differential semblance operator P, according to different types of common image
gathers it applies to, can be formulated in two forms as shown in this chapter. Other
forms of differential semblance operators are proposed by Stolk and Symes, 2003 [24].
In this section, we discuss the relations between two formulations of P, one is simply
P, = h, where h is the offset parameter, defined on offset domain CIG; and the other

P, = 2 defined on angle domain CIG.
q dq

The angle domain image gathers relates to offset domain image gathers through the
Radon transform I, (z,q) = Z4{In(x,h)}(x,q). Written in terms of I,, we have in
angle

P,1, = P,%,1) (3.29)
which can be inverse Radon transformed to an image gather in offset %, ' Py %,1,. If

differential semblance criteria on offset or angle are equivalent, then it suggests that
the operators P, and %q_ 1P, %, should be equivalent. It also implies that P, P, and
R Py PiZ, L are equivalent. the inverse Radon transform can be formuated in two

dimensions as, Deans, S. R., 1983[3]*

_ -14d

1
*The formular givin in [3] is Z~' = 5= £ H,Z*. The pseudo-differential operator A7 can be
1

shown in one dimension as A? = —i H; where H, is the Hilbert transform in one dimensional
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B =iN (3.30)
The operator iA3 ,properly defined as a pseudo-differential operator,* does not change

the phase of the signal transformed by adjoint Radon transform. It acts like a taking

a derivative in a pseudo-differential sense.

Instead of comparing P, Py, (which is equal to Py P,) and %,P;P,%,* (which is equal
t0 -ZePyPyZ; "), we will compare Py Py, and %;P;P,%,. We shall see in the next
chapter the gradient with respect velocity will pick up the image residual which has
the form Py P, 1, in offset or #Z; Py Py%,1; in angle. So the difference between those
two forms are at the interest of discussion. To begin with, we first analyze the Radon

transform and its adjoint. The forward Radon transform is defined as

Ry f (21,29, h) = /f(x1 + qh, 5, h)dh = f(z1,22,q) (3.31)

We will suppress the dependency on x5 for convenience. To see the adjoint of Radon

transform, we write eq(3.31) in a slightly different form.

(@) (@1,0) = / F(6 )5t — gh — ) dt dh

1 .
— / (. et a0 dtdhduw (3.32)

variable t. Equation (3.30) is posed in the form to agree with the inverse Radon transform in
n dimension which can be formuated in unified form using the fractional Laplacian Z~! =
anit " A=D/29* for a,, some real number dependent on n. [3].

*Az applies to f(z) for z € R" is understood as Az f(z) = ﬁff(k)ﬂkkik'””dk where

k| = />, k2, and f(k) = [ f(z)e~*2da
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We then see the kernel of the adjoint Radon transform is 5-e~"(=4"=21)_ The adjoint

Radon transform can be written as

(Z: )t h) = [ —Fflz1,q)e P2 dtdhdw

Using the relation Py = we derive for Z; Py Py 1.

Bq’
82
Py PuZel = Rg(— (92)%3111
_ [ 2 r e om0 L ana
| "o 27

1 .
e wlt=ah=21) 4o dgdt' dh dw'dw

— h12 IQI tl hl w' (' —qgh’ —x1)
[ nre e i

— /h/2 2[(t h/) 1w (t' —t) zwq (h'— dqdh'dt dw

= / B2 |w|I(t', h)e™ =) dt dw
“+00 +oo ,
= / dt' K2 I(t', h) / |w|e™® =) du

400 I(t' h)
= —2h? ! ’ .
h /_Oo dt CETIE (3.33)

In the last step, the principal value integration is understood using the relation

o ; 2
/ lwle"dw = —— (3.34)

Equation(3.33) justifies that P, = h is a differential semblance operator, since Pj P, I},
relates to Z, Py Py%,I, through the integral transform

NAD

(Z, Py PaZql1)(t, h) = Py Py / (t— )2

W gy (3.35)
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The question is how different is it between Py P, I}, and %;‘ Py P, %I, 7 The answer, ac-

cording to equation(3.35) depends on the relation between I, (¢, k) and [ QIz(tt,h) dt’,
which is an integral transform recognized by Hilbert transform followed by differen-

tial. Write %Ht = —QW%Ht. Here H, is an Hilbert transform in t. *

The transform %Ht can be analyzed using its Fourier representation, write

[(gth)f(t B(t h) = / ol (2, ) e =D doy (3.36)

This transform doesn’t change the phase of the original signal, but the amplitude is

weighted according to the magnitude of its Fourier frequencies. Its spectrum of high
frequencies components have higher weights while low frequencies have relatively
small weights. Figure(3.4) demonstrates this phenomenon through the comparison
between an untransformed signal f(z) = e %3¢ 25[cos(3x) + cos(10z) + sin(5z)]

and its %Ht transformation. In conclusion, the %Ht transformed wavelet will always

original transformed

Figure 3.4 letf: original signal, right: transformed signal

*definition of Hilbert transform: (H f)(t) = X [T dt'ZE)
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be in phase with the original wavelet. At places where there are high frequency sig-
nals, the %Ht transformation tend to scale up their amplitudes. When low frequency
components carry energy close to zero, the %Ht transformed wavelet shows signifi-
cant similarities comparing with the original one. For general seismic common-image
offset gathers regarded as function in x; and h, wavelets in z; are usually zero energy
for low frequencies. (see figure(??) Due to this reasoning, we consider differential

semblance operator P, is a good substitute for P,%,,.

original transformed

Figure 3.5 left: original signal with sharp peaks, right: transform signal

For the rest of the thesis, the differential semblance objective function will be the

form

1 1
S = 5 < Puln, ol > (3.37)

In discrete form, we have

1 I
§||Phlh||2:ZZZhQI(xl,xg,h)I(ajl,mg,h) (338)
h =z z



Chapter 4
Adjoint state calculation

4.1 Gradient calculation and adjoint state analysis

Chapter Synopsis

Wave equation migration velocity analysis is posed as a nonlinear optimization prob-
lem with the objective function defined on the image domain. The gradient of the
objective function with respect to velocity provides search directions for iterative ve-
locity updating. Fast algorithm of quasi-Newton’s method can be implemented to

solve the nonlinear inverse problem with the aid of the gradient calculation.

I shall give formulations of the gradient of the objective function in both integral
representations and continuous as well as discrete wave equation representations. Ex-
tensive adjoint state analysis is used to derive for discrete gradient calculation within
the frame work of one-way wave equation migration. The limited memory BFGS al-
gorithm is implemented to solve the inverse problem where the smoothing properties

of the gradient is analyzed and a B-spline smoothing scheme is developed.
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4.1.1 Gradient formulation by the Green’s function representation

vspace-0.5cm

The offset domain differential semblance objective function is written as
1 2
Il = 5|1 Plnllz (4.1)

where || - ||z denotes Lo norm, I,(x,h) is the image gather parameterized by sub-

surface offset parameter h. P, is a differential semblance operator defined in offset

Ph : Ih(fE, h) — hIh(fE, h) (42)
The image gather in offset I;(z, h) is nonlinearly dependent on the velocity ¢, write

Iy = flc] (4.3)

and oI
81, = (DI,)[c]dc = a—c’lac (4.4)

where DI}, is the differential migration with respect to velocity obtained by taking

first order derivative of f with respect to c. The perturbation of objective function

written as an inner product <, > can be derived
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6J = L <8(Puln), Puly > +3 < Pudy, 6(PoIy) >

)]

= 3 < P, DI, 6c, Pyl > +4 < Pyly, Py DI, 6c >

No|

< b¢, DI} P;P,I}, > +1 < DI; P;PyIy, 0c > (4.5)

N[ —

< b¢, DI} PPyl > +1 < b¢, DI} Py Pyl >

N

= < 50, Re(DI;:P;:PhIh) >
the gradient of J with respect to ¢ can then be read*

Ved = Re{(DI,,)" (P, Puln) } (4.6)

which is understood as the real part of the composition of adjoint differential migra-

tion DI; and Py applied to image residual Pyl,. The adjoint differential migration
is the central concept to be investigated in this section. To formulate the adjoint
differential migration we first derive a Green’s function representation of the differ-
ential migration, the adjoint of which will then follow easily by taking the complex
conjugate of the integration kernel. Sub-surface offset semblance image is formulated

by adjoint of the generalized Born modeling. Equation (3.10) is re-written in here as

In(z,h) = /G+(ac — h, zp,w)d(z,, T5, )G (T + h, 24, w)e” “dtdr,dr,dw  (4.7)

where d(x,,zs,w) is the data in angular frequency w received at z, due to a point

source at s, G(z,y,w) is the Green’s function observed at point z € R® due to

*An angle domain differential semblance objective function can be written as J =
L|Py%qIn||3. The gradient of J with respect to velocity ¢ can be shown similarly as
Ved = Re(DI; %3 P; Py %,1n). We see the gradient of the angle domain DSO and that
of offset domain DSO differ in the operators %; P; Py%, and P} Py.
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a point source located at y € R®. A image perturbation §I, = DI,dc can be
formulated through Born perturbations of Green’s functions G*(x + h, z,, ,w) and

Gt (z — h,z,,w),

de(y)w?
c(y)?

e “dtdr,dxdydw

0Iy(z,h) = /Gﬂy,xr,w) Gt (x — h,y,w)d(z,, x5, )Gt (x + h, T5,w) X

2
[ G Fer a2, G+ hos) G (0 20)

et dtdx, dr dydw (4.8)

The adjoint of DIy, (DI)* : u(xz,h) — g(y) can be read from equation (4.8)

gly) = (DI)"u

_ *(y, u(z, h)w? +(p —
—/Gy,r, )’ — 5 G (@ —hy,w) x

d(xy, 4, 1)GT (z + h, x5, w)e dtdx,dx,drdhdw

+/G+(w — b, @, w)d(2r, 25, 1)G (2 + h, y,w) X (4.9)

u(x, h)w?
c(y)?

When u(x, h) = Py P,I;, equation (4.9) gives the gradient of the offset domain differ-

Gt (y, zy,w)e“ dtdr, dz ,drdhdw

ential semblance objective function. The two terms in equation (4.9) are symmetric
to each other. We shall analyze the first term, and then carry the similar analysis to

the second term. We have

/G+ Y, Tpw ua:(h)) G*(z — h,y,w) x
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d(z,, x5, t)G(x + h, z,, w)e“tdz, dtdz,drdhdw
2
= / %y)zda:sdw( Gt (y, z,, w)d(z,, T,, 1) dtdz,) ¥ (4.10)
/G+(ac + h, zg, w)u(z, )Gt (y, z — h,w)dzdh

This integral carries in three steps: first, downward continue receiver wavefield com-

plex conjugated,

Ry, z5,w) = /G+(y,xrw)d(:vr,:vs,t)ei‘”tdas,dt

= /G+(xr,y,w)d(x,,xs,w)dx, (4.11)

which is just the downward continued receiver wavefield taken complex conjugate.

Second, downward continued source wavefield, correlate in offset A with residual image

u(x, h) and then upward propagate to point y.
95y, T5,w) = /G+(3: + hy zs,w)u(z, )Gt (y, z — h,w)dzdh (4.12)

Finally, multiply R by g, then integrate

a1(y) =/CE;;R(y,xs,w)gs(y,xs,w)dxsdw (4.13)

Similarly, we can write the second term in equation (4.9) as

2
w
9= —=S, x5, w) 9 (Y, x5, w)dzdw 4.14

2 /c(y)2 ( ) ( ) ( )

where
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Sy, zs,w) = GT(y, x5, w)

is the downward continued source wavefield, and

9r (Y, z5,w) = /G+(ac — h, 2, w)d(T,, Ty, 1) GT (x + h,y, w)dtdrdhdz,  (4.15)

We shall call g; the adjoint of perturbation source wavefield and g, the adjoint of

perturbation receiver wavefield. The gradient formuated using the Green’s function

representation, equation (4.9), can be rewritten in terms of S, R, g, and g, as

g(y) = /%;)2(?95 + 5¢,)(y, T5, w)dx dw (4.16)

The three conceptual steps for taking the integral shown in here is well correlated to

the computational procedure for the gradient derived later in section (4.1.2). Instead
of expressing the gradient as an integral, we shall separate the integral into parts each
satisfies a wave equation. The advantage of expressing the gradient as an integral is
fully utilized in section (4.2.3), where the smoothing properties of the gradient is

analyzed through the method of stationary phase.
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4.1.2 Gradient formulation by wave equation

The gradient integral in the Green’s function representation derived in the last sec-
tion can be partitioned into several sub-integrals. Eqch sub-integral can be shown, de-
pending on the Green’s function used is two-way Green’s function or one-way Green’s
function, to satisfy two-way or one-way wave equations, respectively. The gradient

can be then formuated using two-way or one-way wave equations accordingly.

Gradient by two-way wave equation

In this section I will use the two-way Green’s function to formuate the gradient. Let’s

first repeat the migration formula using two-way Green’s functions:

(z,h) /S z, s, w)R(z, x5,w) drsdw (4.17)

where S is the downward continued source wavefield, S’(ac—i—h, Tg,w) = é(m-i—h, Ts,w),

and R is the downward continued receiver wavefield, R(z, z,, w) = [ d(zy, s, w)G(zy, T, w)dz,.

S solves Cauchy problem:

(V2 4+ —)S(z;25,w) = Oz — ) (4.18)

w?
_2

(a§+,6V§)|g =0
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where we have extended the Dirichlet boundary condition on the boundary of the

computational domain to the form (cvtgv + ﬂvé) s = 0 with o, 8 constant. Likely, R

solves

(V? +

’LU2
c2

JR(z;s,w) = /d(xr;xs,w)(i(x—mr)dx, (4.19)

(aR+BVR)|y = 0
Write perturbation of I (z, h) as
5T, = / (03 R + G6R) (2, 74, h, w)dasde (4.20)

To see the formulation of (DI},)*, we construct a scalar product of I, with an arbitrary

image gather in offset u(z, h)

(6Ip,u) = (DIpoc,u)
= <5c,(DIh)*u)

- / (5T (w, h)u(z, h) dzdh

= /55’(30 + h, x5, w)R(x — h, x4, w)u(z, h)dzsdwdzdh +

/5‘(3: + h,zs, w)ﬁ(aj — h, x5, w) u(z, h)drsdwdzdh

= /55’($ + h,z, w){/ R(x — 2h, z,,w)u(z — h, h)dh}dzdzdw +

/5R(x — h, xs,w){/ S(z + 2h, vy, w)u(z + h, h)dh}drvdz,dw

introduce ¢, and g, which satisfy
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{ (V2 + )gr(x zs,w) = [R(z—2h,zsw)u(z— h,h)dh
(4.21)
J5(V8§, = Vg S)da = 0
{ (V2 + %) Gy(2,75,0) = [ S(x+2h,z,,w)u(z + h, h)dh
(4.22)
J5(VRG, — V§,R)da = 0

Here da is the differential surface area on 3. We have extended the Dirichlet boundary
condition to the form [;,(VSg, — V§,S)da = 0 and [,(VRg, — V§,R)da = 0 for g,
and g;, respectively. The boundary conditionswill be used in the integration by parts
later to yield desired results. Substitute g and ¢ into eq(4.21), and then do integration

by parts, we derive

2 2

(61, u) = / {6S(V? + )gr—i-(iR(VQ )g;}dxsdwdx

w?
_ / (V2 + (5S]gr + (V2 + 25)0R]gda, ddade
2w =
= /—56( )Sg, + —56( )Rg}dmsdwdx (4.23)
here we have used the Born scattering relations
w? - w? 5 2w? . -
(V2 + S =d@ =) = (V2 + )08 ="5-0cS  (4.24)
2 w? | - _ s 9 w2~ 2w? . -
(V2 + F)R =d(zr,zs,w)0(z —x5) = (V2 + 0—2)5R = 0—360R (4.25)

from eq(4.21), we can read off (DI,)*u as

(DI)* (u) =/2:) (Sgr—l-Rgs)(a: Ts,w)dTsdw (4.26)
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Gradient by one way-wave equation

Next I shall derive (DI,)* using one way wave equation. We start with a similar
approach as we did using two-way wave equation. In last section, S, R, g and ¢ are

solved using two- tor V2 + 2. In thi i introd -
g two-way wave operator + z- In this section we introduce one-way

2
wave operators z-— +1, /5 + % and 5 - —1

w_
2

For convenience, let’s first write down the corresponding one-way wave relations that

S and R satisfy.

(6%1— aff +1g2)S(Z$ s,w) = 06(x — x5)
(4.27)
fz (VySg—VzgS)da =
and
(5 +iy/ 525, + BIR(z,55,0) = [ d(ar, 7,,)0(@ — ;) dz,
(4.28)
fz (VzRgs — VzgsR)da =0
Introduce g, and g,, which satisfy the following equations.
( . W
(5 +iy/5or; + %)o@, 70,w) = [R(z —2h,z5,wju(z = h,h) dh
\ g-(z1 = 2,219, 25,w) =0 (4.29)
\ fE(wl)(v“”Sg’" —V3g,S)da =0

where z; is the maximum depth that the computational propagation can reach.
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( (3%1 +i /2 4+ f—;)gs(z,m; s,w) = [ S(z,z + 2h; s,w)u(z,z + h, h) dh

85()1,2

\ 9 (z=z,2;5w) =0 (4.30)

\ fE(J;l)(VZ‘Rgs —V.gsR)da =0

Here X(z) represents the horizontal boundary for each z;. substituting g, and g,

into eq(4.21) and noticing,

2 wr w10
al, T T @ 3,
/5S(ig Ydz, = 6Sg, |20 —/(iés)g dxy
Ox”" Te=a oz "
= —/( 0 05)g,dxy
8:61 "

then performing integration by parts, we obtain

01 = ) r + OR(— stz dwd

(01, u) /{ Sale “83:12 g+R8x1+Z“8x12 g}x wdz
i [aaa ,/— Yy 6S]g, + [(—— ‘/  dzydwd
/[( (%lﬂ axi2+62)519 +z ax12 R)gs dzsdwdz

L 0% w1 2w? w?, 1 2uw?
= /(z(—2 +—) 2?5)(60)97 + (55— —) —R (d¢)gs dzgdwdx

Oxi, 2 83;1,2 c?
(4.31)
In the last ” =", we have taken the perturbation of the complex conjugate of equations
(14). If we let
0 0? w?
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and
_ 0 0?2 w?
q-_9 w 4,
e +1 89&12 + = (4.33)
then it can be verified that
82 ’1112 1 2’(1]2
- ) —) 2 4.34
05T = g+ ) )9 (4.34)
and Wi 2 2 2
0A 0 w, 12w —
IR = (i(- 2 -3 4.
(eI = i+ ') (4.35)
We then read DI;u from equation (12) as
i L0 w1 2w? 0% w1 2wt -
D) = [l + ) O+ i + ) | (Ran drad
1,2

- /{[_5* I* R] g5} dzdz,dw (4.36)
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4.1.3 Gradient by discrete adjoint state calculation

Numerical optimization algorithms depend on accurate adjoint state calculation.
There are in general two ways to calculate the adjoint: discretise the continuous
form, or directly take the adjoint of discretised form. I shall in this section discuss
adjoint state calculation of the second kind. To start with, let’s look at the chain rule

in discrete formulation.

4.1.3.1 The chain rule

Let a numerical algorithm be defined as a function
H:X->Y (4.37)
This can be decomposed into N steps, each having an explicit representation
H 727" 7 (i=1,..,N) (4.38)

The variables Z* holds all intermediate results that remains after ith step of the

algorithm. For example, a numerical algorithm at the first step

y==z (4.39)

has the input variable Z% = (z° ¢y°)” and output variable Z' = (z!,y")”, where z°

and 7° represent the variables before the assignment, and z! and y'! are the variables
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after the assignment. The algorithm H is considered as composition of differentiable

functions H'’s,
N
H=H"oH" "o . oH' :=]]oH (4.40)

=1

which can be differentiated according to the chain rule. To see the chain rule, let’s

look at an intermediate step.
Z'=HY (Z") 1<i<N (4.41)

A variation 6Z° depends on a variation of the control variables §Z¢ 1.

OH'

5ZZ - W|Z¢‘1:H(Zi_2)5zi_1 (442)
Therefore, the perturbation at last step is
OHYN OH? OH*
1 _ 0
5Z — W'ZN_IZH?I:EIOHi T el " ﬁ‘zle(zo) . aZO 5Z (443)
The Jacobian is defined by
OH
A(Z%) = 570 (4.44)
which can be read off from eq(4.43) as
0H oOHN OH? OH!

970 = gz - e gl s (44)

In matrix multiplication form, it can be expressed as

A(Z%) = AN(ZNTY) - AN (ZV) - L AN (29) (4.46)
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where
OH'

Ai(Z’i—l) — W|Zi_1:1—[§;11 oH (447)

4.1.3.2 Numerical adjoint code construction

The adjoint of Jacobian in matrix form is simply

OH * *

(570) (Ah* - .- (AV) )
OH' .\, oHN

= (620) LR (W) ‘ZN_I:H?;_IIOHZ'

Introduce adjoint state variables DZN=! ... DZ° which satisfy the inner product

relation
<DZ"' 677> = <DZ'67"' > (4.49)
This can be further derived

<DZ'.67"> = < DZ' A(Z"Y§Z" ' > (4.50)

= < (AY(Z"Y'DZ' 67" > (4.51)
This holds for all §Z°7!, so it follows

DZi"! = (A{(Z1))* D27 (4.52)
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We use Equation 4.52 as the rule to perform one step adjoint calculation.

Numerical adjoint code construction obey certain rules. These rules apply in order to
convert computer programs, without any aliasing, to the mathematical expressions we
have just derived. In this section, we shall discuss three commonly used programming

semantics, loops, conditionals and assignments, and their corresponding adjoints.

Loops
We differentiate loops into sequential loops and parallel loops. For convenience, we
use C style programming language to express a loop L:

fori=0:N

L (4.53)
end i

where L; denotes the statements inside the loop indexed by i. If the iterate L; de-
pends on the output of L;_;, we called it a sequential loop, otherwise, parallel loop.
The output of a parallel loop does not depend on the order by which the iterate is
executed. The adjoint of a parallel loop is a loop of the same bounds without partic-

ular execution order for the iterate. It can be expressed as L*:

fori=0:N
L (4.54)
end i
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where L} represents the adjoint statement for the 7th iterate. The adjoint of a se-

quential loop, however, by eq(4.48), has to be executed in the reverse order, L*:
fori=N:1:-1

L; (4.55)
end i

Conditionals

Conditional statements measure the boolean values of certain conditions. The condi-
tional statement itself does not have an adjoint. The statements branched by condi-
tionals are at the interest of taking adjoint. Consequently, the boolean values of the
conditions must be known in the adjoint code in order to decide which branch of the

conditional has to be taken adjoint. This procedure is show in the following table:

forward code adjoint code
if (condition C}) if (condition C})
L L:
else if (condition Cs) | else if (condition Cs)
L L
else (condition Cs) else (condition Cy)
L L

Table 4.1 Forward and adjoint conditional statements.

Assignments
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Assignment has two types, passive and active. Passive assignment in step ¢ can be
formulated as

7' = Iz (4.56)

where I is the identity map, and 2*~!, z¢ are the variable before and after the assign-
ment, respectively. Passive assignment happens when a variable does not change its
value during the execution of the step. On the other hand, active assignment modifies

the value of a variable, which can be formulated as
ot = f(a,) (4.57)

for some function f. Adjoint of assignment on a linearized code results directly from

eq(4.52).

Example

To show a non-trivial example of adjoint code construction, let’s consider a code which
correlates two scalar fields separated by a sequence of offsets, and then accumulate
over frequency w

I(z,z,h) = ZR(Z, x — hyw)S(z,z + h;w) (4.58)

w
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where z and z are vertical and horizontal coordinates, h is the horizontal offsets

between two scalar field R and S. A linear perturbation of eq(4.58) yields

0I(z,z, h) = Z{(SR(Z, x —hyw)S(z,z+ h;w) + R(z,x — h;w)dS(z,x + h;w)}
' (4.59)

A pseudocode for the summation is written as follows

for iw=min:dw:wmax

for z=zmin:dz:zmax
for x=xmin:dx:xmax

for h=hmin:dh:hmax

if (x+h and x-h do not lie outside of boundary) then

0I(z,z,h)+ =dR(z,x — h;w)S(z,2 + h;w) + R(z,2 — h; w)6S (2, x + h; w)
end h

end x
end z

end w

(4.60)

Each inner most iterate under the conditional is written in matrix form

SR (z,2 — h;w) I 0 0 SR Yz, 2 — h;w)

65" (2, + h;w) = 0 I 0 |- 65 (2,2 + h;w)

§1%(z,x, h) S(z,z + h;w) R(z,x —hyw) I I (z,x, h)
(4.61)
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The corresponding adjoint is

DR"(z,x — h;w) I 0 S(z,z+ h;w) DR!(z,z — h;w)
DSz, z + h;w) = 0 I R(z,z—hyw) |- | DS'(z,2+ h;w)
DI Y(z,z,h) 0 0 I DI'(z,z,h)

(4.62)

We also noticed that the loop over w,z,x and h are parallel, so the adjoint code is

written as follows

for iw=min :dw: wmazx
for z=_zmin:dz: zmax
for x=xmin:dz:xmax
for h = hmin : dh: hmax
if (x+h and x-h do not lie outside of boundary) then
DR (z,x — h;w)+ = S(z,z + h;w)DI*(2, z, h)
(4.63)
DS (z,x + h;w)+ = R(z,x — h;w)DI*(z,z, h)
end if
end h
end =

end =z

end w
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4.1.3.3 A discrete formulation for differential migration and its adjoint

Let 7 be the index for depth, j be the source index, and A be offset index. The imaging

routine can be written as

fori=1:n
for 3 =1:n;
St = H[c"_l]S;-*1
R} = TR
for h=(—-H,—H)...(H,H) (4.64)
Ii = I} + Si(z + h)Ri(z — h)
end(h)
end(j)

end(i)

The perturbation §1; should satisfy the perturbation of imaging routine.
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fori=1:n
forj=1:n,
6S: = H[¢ 165" + (ZH[¢ ]S ")oc ™
0R: = H[c¢='JSRT + (ZH[c 1R )6ci !
for h=(—H,—H)..(H,H)
Si(z + h) = T(h)S: (4.65)
Ri(z — h) = T(—h)R;
I} = I} + 8Si(z + h)Ri(x — h) + Si(z + h)oRi(z — h)
end(h)
end(j)

end (1)

Here, we distinguish the uses of () and (-)*. For the former, it means an operator with
coefficients being complex conjugate to the coefficients of the operator (-), whereas
for the later, it means an adjoint operator with respect to the operator (-). In order
to derive the adjoint of perturbation imaging routine, we first simplify equations (18)

as a loop consists of 2 parts.
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fori=1:n

for j=1:ng
A
B

end(j)

(4.66)

end(i)

and note that the loop over source index j is parallel imbedded in a sequential loop

indexed by 7. The adjoint routine should be, at simplified level, written as

fori=nn—1,...,1

for j=1:ng
n (4.67)
end(7)
end(i)
Expressions B are expanded as,
for h=(-H,—-H),...,(H,H)
C (4.68)

end(h)

Notice that the loop over h is parallel, we write adjoint expressions B* as,

for h=(-H,—H),...,(H,H)
Cc* (4.69)
end(h)



89

We express A and C' using matrix-vector product form. For C', we have

5Ii
353(x + 1)
0Rj(x —h) | =

55

SR

Ri(z—h) Si(x+h) 0
0 0 T(h
0 0 0
0 0 1
0 0 0

We then formulate the transposed expressions C7,

DIi
DSJ: (x+h)
DS:
DE:

or explicitly,

I 0 0 00
Ri(z—h) 0 0 00
St@+h) 0 0 00
0 T(=h) 0 I 0
0 0 Tk 0 I

DR = T(h)DRi(z — h) + DR}
DSi = T(~h)DSi(z + h) + DS

DR(x — h) = Si(z + h)DI}

DSi(z + h) = Ri(z — h)DI}

5Ti
53 (z + 1)

55

SR

(4.70)

DI
DSi(z + h)
DR;(z — h)
DS
DR
(4.71)

(4.72)

Here we have used D to replace 0 to indicate the adjoint variables. Substitute 27.3
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into 27.1 and 27.4 into 27.2, we have,

DR; = 7, T(h){Si(x+ h)DI}} + DR}
B = - o (4.73)
DSi = 3, T(—h){Ri(z — h)DI}} + DS;

For expressions A, the matrix representation is

05; 00 H¢] 0 ([FH[E(S; )] 055
SR 00 0 H] (ZH[¢TR™ OR;
sttt =100 I 0 0 6sit | (474)
SR 00 0 I 0 SRy
51 00 0 0 I e

The transposed expressions A* can be written

DS: 0 0 000 DSt
DR; 0 0 0 00 DR;
DS;_1 = H[ci—l]* 0 I 00 DS;_l
DR 0 H[c1 010 DRI
D¢t (ZH[(SE D) (ZH[EREY) 0 0 1 D¢t
(4.75)
We then write explicitly,
(D=t = ([ZH[E (ST DS + (2 H[@ R DR: + D!

A*=4 DR = H[¢" DR+ DR

DS; = H[¢"'] DS:+ DS:
(4.76)
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Insert expressions for B* and A* in equations (17), we have

fori=nn—-—1,..,1
for j=1:n;
DR, = Y, T(h){Si(z+h)DI}}+ DR
DS; = 3, T(=h){Ri(z — h)DI}} + DS}
De™t = ([%m(f”*ng’%— (%WR?*)*DR; 4 Dl
DR;' = H[¢"'] DR+ DR;"

DS = H[¢*DSi+ DS
end(j)

end(i)
(4.77)

We then unroll the sequential loop by isolating the first iteration ¢ = n and combine

the equations (32.1) and (32.4) as well as equations (32.2) and (32.5) jointly into the

rest of the loop. We arrive at
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1=n
for 3 =1:n,
DRi =Y, T(h){Si(z + h)DI};}
DS} = ¥, T(~h){Ri(z — h)DI}}

Déi-1 = ({%W(S}*l)]*ng—F (%WR?I)*DR;'

end(j)
fori=n—1,..,1 (4.78)
forj=1:n,
DR: = >, T(h){Si(z+ h)DI}} + H[¢|DR*
DS; = X,T(-W{Ri(z - h)DI}} + H'[¢]" DS}
De™t = ([HIEI(S; ' DS; + (5 HIe TR DR,
end(j)
end(7)

Comparing this routine and equations eq(4.34) eq(??) and eq(4.36), we are expecting

to see that they are the continuous limit of this discretised formulation.
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4.2 Inversion
We pose the problem of eismic velocity analysis is as a nonlinear optimization problem

1
in =PI |2 4.79
min o [ Phl|| (4.79)
where the semblance image gather Ij,(c) is nonlinearly dependent on velocity. At the

global optimum velocity the semblance image becomes concentrated in offset domain
and flat in angle domain, indicating the best image is achieved. This is the main dif-
ference between waveform type of inversion and inversions directly pursue the quality
of semblance images , where in waveform type of inversion the optimized velocity

does not necessarily produce the optimum image.

Nonlinear optimization by gradient type of methods requires that the objective func-
tion itself be smooth and has few local minima in order to avoid the solution trapped
by local minima. The objective function constructed by differential semblance crite-
rion varies smoothly due to change of velocities. Its local minima usually coincide
with the global minimum. Therefore it is particular suitable for optimizations solving

by gradient methods.

Methods for solving nonlinear optimization problems categorize into two strategies,
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line search methods and trust region methods. In both strategies, information of the
gradient of the objective function play the key role. In last section, we focus on the
calculation of the gradient. In this section, we shall explain two things. One is the
application of L-BFGS algorithm that uses the calculated gradient for optimization,
and the other, the smoothness problems we face on using the gradients and how the

gradient is smoothed: the B-spline smoothing scheme

4.2.1 Limited memory BFGS method

We use limited memory BFGS method to directly optimize the objective function
eq(4.79). At each iteration, the BFGS search direction p minimizes a quadratic model

of the objective function at the current iterate.

1
mi(p) = Jp + Ve J' + §ptHkp (4.80)

Here Hy, is a positive definite matrix that will be updated at every iteration. We can

write the minimizer p of this quadratic model explicitly as

pe=—H;'V.J (4.81)

and the new iterate is chosen by line search

Ck+1 = Cp + QPg (4.82)
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to satisfy the sufficient decrease and curvature conditions. The particular formula to

update H, ' Nocedal® Wright, 2000[15] is the defining formula for BFGS method.
We emphasize the fact that the BFGS update is not obtained by solving a linearized
equation at the current iterate, which is a method frequently used in geophysical
inversions. Optimizing by quadratic match at each iteration instead of solving a
linearized equation greatly reduces the number of line searches, and therefore signifi-

cantly reduces the computational cost.

The problem with BFGS method is that the inverse Hessian matrix H, ' may be
dense and require fairly large storage and computational cost. Limited memory BFGS
method modify the BFGS method so that the inverse Hessian can be stored compactly
in just a few vectors of length n, where n is the number of unknown model parame-
ters. Once a new iterate is computed, the old vector is deleted and replaced by the
new ones obtained from the current step. Practical experience suggests the n value of
between 3 and 20 produce satisfactory results. The limited memory BFGS algorithm

can be stated formally as follows Nocedalé$ Wright, 2000 [15].



96

Choose starting point ¢ and m > 0
k+0
Choose H;'
repeat
Compute py < —H,;lch
Line search cg11 = ¢ + opx
ifk>m
Discard the vector pair(sx—m, Yk—m)
Compute and save sy <— Txyr1 — T, Yk = Vedgr1 — Vedi
k+—k+1
Compute H, !
until converge

(4.83)

4.2.2 Smoothing properties of the gradient

For a given velocity model paired with the observed data, it determines a certain
coverage of bicharacteristic curves (ray coverage). The basic claim of this section is
that the gradient with respect to the velocity of the differential semblance objective
function is smooth along the bicharacteristic curves (rays) that correspond to the
given velocity and observed data, and the gradient is, in general, not smooth across
such rays. The analysis follows from the closed form formula of gradient given in

section (4.1.1). We rewrite the gradient in here
, h)w?
G (27, y,w ( ——5—G"(y,x — h,w) x
/ c(y)?
d(x,, 25, t)GT (x + h, 14, w)e“ dr,dx,dt dw dz dh

4 / G* (2,5 — hyw)d(zy, 70, )G (o + By, w) X (4.84)
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u(z, h)w? ot

W)’ (y, 25, w)e™"dz, dz, dt dw dz dh

where u(z, h) = h%I,(x, h). Recall the data can be explained by the generalized Born

modeling
d(x,, xs,t) = /G+(x + h, x5, w)r(z, h)Gt(z — h, 2., w)e™ dzdhdw (4.85)

Let’s label the data due to a single reflection at (x, k) from a point source located at

zs and received at z, by d(z,, xs;x,h). We have
d(x,, xs, t; 2, h) = /G+ (x + h, 25, w)r(z, h) G (x — h, 2, w)e™ dw (4.86)

This data of single reflection corresponds to the union of two ray paths

I'=~v(zp, 2 — h) Uy(xs, z + h)

where 7y (z,, x—h) and y(zs, x+h) are ray paths of G* (z—h, z,,w) and G (z+h, 5, w),

respectively. The gradient corresponds to the data of single reflection is reduced to

VCJ(y;xraxsaxﬁh) = gl(y;xramsaxah)+92(y;$ramsaxah)

where

2

L .
u(@, hw Gy, = h,w)d(z,, x5, t; 2, h)GT (2 + h, 75, w)e™ dtdw

(4.87)
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u(x, h)w?

c(y)?

gy = /G’L(xr, x — h,w)d(z,, s, )G (x + h,y, w) Gt (y, zy,w)e™ dtdw

(4.88)

We shall see that g; is smooth varying if y moves along the ray path v(z,,z — h).

Similarly, go varies smoothly if ¥ moves along the ray path y(zs, x + h). T will give
an analysis of the first term in detail. Parallel analysis apply to the second term due

to symmetry.
Using asymptotic form of the Green’s function

G (z,y,w) = alz, y)e oY) (4.89)
we can write the data of single reflection in its asymptotic form as

d(x,, xs,t) = /a(:vr, z — h,x + h,x,)r(z, h)ewt-o@thas)=d@ra=h) g, (4.90)

With equations (4.89) and (4.90), g; can be written as

2
q = / %( h)a(z,, — h,x — h,z,)a(z,, y)a(y, = — h)a(x + h, z,)u(z, h) x

eiwteiw' (t—¢p(z+h,xs)—p(xr ,w—h))e—iwtb(wr ,y)e—iwd)(y,;c—h,)6—iw¢(z+h,zs)dtdwdwl

— / c(y)QT(m’ h)a(z,,x — h,z — h,x5)a(z,, y)a(y,z — h)a(z + h, xs)u(z, h) X

27Tezw(¢(m7' ,w—h)+¢(x+h,zs)—¢(wr ,y)—¢(y,:c—h) —¢($+h,$s)) dw
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B / & el e = he = hzs)aler, y)a(y, = ha(w + b, z)u(z, h) x

27rezw(¢(zTaw_h')_(b(wT1y)_¢(ya$_h’))dw
We can write the integral in the form

9 (y; xp, x5, 2, h) = /A(xT,xs,ac,h,w)ei@(w“y"”h"")]dw (4.91)

where

2

A(z,, x5, 2, h,w) = w—Zr(x, hya(z,,x —h,z+h, zs)a(z,,y)a(y,x—h)a(x+ h, z5)u(z, h)
¢

is a symbol* of type ST and

(D(l's,y, T — h: w) = W((ﬁ(lll,-,.’l? - h) - ¢($r, y) - ¢(ya$ - h))

When y varies along the ray curve y(z,,z — h), the total phase ® is stationary with

respect to w,

0®(z,,y,x — h,w
( Ow )lyEW(wr,wfh) = [¢($7‘7 T — h) - ¢(.’CT, y) - ¢(y, T — h)]yE’Y((Er,.’E*h) =0

(4.92)

Theories of oscilatory integral (Theorem 3.5 in Joshi[13]) imply that g; is singu-

lar when y € ~(z,,x — h). We see singularities of g; lie on the section of ray

*S;'}(; (X x RY) is the space of symbols of order m and of type (p,d). It consists of all a(z,6) €
C>®(X x RY) such that for all compact K CC X and all multi-index o € N7, there is a
constant C' = Ck.q,5(a) such that [9285a(z,0) < C(1 + |9))™—PlAI+dlel for (2,0) € K x
RY. We adopt this definition of symbol space from standard references of pseudo-differential
operators, i.e. Grigs & Sjostrand, 1994, [9]. We see A € S7 o(X x RY) for N = 1.
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Figure 4.1 The ray path connecting from z; to z + h, £ — h to y and y to z,, where
Gt (z,y,w) is the Green’s function observed at z emanated at y. The adjoint of differential
migration picks up an image residual and smoothly distributed it along the corresponding
ray paths.

path v(z,,z — h). Taking derivative of the gradient along the bicharacteristic curve
v(z,, x — h) with respect to y means to differentiate equation (??7) subject to equation
(4.92). The differential operator J, applies to amplitude terms only. Since the ampli-
tude terms satisfy the first transport equation, the derivatives are smooth. We have
thus established the claim in the beginning of this section that the gradient is smooth

along the bicharacteristic curves and non-smooth (singular) across the bicharacteris-
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tic curves.

Parallel analysis can be applied to the second term in gradient formulation. The
second term of gradient g, is singular for y € (x5, + h). Similar conclusions on
smoothness follow accordingly for y € y(xs,x + h). The total gradient will have its
singluarities distributed along the curve I' = y(z,,x — h) U y(zs,z + h). In view of
gradient formulated as adjoint of differential migration applied to the residual image,
the operator of adjoint of differential migration picks up an image residual defined
in (z,h) domain and smoothly distributes it along the corresponding ray paths. The
analysis laid in this section suggests that the smooth property of the gradient is deter-
mined by the ray coverage. In regions where there is sparse ray coverage, the gradient

may show non-smoothness behavior.

Velocity updates using search directions constructed by non-smooth gradient are
therefore non-smooth. It thus violates the assumption we have on the smoothness of

the velocity function and yields unstable inversion results.
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4.2.3 Problem

How to use a non-smooth gradient to produce smooth velocity updates is another
key component in this thesis work. Certain smoothing scheme is necessary. Choices
of which smoothing schemes to use is motivated by the following two considerations:
First, to represent a smooth velocity function, the basis functions on cartesian grids
are redundant. The velocity function should be parameterized by fewer number of
parameters than the number of grid points on which the velocity is used for imag-
ing. Second, variations of velocities are local in space. Therefore we look for smooth
basis functions that have compact support in space to decompose the velocity func-
tion. B-spline basis functions of order greater than one are smooth and compactly
supported. Velocity functions decomposed by proper B-spline basis functions are
necessarily smooth, and therefore provides a good smoothing scheme. Write the de-

composition of velocity c as

c= Bm (4.93)

where ¢ is understood as the velocity in its image space representation with image
space basis function defined as cartesian grid basis function, B is the matrix of B-
spline basis functions represented in image space basis functions, and m is the vector

of B-spline coefficients. The gradient of the image space velocity with respect to
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B-spline parameters is derived
dc
—— =BT 4.94
. (4.94)

and the relation between gradient of objective function with respect to image space

velocity and gradient with respect to B-spline parameters is seen from

aJ dc 0J  _,0J
om ~ omac D ac (4.95)
that they satisfy
Vi =B'V.J (4.96)

Where B7 is the adjoint of the B-spline projection. It is guaranteed from the prop-

erties of B-spline basis functions that

BV,.J = BB'V,J (4.97)

is smooth, implying that the velocity update is smooth. Equation (4.96) suggests

that instead of optimizing image space velocity subject to smoothing constraint

min J(c) (4.98)

ceC?

we can optimize its B-spline coefficients

min J(Bm) (4.99)

m
using third B-spline basis functions of degree 3. A complete optimization routine on

B-spline parameters is shown as follows
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input: m, B-spline model parameter vector

J = 5lIPuI|?

Ve = (4

)*PrP,I

o5

Vid = B*V.J,

construct BFGS update édm

line search m < m + adm

output: optimized velocity, optimized image

Figure 4.2 Inversion procedure. Forward project B-spline model parameters to obtain
current velocity in image space through ¢ = Bm, then evaluate objective function, calculate
gradient with respect velocity in image space, project this gradient to model space through
the adjoint of B-spline projection to obtain the gradient with respect to B-spline model
parameters. Search direction is constructed by L-BFGS method in model space. current



Chapter 5
Data examples

Chapter synopsis

In this chapter four synthetic and real data examples are studied. Properties of im-
age gathers in offset and the application problems associated with the differential
semblance velocity analysis are analyzed. Questions of what should the gather look
like at correct velocity and what is necessary in data preprocessing in order to obtain
clean image gathers are addressed in example I. Example II studies the robustness of
the method presented in this thesis in response to various degree of nonlinear effect
due to low velocity perturbations. A sequence of low velocity lens with increasing re-
fracting strength are tested for velocity inversions. The differential semblance velocity
analysis is applied to real seismic data collected at Hill Air Force Base in example
ITI. Reasonable results are obtained. Example IV is the application of differential
semblance velocity analysis to Marmousi dataset. Shallow velocity structures can be
shown well reconstructed by differential semblance optimization. Problems of inver-

sions f complex velocity structure are analyzed in the discussion section (5.5).
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5.1 Offset image gathers due to flat reflectors and constant
velocity

5.1.1 Synthetic data generation

We generate 2-D synthetic data using constant background velocity ¢(z, z) = 2km /sec*
with six horizontal reflectors marked by a 5% velocity perturbation as shown in Fig-
ure (5.1(a)). Signal responses to the Ricker wavelet with peak frequency at 18 Hz are
simulated through finite difference time domain simulation [8] at about 10 grid points.
Sources and receivers in a fixed receiver array are evenly distributed on the surface
from z = 0.1 km to x = 3.9 km incremented using the same interval Az = 0.02
km. Absorbing boundary condition described in appendix (A) is applied to remove
free surface multiples and reflections from the computational boundaries. Two source
gathers collected in the middle of the surface with direct arrival removed are shown

are in Figure (5.1(b)).

*Examples used in this chapter are 2 dimensional. We will use z to denote for vertical coordi-
nate and z for horizontal coordinate through out this chapter.
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x (km)
0 1 2 3 4
0 1 1 1
|
0.21 — | B2.10
e |
o4l 2.05
N |
|

(a) Flat reflectors at constant velocity. Sources and receivers are evenly distributed

on the surface

surface offset (km)
-1 (o] 1

(b) Source gather at x= 2.0 km

Figure 5.1 (a). Configuration of synthetic data generation using constant velocity and
flat reflectors. (b). Reflection data for zs = 2.0 km
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5.1.2 Preprocessing

One-way wave equation usually can not handle waves that propagate in high an-
gles with respect to the vertical direction. The complex wavenumber induced by the
one-way wave equation at high angles produces evanescent waves with exponentially
decaying or exploding amplitudes. The main purpose of preprocessing is to remove
horizontally propagated waves observed on the surface in order to avoids evanescent
energies in wavefield extrapolation. Ideally speaking, evanescent filtering should be
applied to each depth extrapolated wavefields. However, a evanescent filter applied
on the surface data once has shown to be adequate to remove evanescent energies for

practical purposes.

We apply the time domain Fast Fourier transform to seismograms trace by trace.

d(zy, x5, w) = /d(xr,xs,w)e_i“’tdt (5.1)
Let ¢ be a smooth cut-off function in wave number domain, the evanescent filtering

scheme is represented as a low pass filter

D(z,, g, w) = Z, ' 0.F,,(d) (5.2)
where

Fo (d(xr, 25, w)) =/d(ajr,xs,w)6_ik'x’d$r
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and

0 k| > “sind

p(k) =19 1 k| < p2sin®

cosine tapered elsewhere
\

f is the angle between direction of wave propagation and the vertical direction. § =
90° corresponds to horizontally propagated waves. The upper threshold sin(f)w/c is
the projection of the total wavenumber onto to the surface plane, where cis used as the
surface velocity and 6 is chose to be 75°. Energies associated with propagating waves
at angle higher than 75° are annihilated for all frequency on the surface. To minimize
frequency aliasing a smooth cosine taper is applied in the range psin(f)w/c < k <
sin(f)w/c with 0 < p < 1. The value of p hardly has any influence to the kinematics of
the image as shown in Figure (5.2). However, it influences the quality of offset image
gathers significantly according to Figure (5.3), where preprocessed data corresponds
to p = 0.9 is migrated at the correct velocity showing non-negligible noise at nonzero
offset. It is important to remove such noises because noise in the image residuals will

be projected onto the gradient which leads to erroneous velocity updating.
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z (km)

(b) p=10.5
Figure 5.2 Effects of data preprocessing on images. (a). Images at the correct ve-
locity correspond to preprocessed data using p = 0.9. (b). Images at the correct velocity
correspond to preprocessed data using p = 0.5.
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z (km)

z (km)

(b) p=0.5

Figure 5.3 Effects of data preprocessing on offset gathers. (a). Offset gathers at the
correct velocity correspond to preprocessed data using p = 0.9. (b). Offset gathers at the
correct velocity correspond to preprocessed data using p = 0.5.
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The noise at nonzero offset can be explained due to spatial high frequency aliasing
induced by the evanescent filter. Such noise can be reduced by lowering the p value in
the preprocessing. Figure (5.3) shows offset gathers migrated at the correct velocity
using a preprocessed data corresponds to p = 0.5. It shows that the gathers become

much clean on nonzero offsets.

When the preprocessed data projected back to space-time domain, it clearly shows
that the scheme of p = 0.9 introduces significant spatial high frequency aliasing as
compared to the case of p = 0.5. See Figure (5.4). Large amount of horizontally

propagated waves are also muted by evanescent filter in Figure (5.4(b)).
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fime (sec)

(b) p=0.5

Figure 5.4 Preprocessed data using p = 0.9 and p = 0.5 projected back into the (z,t)
domain. Two source gathers are drawn for sources located in the middle of the model
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5.1.3 Effects of acquisition geometry

Offset image gathers migrated through correct velocity are not perfectly concentrated
at zero offset even with the noise (as discussed in last section) removed. An offset
gather I,(z,x,h)|y—okm *migrated at correct velocity shown in Figure(5.5) demon-

strates that the gather has a “X” pattern at around the zero offset.

X (k)
2,00

z (km)

Figure 5.5 An “x” pattern in offset gathers obtained at correct velocity

*Examples used in this chapter are 2 dimensional. We will use z to denote for vertical coordi-
nate and z for horizontal coordinate through out this chapter.
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This phenomenon can be explained by the relationship between offset domain images
and the angle domain images as described in Chapter 3. The image gather shown in

Figure(5.5) is understood as an integral over z; as
In(z,z,h) = /u(z,x,xs,h)d:ﬁs (5.3)

where u(z,x,xs, h) is the product of downward continued source wavefield complex
conjugated and the downward continued receiver wavefield integrated over w.*

u(z,x, s, h,w) = /g(z, T+ h,z5,w)R(z, 2 — h, s, w)dw (5.4)

By a similar argument using plane wave decomposition as described in section(3.3.2),

a slant stack of u(z,xs, h) can be derived in 2-dimensions

Uy = /u(z+qh,x,xs,h)dh

_ / S (ky, z5)e o R(ky, 7,) ek, d, (5.5)
L(ks;kraQ):O
with
k'l'$ + ksx
Lks kpyq) = 75022 — g =
( q) krz - ksz 1 0

The meaning of equation (5.5) is understood as the integration of plane waves of S

and R along the curve in wavenumber domain at ’IZ:% = ¢q. The stationary phase

8z

analysis indicates that this integral contributes one pair of rays that connect source,

reflector and receiver by the Snell’s law. For a fixed source it follows that u, is not

*The notation used in this chapter denotes z as the vertical coordinate and z as the horizontal
coordinate.
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rapidly decaying only when ¢ = — tan(f) for @ is scattering angle as illustrated in
Figure (3.2). We demonstrate this phenomena by carrying a sequence of image offset
gathers where each offset gather is constructed using one source only. Figure (5.6)
shows the sequence of offset gathers in the middle of the model each of which is ob-
tained by migration of a single source gather. The slant trace in each offset gather

provides direct evidence of the above analysis about properties of u(z, z, z;).

Offset gathers at the left most and right most panels present linear traces with highest
dipping angles, which can be easily understood from the relation ¢ = — tan(#). The
offset gather Ij,(z,z, h) is expressed as an oscillatory integral of u(z,z, x4, h) over x;.
In view of Figure (5.6) the stacking of all offset gathers of single source will cancel
each other due to the oscillatory nature of the integrand except at the boundary of
high dipping angles outside of which there is no images. The “cut-off” in offset gath-

ers of single source at high dipping angles is due to the limited acquisition geometry.
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(e) zs = 2.0 km (f) zs =2.1 km
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(g) zs =2.2km (h) z, = 2.3 km (i) zs =24 km

Figure 5.6 Offset gathers due to migration of single source gathers at correct velocity.
The reflectors in offset gather become a straight line. The phenomenon is closely related to
relationship between offset domain image and angle domain image.
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5.2 Optimization of low velocity lens model

5.2.1 Introduction

Strongly refracting velocity model produces kinematic image artifacts due to multi-
pathing Stolk € Symes, 2002[23]. Wave equation migration is free of multipathing
induced kinematic artifacts and therefore provide ideal platform for velocity analysis.
In this section we study a series of simple examples where the medium contains a
sequence of horizontal reflectors and a low velocity lens that leads to multipathing.
Offset image gathers are constructed on which offset domain differential semblance
criterion is shown to be valid even for very strong refracting lens model. Faithful
velocity reconstruction is obtained by the wave equation migration based velocity
analysis discussed in this thesis. All data used in this section are pre-processed using

evenascent filtering scheme correspond to p = 0.5.

5.2.2 Synthetic data generation and migration

Four 2-D synthetic data are generated using velocity model given by
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(21-0.3)2+(z9-2)?

c(x1,22) =2 — e 03 (5.6)
for a = 0.4,0.6,0.8, 1.0 where « is an amplitude coefficient that controls the refracting

strength. Data are collected using the same acquisition geometry as example 1. Direct
arrivals can be easily muted. As the refracting coefficient « increases from 0.4 to 1.0
the data shows increased complexity due to refracting ray paths. For a = 0.4 and
a = 0.6 the data demonstrate triplication arrivals but still identifiable as reflections
due to horizontal reflectors. At o = 1.0 the refracting ray paths distort the data
significantly so that it is hard to be identified as reflection of flat reflectors as shown

in Figure (5.10).

The effect of velocity to the imaging results is significant when the velocity is far
away from the true one. The image obtained at constant velocity ¢ = 2km/sec show
large errors, particularly for o = 1.0. Images are shifted to deeper depths in the
center of the model due to the low velocity lens at which the data is generated. Far
away from the center of the model the migration velocity agrees well with the true

velocity and therefore produces flat images. See Figure (5.12).

Strong signals at nonzero offset can be found in the center of the offset image gathers
when migrated using the constant velocity. At locations where the image is distorted

the offset image gathers show large amplitude at nonzero offset. Conversely, the off-
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set image gathers are concentrated at zero offset when the flatness of the image is

preserved as shown in Figure (5.13).

2.0

1.0

Figure 5.7 Velocity model of 0.8km by 4km with a low velocity lens imbedded in the
middle. Sources and receivers are evenly distributed on the surface at the same spatial
interval. Six horizontal reflectors are located at equal distance from z; = 0.12 to z; = 0.78.
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Figure 5.8 Source gathers obtained by acoustic simulation using velocity model eq(5.6)
with refracting strength a = 0.4.
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Figure 5.9 Source gathers obtained by acoustic simulation using velocity model eq(5.6)
with refracting strength « = 0.6. Multipathing arrivals start to establish.
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Figure 5.10 Source gathers obtained by acoustic simulation using velocity model eq(5.6)
with refracting strength « = 0.8. Multipathing arrivals are evident.
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Figure 5.11  Synthetic source gathers obtained by acoustic simulation using velocity
model eq(5.6) with refracting strength o = 1.0 which generates strong multipathing arrivals.
Maximum velocity perturbation is 50%.
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Figure 5.12 Initial images obtained at constant velocity of 2 km/sec. Large imaging
errors are evident, in particular for o = 1.
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Figure 5.13 Initial image offsets obtained at constant velocity of 2 km/sec. Nonzero
offset amplitudes are significant near the lens region.
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5.2.2.1 Velocity inversion

Velocity analysis by differential semblance optimization tries to minimize the am-
plitude of nonzero offset images. Signals on nonzero offset are first amplified by
multiplication of offset parameter A and then projected back to the velocity model by
the adjoint differential migration. This delineates the procedure for computation of
the gradient with respect velocity in the image space. A B-spline smoothing scheme
introduced in section (4.2.3) can be applied in two steps. First project the image
space gradient to the B-spline model space gradient by the adjoint B-spline projec-
tion V,,J = B*V,J. Second, interpolate the updated B-spline model parameters
to obtain the image space velocities through forward B-spline projection ¢ = Bm.
The model updating by limited memory BFGS (L-BFGS) algorithm is carried on the
B-spline model space. The same algorithm can be carried equivalently in the image
space using a self-adjoint low pass filter BB* to smooth the image space gradient
V.J. The disadvantage of working with image space is that the it has to provide
large memories required by the L-BFGS algorithm to store many vectors at a size
of the image space gradient whereas working with the B-spline model space requires

virtually very little storage.

The differential semblance optimization does not need the linearization of the objec-
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tive function which is essentially a Gauss-Newton’s method used in many geophysical
inversions [?],[8], instead the objective function can be directly optimized by efficient
quadratic matching at each iteration using the L-BFGS algorithm. The computa-
tional cost is greatly reduced because the number of line searches are reduced due
to fast convergence of L-BFGS algorithm. Usually 2 to 3 iterations (each needs one
line search) yield sufficient objective function degrease as shown in Figure (5.14).
The stopping criterion is provided depending on the desired accuracy with which the

solution is to be found. The iteration terminates when

lgl| < emax(1, [|m]]) (5.7)

where || - || is the Euclidean norm, ||g|| is the length of the gradient and ||m|| is the

length of the model parameters.

Output offset image gathers are shown to be well focused at zero offset in Figure
(5.15) indicating the convergence has been reached. Comparing with the offset image
gathers obtained at true velocity, we see the geometric difference is small as shown
in Figure (5.18). Output images are also reconstructed to be flat (Figure (5.16) at
the corresponding output velocities which are shown in good agreement to the true

velocity. See Figure (5.19) and Figure (5.20).
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Decay of objective function value and gradient magnitude. Values of ob-
jective function and magnitude of gradient at correct velocity are shown by the dashed lines.
Red and blue correspond to objective function and magnitude of gradient, respectively.
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Figure 5.15 Offset image gathers at the fifth iteration. Inverted offset gathers are
concentrated at the zero offset.
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Figure 5.16 Images obtained at the fifth iteration. Reconstructed images are reasonably
flattened.
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Figure 5.17 Images migrated using the correct velocities. The comparison with Figure
(5.16) shows little differences.
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Figure 5.18 Offset image gathers migrated using the correct velocities. The comparison
with Figure (5.15) show little geometrical differences.
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Figure 5.19 Inverted velocities at the fifth iteration for various lens models. The
amplitude and the shape of the lens are well reconstructed.
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Figure 5.20 The differences between inverted velocities and the correct velocities. The
differences are in general with 5% of the background velocity.
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5.3 Optimization of HAFB high resolution data

5.3.1 Introduction

In July and August 2000 a field crew lead by Rice personnel conducted 3-D reflection
experiments including two vertical seismic profiles, and six check shot surveys at Hill
Air Force Base Operable Unit 2 (OU-2). The surveys were designed for environmen-
tal characterization of a shallow (j 20 m) trichloro-ethene contaminated aquifer. The
trichloro-eheme is a dense nonaqueous phase liquid (DNAPL). There are 5-20 meters
of Quaternary sands, gravels and clays cover the Quaternary clay which is incised by
ponds of DNAPL. The principal goal of the experiments is to characterize the base
of the paleochannel through seismic exploration methods with resolution of about 40

centimeters to aid further anti-remediation efforts.

The 3-D reflection seismic experiments made use of Texan portable seismographs
with sources generated by 223 caliber single shot rifles fired in 6 cm drillholes. Ac-
quisition geometry for the experiment is shown if Figure (5.21. For the VSP survey,
surface shots fired every 0.7m to offsets of 21m were recorded by both receivers in

two boreholes spaced at 0.5m increments and receivers on surface distanced at 0.35
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increments. See Figure (5.21).

Differential semblance analysis is applied to the surface VSP data. The 2-D opti-
mized images show improvement in correlation with velocity patterns. The velocity
inversion of differential semblance optimization shows good agreement with results

obtained by surface-borehole diffraction tomography.

5.3.2 Results from previous studies

The 223 rifle produces a broad bandwidth (50-350Hz) signal of large amplitude. How-
ever, the VSP data contends no significant energy for frequencies greater than 200Hz.
Previous studies have shown the velocity increases rapidly from 200m/sec on the sur-
face to 1000m/sec 15m deep in the model. The average velocity from surface to 15m
in depth is estimated at 500m/sec. For VSP imaging targets at scales of 5m in a
model with average velocity 500m/sec, the survey is considered as a low resolution
survey. Previous imaging studies can not provide identification of continuous reflec-
tors in shallow regions. Images from a 3-D Kirchhoff migration interpolated in the
cross-section of the 2-D VSP model hardly identify any consistent pattern with the

background velocity. See Figure (5.22(b)).
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A 2-D waveform tomographic velocity inversion is conducted using the VSP data
Gao, 2003 [6]. Both surface data and borehole data are fitted. The surface-borehole
geometry provides reasonably good ray coverage which is in particular favorable to

tomographic type of velocity analysis. See Figure (5.22(a)).
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Figure 5.21 The 3-D reflection seismic experiments made use of 624 Texan portable
seismographs, and 2 Geometrix multi-channel seismographs. For sources we used 223 caliber
single shot rifles, fired in 6 cm drillholes. The Texan seismographs were deployed in 6 parallel
lines with cross-line separations of 2.1m and with inline geophone spacing of 35 cm. Shots
were fired in a rotated staggered brick pattern, with 120 shots/line. Forty-six seismic lines

were occupied, producing a survey area of 94.5 by 36.05 m. The yellow line in the channel
marks the VSP cross-section.
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(b) Image (black) plotted on top of the velocity model optimized through diffrac-
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Figure 5.22 Results of previous studies. (a). Ray coverage of surface-borehole geome-
try. (b). Images of 3-D Kirchhoff migration interpolated in the VSP model are plotted on
top of the velocity model obtained by surface-borehole diffraction tomography. The images
are plotted in black.
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5.3.3 Results by differential semblance velocity analysis

The VSP data received on surface is dominated by surfaces waves. Part of the sur-
face waves are removable by a standard trace-mixing technique (Figure (5.23). Large
amount of surface waves are further removed by evanescent filtering. The differential

semblance velocity analysis uses only surface VSP data.

The starting velocity model is derived from the output velocity of diffraction tomog-
raphy filtered by the B-spline low pass filter BB*. The Initial and optimized image
at iteration 4 shown in Figure (5.24) suggest the deeper structures are identified more
clearly in the optimized image. Simultaneously, the optimized velocity model agrees
in pattern with the optimized image and exhibits more velocity variation than the
initial velocity model (Figure (5.25)). The optimized offset gathers are better focused
than the initial offset gathers indicating the differential semblance objective function
is being minimized. The objective function value is reduced by half at the fourth
iteration to 5.18 x 10° compared to the initial objective function value 1.18 x 10'0.
The offset gathers can not be further focused within h &~ 2m, the threshold estimated

as the wave-length of the propagating waves. See Figure (5.26).
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Figure 5.24 Comparison of initial and final images. Deeper structures are better char-
acterized in the final image.
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Figure 5.25 Comparison of initial and final velocity models. The final velocity model is
obtained using surface data only. It agrees well with the inverted velocity through diffraction
tomography which uses both the surface and the surface-borehole data.
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Figure 5.26  Offset gathers migrated at initial and final (4" iteration) velocity models.
The offset range for each panel is (Amin, hmaz) = (—4m, 4m). Better focused offset gathers
are obtained at the optimized velocity model.
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5.4 Marmousi data set

The original Marmousi dataset consists of 240 source gathers each of which is recorded
by 96 geophones incremented at 25m at a trailing geometry. The data we use are
the original Marmousi traces deconvolved with source signature and continue to zero
surface offset. The continuation of to the zero surface offset creates a horizontal im-
age artifact located at 120m in depth (Figure (5.27(b)). The amplitude spectrum of
the data is peaked at about 27Hz. The migration and the velocity inversion take up
to 25Hz of the frequency spectrum. The computational grid spacing of 10m which
provides a wavefield sampling of approximately 10 grid points per wavelength for an

average velocity estimated at 3km/sec.

The image obtained using the true velocity model is presented in Figure (5.27(b))
showing the robustness of the migration algorithm in the presence of complex ve-
locity structure. The differential semblance criterion in offset is still valid for this
complex velocity structure. Figure (5.28(c)) shows the objective function evaluated
at various velocity model through a line search fashion V' + aV’, where V is the true
velocity for shallow 0.6km and V' a perturbation velocity corresponds to maximum
50% perturbation with respect to V. The objective function plotted against o draws

a smooth curve centered at the true velocity in a wide range.



147

The main feature of the Marmousi velocity structure appears in the salt dome in
the middle of the model covered by high angle dipping faults. The long fault planes
intersected with the planes of sediments induce complicated ray path coverage and
make the velocity inversion particularly difficult. The velocity analysis by differential
semblance optimization has given satisfactory results for shallow Marmousi from the
surface to 0.6km in depth. We have used 6 x 6 B-spline grid to represent velocities.
The smoothed gradient at the initial constant (1.8km/sec) velocity model appears in
Figure (??7) with the B-spline smoothing implicitly used BB*V.J. While it lacks the
shorter-scale lateral features of the B-spline projection of the true velocity (Figure

(5.29(c))), it is certainly a constructive update direction.

The L-BFGS method requires one or sometimes two migrations for each BFGS itera-
tion. The L-BFGS method reduced the objective function values by roughly a factor
of two, the length of the gradient by an order of magnitude in five iterations. The fifth
velocity iterate appears as Figure (5.29(b)). Most of the shorter-scale lateral features
in the velocity have now reconstructed. Comparison of image gathers at initial vs.

iteration five velocities shows considerable improvement in focussing (Figure (5.30).
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(a) The Marmousi velocity structure.

x (km)

(b) Image obtained using the true velocity structure.

Figure 5.27 (a). The Marmousi velocity structure. (b). Image obtained at the correct
velocity appeared in (a).
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Figure 5.28 The differential semblance objective function varies in a wide and smooth
curve with the minimum centered at the true velocity.
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Figure 5.29 (a). B-spline model space gradient projected back to image space BV, J =
BB*V.J. (b). Velocity at the fifth iterate. (c). The best fit projected B-spline velocity
V» = Bmy, where my solves B = V in a least-squares sense for the true Marmousi velocity
V defined on 921 x 60 image space grid and m defined on 6 x 6 B-spline grid.
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Figure 5.30 (a). Iterates of magnitude of gradient and objective function values. The
magnitude of gradient at the true velocity coincide with the objective function value rep-
resented in the red dashed line. (b). Scattered image offset gathers at the initial constant
velocity. (c). Initial image at constant velocity. (d). Image offset gathers at the fifth
iteration shows improvements in focusing. (e) Image at the fifth iteration.
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5.5 Discussion: problems associated with the model rough-
ness

The analysis in section (4.2.2) indicates that the image space gradient, in high fre-
quency asymptotic, recovers the ray path compatible with the velocity used in mi-
gration. Traces of ray paths can be appear in Figure (5.31) especially in the region
Tkm < x < 9km, where horizontal reflectors creates ray path of vertical reflection.
The fault plane in the middle of the model complicate the ray geometry. Applying
operator BB* to the image space gradient we obtain the smoothed gradient Figure

(5.29(a)), which points to the correct direction to update the velocity.

The smoothing of the image space gradient is one of the crucial steps for velocity
inversion. The velocity inversion requires certain degrees of smoothness (which is
controlled by the B-spline projection). Increasing the number of B-spline grid points
tends to increase the degree of roughness and reduce the degree of the smoothness.
The minimum of the differential semblance objective function is found at the exact
velocity model, which is a rough model. Figure (5.32) demonstrates that the objective
function value degreases at representations of the true velocity model with increased
roughness. Using the same set of velocities, the offset image gathers are more focused

at zero offset at velocities of higher degree of roughness (Figure (5.33)). The offset
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gathers may not well concentrated at zero offset even at the correct velocity with too
much smoothness. The conflicting requirement of roughness in order to bring offset
gathers into focus and the requirement of smoothness for stable velocity inversions is

the main difficulty for further studies of the subject.
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(b) B-spline smoothed gradient at constant (1.8km/sec) veloc-
ity. Repeated Figure (5.29(a)).

Figure 5.31 Image space gradient at constant (1.8km/sec) velocity. (a) The original
gradient without smoothing. (b). B-spline smoothed gradient. Figure (5.29(a)) repeated.
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Figure 5.32  Objective function evaluated at representations of the true velocity from
surface to 1.4km in depth with increased roughness. Number of grid points in horizontal
direction of the B-spline model increases from 30 to 80 increments by 10.
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Figure 5.33  Offset gathers become more focused at velocities of higher degree of rough-
ness.
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Figure 5.34 Increased image quality at velocities of higher degree of roughness.



Chapter 6
Conclusions

Shot-record wave equation migration is free of kinematic imaging artifacts and pro-
vides an ideal platform for migration velocity analysis. A version of wave equation
migration is presented in this theists, which directly perseus the quality of the image
through criterion of differential semblance optimization. Main contributions of this
thesis appears in three aspects: First, gradient of the differential semblance objective
function with respect to velocity is formulated through extensive use of adjoint state
analysis. The construction of the gradient calculation can be easily extended to other
migration methods. Computation of the gradient in two dimensions is implemented
and can be accordingly extended to 3 dimensions; Second, a physical meaning of
the gradient is analyzed using the Green’s function representation.; Third, B-spline
forward interpolation and adjoint projection is found to be suitable to smooth the
image space gradient. The use of B-spline smoothing scheme is crucial for obtaining

constructive search directions for velocity updating.

Success of the algorithm developed in this thesis has been shown in both synthetic

and real data examples. The discussion held in last chapter indicates the difficulty
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for further studies in the direction of wave equation migration velocity analysis.



Appendix A
PML absorbing boundary condition and its
attenuation analysis

The absorbing boundary condition is often useful for synthetic seismic data sim-
ulation. This section gives an algorithm of the perfectly matched layer absorbing

boundary condition for time domain acoustic wave propagation.

The scalar wave equation introduced in section (2.1) can be written as a system

of first order partial differential equations.

0
PaV = -Vp (A1)
0
%P = —kV -v (A.2)

where v is the particle velocity field, p is the pressure, and & is the incompressibility

coefficient. Equation (A.1) is the Newton’s law for a kinematic energy conservative
system free of external forces. Equation (A.2) is the elastic lithostatic constitutive
relation between pressure change and volume change. Introduce energy diffusive

system by adding diffusive terms to eq(A.1) and eq(A.2). We have

0

v = —Vp-— A
P Vp —nu (A.3)

0

—p = —KV-v—=X\p (A.4)
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where 7 is the linear viscous coefficient. The additional term, —nuv, in eq(A.3) is

responsible for the exponential energy decay. The constitutive relation, eq(A.2) (in-
compressibility condition) should be changed accordingly to match eq(A.3) through
a thermodynamic argument. We continue to solve systems (A.3)+(A.4), assuming x,

A, and 7 is slow varying in time and p is slow varying in space, we derive

0? Vp n op
——p = (=2 C(Zv) = A= A.
2P kV (p ) + &V (pv) A5 (A.5)
L UL R AW A
p p ot p

Observing equation (A.5) we have: when 1 and A are relatively small, it is energy

conservative; when 7 is relatively large, it describes an energy diffusive system. The
only problem of eq(A.5) is that the particle velocity is unknown. From eq(A.3) an

analytical solution of v is obtained assuming p is known and v|—q = 0:

t
o(@t) = — / e—%<t—s>%(f, 5)ds (A.6)
to

Numerically the time domain scalar wave field with PML absorbing boundary condi-

tion can be implemented as:

v, =0
fort =0:dt: t,.
_ t1 Vp
Ua—%ﬂ eppdt (A7)
v=e "ru,
update p through equation(A.5)
end(t)
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Q analysis:

The attenuation analysis follows the argument by Cohen, 1999 [2]. The analysis is
carried through a use of imaginary coordinates on which the energy of wavefield is at-
tenuated most significantly parallel to the direction of propagation of wavefront. The
main conclusion is that alone the direction of wave propagation, the wave attenuates

according to
1 WA

o) =n_ (A.8)

where as usual w, A, ¢ denotes angular frequency, wavelength and velocity, respec-
tively. At non-dispersive medium it is attenuated independent of freuency w, 1/Q(w) =

2.

The Fourier transform of equations (A.3) and (A.4) shows,

iwn+p)T = —Vp (A.9)

iwA+1)p = —kV-T (A.10)

We further derive
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5 K Vp
= V- A1l
b w(A+1)  dw(n+p) ( )

To ease the analysis, let’s assume p = 1 and n = A. Equation (A.11) can be written

as
9 n w wVp
WP + K- i A.12
P iwn+1)  dwm+1) (A-12)
It reduces to
w?p+ kV2p = 0 (A.13)
by change of variables
:xl-l—l/ n(s)ds (A.14)
w Jo
Ty =x2+i/ n(s)ds (A.15)
w Jo
A plane wave solution can be formulated
p o= eilka—iot (A.16)
_ e k1lp! n(s)de ey Jo 2 n(s)ds il iwt) (A17)
SO
k1 Jg L n(s)ds+ky Jg % n(s)ds
pl=e 5 (A.18)

and increment of amplitude in the direction of propagation is

Alp| = —nlp|(k1Az; + kyAxy) (A.19)
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k k
= —n\p\(klfo + kngm)

= —nklplAz
where k = |k| and Az = |Az|. Use the definition of Q

1 Alpl

o) ol (A.20)

where A|p| is the amplitude increase in each cycle. We finally arrive at the expression

of Q in the direction of wave propagation:

) =7 (A.21)

— =2 (A.22)



Appendix B
Construction of asymptotic solutions

For hyperbolic equations, we can construct a function p(t, z;w) with the purpose that

(% —V.)p = O(w™Y) for certain positive integer N. This function proves to be very
useful in the study of the phenomena governed by the equation (g—; —V,)p=0. For

large w, p(t, x; w) corresponds to waves with high frequency. Using this high frequency
asymptotic solution, we can study the propagation of the waves and its reflection and
refraction. Recall the wave equation is of the following form

62

(@ — V.)p(t,z) =0 (B.1)

We want to find a function p(t, z;w), with parameter w € R, such that

62

5~ Velp(t,ziw) = O(w™) (B.2)

(

for some integer N as w — co. This means when w is sufficiently large, since w™

is exceedingly small we have a reasonable justification to regard (% — V.)p(t, z;w)

as 0. We call the p satisfies eq(B.2) an asymptotic solution. So we first consider the

following form

p(t, 7;w) = e a(t, ;W) (B.3)
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with
m+N ( .

a(t, r;w) = Z a;(z) () (B.4)

J

for some integer m > 0. Derive second order derivatives with respect to ¢ and x

d*p iwdrs . 9, 0P ., 0P0a  0°® d%a
2 — € Q[(W)Z(E)Za‘i‘“ﬂ@a 5 T oz © a) ﬁ] (B.5)
0%p b p, 0P, 0D Oa  0?P ?a
P o 02 00 L T2+ 0 B.6
0z’ e (iw) (8xj) a+iu( Ox;j 0z * ox3 @)+ 83:?] (B.6)
Substituting them into the wave equation, we obtain
0? iwd 1,00 oo .,
(57 = Vopltaiw) = e { (i) (5)" =3 G, (B.7)
1 _0®0a 0P 8a 82<I>
+ w[_QEE B Z 0z; 836] 02 B2 ° ;
[ 1 &% @]}
c? Ot? - 0z’
Now introduce the notation for operator
0d 0 1 0%® %P
A= —_— = — B.
Z oz, 83:] 02 ot? ; 0z’ (B.8)
0P o0& 0 00
o= (L& 2 27 T (a,, @, B.
v (at’axl’a@’axg) (s, @) (B.9)
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and

2
H(t,x,w,f): %_ZSJQ (BlO)
J

Although H has no dependencies on t, we still put ¢ in just in order to keep the
conjugacy between (¢,z) and (w,£). We will use simplified notation H(z, V®) for
H(ta z, (I)ta (I)w)

_% N
H(z,V®) = o2 (B.11)

We substitute eq(B.4) into eq(B.7) and then rearrange the expression in terms of

powers of 7w in descending order

62

(o = Valpltriw) = (iw)™H (2, V®)ag + (B.12)
+(iw)™ M (H (z, V®)a; + Aag)

2

+(w)™(H (z, V®)ag + Aay + (8_ — Va)ap)

ot?
82
+(w)™ N (H (x, V®)as + Aay + (@ —V)a1)
82
+(iw)7N+2(H($’ V(I))a'm—f-N + Aam—f—Nfl + (ﬁ - Vm)am+N—2)
62
+(iw)_N+1(Aam+N + (— - vz)a'm—f—N—l)

ot?
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To analyze the above equation, we think the case when H(z, V®) # 0. In order to

m—+2

make (iw) term to vanish we need to have gy = 0. Next, with ¢y = 0, in order

™+l term to vanish we need v; = 0. Continue in this process, we end

to make (iw)
up to a trivial solution. Therefore, for non-trivial solution for wave propagation it is

necessary that the following is satisfied

H(z,V®) =0 (B.13)
In this case, if
Aag =0 (B.14)
then
0? .
ACI,j = —(ﬁ _Vx)ajfl (.7 = 1:27"am+N) (B15)

Equation (B.13) is called the eikonal equation. For ®(t,z) usually takes the form
of t — ¢(x). Substituting into eq(B.13), we see the usual eikonal equation used in

geometric optics

Vas(o)P = (B.16)

Equation (B.14) is called the first transport equation. If we assume «a is independent
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of time ¢ and the choice of ®(¢,z) = t — ¢(z) implies that 25® = 0. This gives

o2

which is the form of the first transport equation given in most references.



Appendix C
Migration by an analysis of stationary phase

Now we take the phase function ®(¢, ) discussed in last section to be of the form

O(t,z) =t — P(x) (C.1)

and assume that the amplitude function a is independent of time ¢, then the Green’s

function solution of Hemholtz equation eq(??) can be approximated as

G(z,w) = afz;w)e @ (C.2)

To reflect the fact that the wave is propagating from source x to observation point 7,

we write the Green’s function as

G(z,y;w) = a(z, y;w)e oY) (C.3)

so the most singular part of the seismogram by the Born approximation observed at

z, due to a point source x, can be written as
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w2

ary230) 2 B9, 250) =2 [ i, 332w, ay50) Sy () oo iooten
C
(C.4)

where 7 = dc/c is the reflectivity coefficient and ¢(x,y) are phase functions implicitly

dependent on velocity ¢, which satisfies the eikonal equation

Vod(@,y)|* = 1/c(z)’ (C.5)

The phase functions ¢(z,y) are continuously differentiable with respect to = or y ex-
cept at points of (z,y) such that ¢(x,y) = 0. Referring to eq(B.4), the term a(z, y;w)
is a sum of slow varying amplitudes, each of which is at homogenous degree of, at
most, m in w. In particular the amplitude ay(z,y) in eq(B.4) satisfies the first trans-

port equation

V- [ad(z,y)Ved(z,y)] = 0 (C.6)

We want to isolate the reflection to the neighboring points of discontinuities. Intro-
duce cut-off function v, (z) € C2° which is identically 1 and compactly supported in
a neighborhood close enough to the point of discontinuity at z'. Supposing r(z) has

an inverse Fourier transform, the data due to the reflection from discontinuities near
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2z can be written
2

o (1, 353 0) = 2 / (a2, 745 w)azy, 750) 5 Y (0)7() < Fei v Heam) =0 D g
(C.7)

The adjoint of the integral operator in eq(C.7), using the same velocity function c,

applied to data can be written

P (y) = / a(y, x5 w)a(z,, y; w)e? Pwe)twde g (v 2o w)dr,dr,dw  (C.8)

Substituting eq(C.7) into eq(C.8), we obtain

o (y) = / Aly, @, Ty, Ty w)(2)7(() e T Hivl-e@z)—dlera)téy.e)+éer vl gy, dr drdwdC
(C.9)

Introduce a cut-off function v (y) € C2°, identically 1 a and compactly supported in

a neighborhood of 3. We study the asymptotic behavior of the form

)e kv (C.10)

A(w, z, x5, Tr, Y)T () Y () 1Dy () X (C.11)

[t
I

el r—ik-y+iw[—@(z,zs)—¢(zr2)+6(y,Ts)+d(zr )] dwd(dzdydzdz,
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In agree to the form of stationary phase analysis, J can be written as

Lo () = [ Bl ¢ 0)e®bsdudcdo (C.12)

where do = dzdydzsdz,. To proceed, we point out (1) that V,¢(z,y) points to the
propagation direction of the wavefront. In order to verify this, we look at the local

plane wave decomposition of a(w, z,y)e™?#(@¥) in the neighborhood of z.

Wa(€) = / alw, 7, y)e" Ve EY(z)do (C.13)

Asymptotically for large |£], it picks up a non-trivial energy when

wVo(z,y) =§ (C.14)

As we know, £ is the wave number of the local plane wave. The above equation
means: the wave represented by a(w, z,y)e’*®¥) propagates most significantly to the
particular direction of V,¢(z,y), which is parallel to the wave number of a plane

wave decomposed at the vicinity of z. And (2)

V$¢($,y)|x:y = _vy¢($ay)|w=y (C.15)
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which can be easily verified. We now turn back to the stationary phase analysis of

the integral eq(C.12). The stationary phase analysis concerns the points such that

Vue,o® = 0. Explicitly, the result of the integral comes from the points such that

they satisfy jointly

—0O=0= (]5($,$5) + ¢($T,$) = (b(yaxs) + ¢($7" y)

0
ow
V,0=0=
V,0=0=
vV, 0=0=
V0 =0=

C + wVIng(x, 335) + wvz¢($ra .T) =0
—k — wvy¢(y, '7;8) - waqb(xT, y) =0
st¢(ma xs) = Vms¢(y, xs)

VwT¢(-'L'r: 113) = VwTQﬁ(JiT, y)

(C.16)
(C.17)
(C.18)
(C.19)

(C.20)

Equation (C.16) requires that the travel time connected from z; to 2’ to x, should

be equal to the travel time connected from z, to 3’ to z,. Moreover, eq(C.19) and

eq(C.20) indicate that both ray paths associated with the two travel times have the

same ray parameter on the surface, that is the ray parameters are the same at each

source point z, and receiver points z,. If we force ' = y', meaning we want to look

at the point in the image from which the reflection data is generated. It is obvious

from eq(C.18) and eq(C.17) that the wavefront set of discontinuity distribution 7 is

reconstructed.
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Figure C.1 The travel time is preserved. Snell’s law applies to both image point and
the reflection point. The ray parameters coincide at the surface.
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