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Reverse Time Migration

Based on acoustic or p-wave model, velocity v(x , z).

Basic concept: reflectors occur at coincidence of downgoing, upcoming
fields (Claerbout, 1971).

Data: {d(xs , zs , xr , , zr , t)}, (xr , zr ) ∈ R(xs , zs)

Downgoing or reference or source or direct field: S(xs , zs , x , z , t), solves
initial value problem (forward in time)[

1

v2

∂2S

∂t2
−∇2S

]
(xs , zs , x , z , t) = w(t)δ(x − xs)δ(z − zs)

S = 0, t << 0
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Reverse Time Migration

Upcoming or adjoint or receiver field: R(xs , zs , x , z , t), solves final value
problem (backward in time)

[
1

v2

∂2R

∂t2
−∇2R

]
(xs , zs , x , z , t)

=
∑

(xr .zr )∈R(xs ,zs)

d(xs , zs , xr , zr , t)δ(x − xr )δ(z − zr )

R = 0, t >> 0
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Reverse Time Migration

Image output by imaging condition, of which there are several, for example:

Crosscorrelation of source, receiver fields

ICC (x , z) =
∑
xs ,zs

∫
dt S(xs , zs , x , z , t)R(xs , zs , x , z , t)

Adjoint State (explanation to come!)

IAD(x , z) = 2v(x , z)
∑
xs ,zs

∫
dt∇2S(xs , zs , x , z , t)R(xs , zs , x , z , t)
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Reverse Time Migration

ICC , IAD are images: events placed correctly in depth, provided that

d is primaries-only;

v is kinematically correct (traveltimes to within 1/4 wavelength);

v nonreflecting, i.e. slowly varying on wavelength scale (fixes
available if not!).

What about image amplitudes, i.e. predicted reflector strengths?
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Synthetic Example: Marmousmooth

Marmousi synthetic model: proposed in 1989 by IFP: “2D Earth” after
actual play, offshore West Africa.

Modeled acquisition geometry similar to original. Same: 240 source points
(xs) spaced 25 m apart, each recorded by 96 receivers also 25 m apart,
min offset 150 m. Source depth = 6 m, receiver depth = 5 m.

Different: sources are point (rather than array), wavelet = zero-phase
5-13-40-55 Hz bandpass filter, absorbing boundary at z = 0.

“Primaries only” requirement realized via linearized (“Born”) simulation:
separate velocity into (i) smooth background v , smoothed by spatial
Gaussian filter with half-power width of 80 m, and (ii) perturbation δv =
difference of original and smoothing with 20 m Gaussian.

Computation: (2,4) centered difference scheme.
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Synthetic Example: Marmousmooth
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Left: Velocity (v) - 80 m smoothing of original. Right: Velocity
perturbation (δv), difference of original Marmousi model and 20 m

smoothing.
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Synthetic Example: Marmousmooth
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Primaries-only (linearized) shot gather at xs = 7500 m (from west edge of
model).
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Synthetic Example: Marmousmooth
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Left: Velocity perturbation (δv), difference of original Marmousi model
and 20 m smoothing. Right: output of RTM, adjoint state version (IAD).
Note that amplitude trend, wavelet shape in migration output differs from

that of “true” velocity perturbation, but structure is same.
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Acoustic Linearized Modeling

Divide velocity into smooth reference v and oscillatory / short-scale
perturbation δv .

Linearized (“Born”, single scattering) modeling operator A defined by

Aδv = {δp(xs , zs , xr , zr , t) : (xr , zr ) ∈ R(xs , zs)}

where p solves the wave equation with Born source:[
1

v2

∂2δp

∂t2
−∇2δp

]
(xs , zs , x , z , t)

= 2
δv(x , z)

v(x , z)
∇2S(xs , zs , x , z , t); δp ≡ 0, t << 0

NB: A depends on v , source wavelet.
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Acoustic Linearized Modeling

Lailly, Tarantola early 80’s:

AT d = IAD

If d approximates single-scattering data: d ' Aδv , then

IAD ' ATAδv

ATA = “normal operator”.
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Approximate inversion by scaling
Inversion: δv ' (ATA)−1IAD = (ATA)−1AT d .

Since relation δv 7→ IAD appears to be local, try diagonal or near-diagonal
approximation. Diagonal in space domain = scaling operator.

Nemeth et al. 99, Shin et al. 01, Plessix & Mulder 04: use diagonal
of ATA to construct approximate inverse;

Chavent & Plessix 98, Valenciano et al 06: invert near-diagonal
blocks ATA;

Claerbout & Nichols 94, Rickett 03: use “test model” to estimate
best scale factor (least squares);

Guitton 04: use “test model” to estimate best integral op with kernel
supported near diagonal (spatially varying short filter).

Common drawbacks: diagonal (pure scaling) approximations not
particularly accurate, near-diagonal approximations sometimes better - but
when?
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Structure Theorem for Normal Operator

(Beylkin, 85; Rakesh, 86, 88; Nolan & S. 97; Smit, tenKroode, & Verdel
98; Stolk 00) For generic smooth v , monochromatic wave packet δv
defined by envelope χ, phase ψ, frequency ω:

ATAχ(x)e iωψ(x) = σ(x, ω∇ψ(x))χ(x)e iωψ(x) + O(|ω|m−β),

where σ(x, k) ≥ 0 is homogeneous of degree m in k, and β > 0.

That is: normal op acts as a multiplier on monochromatic wave packets,
to leading order in frequency.

Typical of pseudodifferential (“ΨDO”) operator: normal op is ΨDO plus
relatively smoothing error. Order is m = d − 1 in space dimension d , σ is
principal symbol - computable by ray tracing (asymptotic inversion).
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Structure Theorem and Scaling

Scaling strategy: use Structure Theorem to construct approximate inverse
without any ray-tracing whatsoever.

Calculus of ΨDO’s: ⇒ (−∇2)−
m
2 ATA is an operator of order 0.

Operators of order zero act as frequency independent multipliers (i.e.
scaling operators) on monochromatic pulses:

(−∇2)−
m
2 ATAχ(x)e iωψ(x) = σ̄(x)χ(x)e iωψ(x) + O(|ω|−β)

where σ̄(x) = ‖∇ψ(x)‖−mσ(x,∇ψ(x)).

Seismic images (migration outputs) tend to be local Fourier sums of
monochromatic pulses with same phase (well-defined dip). So: in most
places, (−∇2)−

m
2 ATA acts as scaling op.
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A Practical Approximate Inverse Method

migrate data, then filter migrated data (IAD) by (−∇2)−
m
2 - gives

(approx.) δv multiplied by σ̄;

apply A to the migrated data, apply AT to remodeled data, then
filter with (−∇2)−

m
2 again - migrated data multiplied by same σ̄.

find σ̄−1 by dividing migrated data by filtered, remigrated data.

then recover δv by multiplying filtered, migrated data by σ̄−1.

[Algorithm proposed by Claerbout-Nichols (1994), Rickett (2003) is same,
except leave out filter (Laplacian power). Similar to Guitton (2004) but
structure of filter is completely specified.]
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A Practical Approximate Inverse Method

Details of implementation:

1. (2,4) FD scheme for linearized modeling and adjoint state (RTM )
computations.

2. Laplace filter (−∇)−
1
2 implemented via 2D FFT.

3. Determine regularized division by σ̄ via nonlinear least squares problem
for τ = − log(σ̄) - simple device to ensure that computed σ̄−1 is positive
definite. Use standard quasi-Newton method (LBFGS).

4. Localize in central region of model via tapered window.
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A Practical Approximate Inverse Method
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Left: Velocity perturbation, difference of original Marmousi model and 40
m smoothing. Right: Approximate inversion via scaling and power of

Laplacian.
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A Practical Approximate Inverse Method
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Shot at xs = 7500m. Left: Born simulation with exact model, truncated
by spatial mute. Right: Born resimulation using scaling-filtering

approximate inversion.
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A Practical Approximate Inverse Method
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Left: Velocity perturbation, difference of original Marmousi model and 40
m smoothing. Right: Approximate inversion from scaling-only algorithm.
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A Practical Approximate Inverse Method

0

0.5

1.0

1.5

2.0

2.5

tim
e 

(s
)

-2.0 -1.5 -1.0 -0.5
offset (km)

0

0.5

1.0

1.5

2.0

2.5

tim
e 

(s
)

-2.0 -1.5 -1.0 -0.5
offset (km)

Left: Born simulation with exact model, truncated by spatial mute. Right:
Born resimulation using scaling-only approximate inversion.

William W. Symes? and Eric Dussaud† (?Rice University, †Total E&P USA)Optimal Scaling of Prestack Migration 25-09-2007 13 / 17



university-logo

A Practical Approximate Inverse Method

Trace power spectra for xs = 7500m, averaged over offset. Black =
Linearized simulation with exact model, Blue = scaling-filtering approx.

inversion, Red = scaling-only approx. inversion. Note missing
linear-in-frequency trend in scaling-only result - equivalent to missing

power of Laplacian!!!
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Conclusions

Can understand scaling behaviour of migration in terms of its relation
to modeling.

Structure theorem for A: normal operator ATA is (essentially,
generically) pseudodifferential, acts as frequency-dependent multiplier
on oscillatory wave packets.

Structure theorem ⇒ product of normal op and power of Laplacian
acts as (frequency-independent) multiplier (i.e. scaling op) whereever
dip is well-defined.

Inversion of multiplier ⇒ approx inverse for ATA ⇒ effective and
inexpensive approximate inversion without ray-tracing when migrated
image consists largely of events with well-defined dip.
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Prospects

Actual migrated images often rife with conflicting dips. Must estimate
full symbol σ, not just evaluation on phase normal σ̄. Natural route:
basis in which ΨDOs of order 0 are nearly diagonal - eg. curvelets
(Moghaddam et al. SPMI 3.2) or Gabor repn (Margrave, Lamoureaux,
Gibson), or spherical harmonics (Bao & WWS SIAM Sci Comp 96).

Const-density acoustic amplitudes both unrealistic and uninformative
- extend to “AVO” inversion for elastic moduli perturbations.

Attenuation - is ΨDO representation still adequate?

Structure Theorem false when background model has discontinuities,
but these are essential in some cases (salt!) to maintain kinematic
fidelity. Must extend to nonlinear scattering somehow...
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Violating the Assumptions

Method hinges in principle on these assumptions:

1. data is primaries-only, i.e. Born data from constant-density acoustics;

2. background model is transparent, i.e. smooth on wavelength scale;

3. source is zero-phase bandpass, i.e. signature decon has been
performed;

4. velocity model is known accurately.

Hard or impossible to satisfy for data acquired in the field!

How robust is method under violations of these assumptions?
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Violating the Assumptions

BP benchmark 2D data (Billette and Brandsberg-Dahl 2004):

1. data results from full-wave variable-density acoustic simulation,
including free surface multiples (but SRME applied); sedimentary
reflection modeling via density fluctuations;

2. background model includes rugose salt bodies and other
non-transparent features;

3. source is not zero-phase bandpass filter, and moreover is unknown (to
us);

4. but - thanks to BP - we know the velocity precisely.

First pass: apply method explained above, ignoring violation of
assumptions 1-3.
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Violating the Assumptions

Window of migrated image, intersalt sediment zone.
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Violating the Assumptions
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Violating the Assumptions
Discussion:

Amplitudes a priori meaningless, because model is wrong - but they
are more reasonable.

Sedimentary fluctuations much more comparable to salt boundary
reflections - the latter come only from “imprint” of migration velocity
model on image, as data is residual (salt reflections due to velocity
contrast removed).

Some other aspects seem more reasonable - “eyelet” feature under
flank has comparable top/bottom amplitudes after filtering/scaling,
etc.

How to do this right: use variable density acoustics! Normal operator
is 2× 2 matrix of ΨDO’s, yields invertible 2× 2 scaling matrix where
dip is well defined. Inversion (cheap!) yields estimates of velocity and
density perturbations. Also vital: estimate, deconvolve source wavelet
(see Minkoff & S., Geophys. 97).

William W. Symes? and Eric Dussaud† (?Rice University, †Total E&P USA)Optimal Scaling of Prestack Migration 25-09-2007 18 / 17


	Migration vs. Inversion
	Acoustic Modeling and Migration
	The Structure Theorem
	From Migration to Approximate Inversion
	Conclusions and Prospects

