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Goals and Tools

Goal: Study Finite Differences (FD) and Discontinuous
Galerkin (DG) for the wave equation in the seismic context:

impact of absorbing boundary conditions,
singular sources,
discontinuous coefficients (problems with interfaces).

Tools for the acoustic wave equation:

DG (2D, C++) (Dr. Warburton).
FD (nD, C, OpenMP, MPI) (I. Terentyev).
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Outline

Part I: Perfectly Matched Layer (PML).

overview,
PML for 1D acoustic wave equation,
Nearly PML for acoustic wave equation.

Part II: Point Source for Discontinuous Galerkin Method.
(joint work with Dr. Warburton)

linear approximation,
trigonometric approximation,
adjoint interpolation.

Part III: Dipole Source for Finite Difference Methods.

straightforward approximation,
smoothed right-hand side,
regularization
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Model problem: The Acoustic Wave Equation

1

κ(x)

∂p(x, t)

∂t
= −∇ · v(x, t),

ρ(x)
∂v(x, t)

∂t
= −∇p(x, t) + f (t, x),

p is pressure,

v is velocity,

f is a source,

κ is bulk modulus,

ρ is density,

t ≥ 0, x ∈ Rn.

Initial Conditions

p(0, x) = p0(x), v(0, x) = v0(x).

Infinite Domain?
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Absorbing Boundary Conditions

Goal: Truncate domain without errors.

Idea: Use artificial boundary with special boundary conditions:

absorbing,
reflectionless,
accurate (reflection should be less than 1% ),
stable,
cheap,
easy to implement.

Popular approach: Perfectly Matched Layer (PML).
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Perfectly Matched Layer (Berenger, 1993)

Idea: Surround the domain by an absorbing medium.

Problem: Reflection coefficient depends on both the angle of
incidence and frequency.

Berenger’s absorbing layer

no reflections for any frequency and any angle of incidence

+

exponential decay with distance into the layer

i.e.: layer is perfectly matched and can itself be truncated.
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Construction of the PML

Add damping terms to physical equations.

Damping terms should vanish in the physical domain.

Use damping terms to kill waves in the absorbing layer.
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PML for 1D Acoustic Problem

Convert the problem to the frequency domain:

−iωp̂(x) + κ
∂v̂(x)

∂x
= 0, 0 < x < A,

−iωv̂(x) +
1

ρ

∂p̂(x)

∂x
= 0, 0 < x < A.

*0 A A x

Choose σ(x) = 0 for 0 < x < A and add dumping terms:

(−iω + σ(x)) p̂(x) + κ
∂v̂(x)

∂x
= 0, 0 < x < A?,

(−iω + σ(x)) v̂(x) +
1

ρ

∂p̂(x)

∂x
= 0, 0 < x < A?.

T. Vdovina, PML & Numerical Approximation of Singular Sources TRIP Meeting 2008 9/35



PML for 1D Acoustic Problem (cont.)

Eliminate v̂ , set γ = 1 + iσ(x)/ω:

ω2

c2
p̂(x) +

1

γ(x)

d

dx

(
1

γ(x)

d

dx
p̂(x)

)
= 0, 0 < x < A?.

Solution to the interface (x = A) problem:

p̂(x) =

{
Ie ik(x−A) + Re−ik(x−A), 0 < x < A,

Te ik?(x−A) + Ce−ik?(x−A), A < x < A?

with k =
ω

c
and k? = kγ = k + ik

σ(x)

ω
.
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PML for 1D Acoustic Problem (cont.)

p̂ =

{
Ie ik(x−A) + Re−ik(x−A), 0 < x < A,

Te ik(x−A)e−
k
ω

σ(x)(x−A) + Ce−ik(x−A)e
k
ω

σ(x)(x−A), A < x < A?.

Exponential decay in the pml layer.

All frequencies decay at the same rate (k = ω/c ⇒ k/ω = c).

Boundary condition at x = A? implies that C = 0.

Continuity of p̂ and v̂ at x = A implies that{
I + R = T ,
I − R = T ,

⇒
{

R = 0,
I = T .

(since − κ
ωσ′(x)(x − A)− κ

ωσ(x) = 0 for x = A)

After discretization the reflection coefficient is not zero,
but is small ,provided that the discrete scheme is accurate.
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PML for 1D Acoustic Problem (cont.)
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Nearly PML (NPML) for 2D acoustic equation

1

κ

∂p

∂t
+

∂vx

∂x
+

∂vy

∂x
= 0,

ρ
∂vx

∂t
+

∂p

∂x
= 0,

ρ
∂vy

∂t
+

∂p

∂y
= 0.

PML vs. NPML

NPML is less expensive and easier
to implement (Cummer 2003)

mathematically equivalent

NPML Formulation

1

κ

∂p

∂t
+

∂v̄x

∂x
+

∂v̄y

∂x
= 0,

∂p̄x

∂t
+ σ(x)p̄x =

∂p

∂t
,

∂p̄y

∂t
+ σ(y)p̄y =

∂p

∂t
,

ρ
∂vx

∂t
+

∂p̄x

∂x
= 0,

ρ
∂vy

∂t
+

∂p̄y

∂y
= 0,

∂v̄x

∂t
+ σ(x)v̄x =

∂vx

∂t
,

∂v̄y

∂t
+ σ(y)v̄y =

∂vy

∂t
.
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Nearly PML (NPML) for 2D acoustic equation

2D: 9 domains, 7 variables

3D: 27 domains, 10 variables

Igor’s modification:

2D: 4 variables
3D: 6 variables

x

Vx

P

xP

Vx

Vx

P

Vy

Vx Vy

yP

P

Vx Vy

Vy

Vx Vy

yP

P

all 7

xP

V

all 7

P

all 7 all 7

Vy Vy

NPML Formulation

1

κ

∂p

∂t
+

∂v̄x

∂x
+

∂v̄y

∂x
= 0,

∂p̄x

∂t
+ σ(x)p̄x =

∂p

∂t
,

∂p̄y

∂t
+ σ(y)p̄y =

∂p

∂t
,

ρ
∂vx

∂t
+

∂p̄x

∂x
= 0,

ρ
∂vy

∂t
+

∂p̄y

∂y
= 0,

∂v̄x

∂t
+ σ(x)v̄x =

∂vx

∂t
,

∂v̄y

∂t
+ σ(y)v̄y =

∂vy

∂t
.

T. Vdovina, PML & Numerical Approximation of Singular Sources TRIP Meeting 2008 12/35



Nearly PML (NPML) for 2D acoustic equation

2D: 9 domains, 7 variables

3D: 27 domains, 10 variables

Igor’s modification:

2D: 4 variables
3D: 6 variables

x

Vx

P

xP

Vx

Vx

P

Vy

Vx Vy

yP

P

Vx Vy

Vy

Vx Vy

yP

P

all 7

xP

V

all 7

P

all 7 all 7

Vy Vy

NPML Formulation

1

κ

∂p

∂t
+

∂v̄x

∂x
+

∂v̄y

∂x
= 0,

∂p̄x

∂t
+ σ(x)p̄x =

∂p

∂t
,

∂p̄y

∂t
+ σ(y)p̄y =

∂p

∂t
,

ρ
∂vx

∂t
+

∂p̄x

∂x
= 0,

ρ
∂vy

∂t
+

∂p̄y

∂y
= 0,

∂v̄x

∂t
+ σ(x)v̄x =

∂vx

∂t
,

∂v̄y

∂t
+ σ(y)v̄y =

∂vy

∂t
.

T. Vdovina, PML & Numerical Approximation of Singular Sources TRIP Meeting 2008 12/35



Numerical Example

play

T. Vdovina, PML & Numerical Approximation of Singular Sources TRIP Meeting 2008 13/35



Error (float)

Homogeneous medium ρ = 1, κ = 1.

Size of the domain Ω = [−2, 2]× [−2, 2].

Absorbing layer is two-wavelength wide.

nx × nz hx = hz ||ph − p||inf

100× 100 0.04 4.118e-04
200× 200 0.02 4.048e-04
400× 400 0.01 4.043e-04
800× 800 0.005 4.043e-04

1600× 1600 0.0125 4.043e-04

PML gives accurate results at acceptable computational cost.
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Parts II and III: Numerical Approximation of Singular
Sources

First step: Code validation by means of convergence tests:

smooth source, const coefficients: optimal order for DG & FD,

singular source, const coefficients,

singular source, discontinuous coefficients.
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DG: Point Source

Acoustic problem with point source scaled by Ricker’s wavelet:

∂p(x, t)

∂t
= −∇ · v(x, t) + f (t)δ(x),

∂v(x, t)

∂t
= −c(x)2∇p(x, t),

Analytical solution is given by Poisson’s formula:

p(x, t) =
1

2πc3

∫ t

0
f ′(τ)

∫
U(x;c(t−τ))

δ(ξ)dξ√
c2(t − τ)2 − |x− ξ|2

dτ

=
1

πc4

∫ √
t−|x|/c

0

f ′(t − |x|/c − τ2)√
τ2 + 2|x|/c

dτ.

Gaussian 8-node adaptive quadrature (I. Terentyev).
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Linear Approximation:
∫

δ(x)dx = 1

Support Linear approximation

0

25

-1

0

1

-1
0

1
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Linear Approximation of the Delta Function (cont.)

Traces of the numerical solution (red) and
reference solution (blue)

1.5

pr
es
su
re

-1.5

0

0 0.50.25
t
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Numerical Solution

2.5

-1.5

0

-1-1 0
1

0

1
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Trigonometric Approximation:
∫

δ(x)dx = 1

Support Trigonometric approximation

-1
0

1

-1

0

1

0

5
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Numerical Solution

0.3

0

-0.3

-1

0

1

-1 0 1
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Trigonometric Approximation of the Delta Function (cont.)

Traces of the numerical solution (red) and
reference solution (blue)

t
0 0.25 0.5

0

pr
es
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re

-0.4

0.4
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FE Approximation:
∫

δ(x)dx = 1

Support

1

0

-1
-1 0 1

FE approximation

6000

0

1

0

-1
-1

0

1
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Numerical Solution

-1

20

0

-15

0

1 -1
0

1
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FE Approximation of the Delta Function (cont.)

Traces of the numerical solution (red) and
reference solution (blue)

pr
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-25

25

0 0.25 0.5t
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FDM: Dipole Source

Acoustic problem with diplole source scaled by Gaussian:

1

κ(x)

∂p(x, t)

∂t
= −∇ · v(x, t),

ρ(x)
∂v(x, t)

∂t
= −∇p(x, t) + f(t)∇δ(x),

Analytical solution is given by Poisson’s formula:

p(x, t) = − 1

πc2

∫ √
t−|x|/c

0

f
′′
(t − |x|/c − τ2)√

τ2 + 2|x|/c
dτ.

2-4 staggered finite differences scheme.
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Numerical results for the Dipole Problem

Traces of the numerical solution (blue) and
reference solution (red)

0
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4e-5

-4e-5
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250 500
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Error (floats) and Rate of Convergence

Naive approximation of the dipole is reasonably accurate.

No point-wise convergence.

nx × nz hx = hz ||ph − p||inf
||ph−p||inf

||p||inf

500× 500 10 4.502e-07 1.131e-02
1000× 1000 5 3.057e-07 7.684e-03
2000× 2000 2.5 3.025e-07 7.602e-03
4000× 4000 1.25 3.227e-07 8.112e-03
8000× 8000 0.625 4.775e-07 1.200e-02

The solution is smooth away from the source location.

Idea: construct a “smooth” problem that away from the
source gives us a solution equivalent to the solution of the
dipole problem.
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Smoothed Source Functions

Let

(p, v) solve the dipole problem in Ω for −T/2 < t < T0,

(ps , vs) solve the problem with the smoothed source functions
Fp(x, t) and Fv (x, t) in Ω for −T/2 < t < T0.

Then

(p, v) and (ps , vs) are equivalent for ||x− xs || > R and t > T ,

provided that

source wavelet f (t) vanishes for
|t| > T/2,

κ(x) = κs , ρ(x) = ρs in a region of
radius R about source xs .

R

-T/2 < t < T
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Construction of Smoothed Source Functions (2D)

Fp(x, t) =
1

κs
p0(x, t)

∂φ(t)

∂t
and Fv (x, t) = ρsv0(x, t)

∂φ(t)

∂t
,

where

p0(x, t) = − 1

πc2
s

∫ √
t−|x|/cs

0

f
′′
(t − |x|/cs − τ2)√

τ2 + 2|x|/cs

dτ,

v0(x, t) = − 1

ρs

∫ t

0
∇p0(x, τ)dτ,

φ(t) =

−T/2 0 T/2 T 3T/2

0

1
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Error (floats) and Rate of Convergence (2D)

Appears to converge with optimal rate.

nx × nz hx = hz
||ph−p||inf

||p||inf
Rate

250× 250 20 4.689e-06 –
500× 500 10 6.856e-07 6.83

1000× 1000 5 2.041e-07 3.35
2000× 2000 2.5 5.329e-08 3.83
4000× 4000 1.25 – –

Too slow in 2D (about 5 days for 2000× 2000 problem).

Acceptably fast in 3D (no numerical integration).

Limitation: homogeneity assumption around the source.
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Regularization of Singular Sources

Elliptic problems: Peskin (1977), Beyer & LeVeque (1992),
Tornberg & Engquist (2002)

Idea: replace δ(x) with discrete approximation dh(x) that

has bounded support,
satisfies vanishing moment conditions:∑

j

dh(xj) = 1 and
∑

j

xm
j dh(xj) = δm0 for m = 1, . . . , p.

Result: Error is determined by the order of the difference
scheme and number of moment conditions satisfied by the
discrete delta function.

Hyperbolic systems in 1D with discontinuous initial data:
Lax (’06) optimal weak convergence for initial data smoothed
by averaging kernel that satisfies moment conditions.
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2, 2k order staggered scheme for the dipole problem

M(Vn+1/2 − Vn−1/2) = −λDPn + ∆tFn,

K−1(Pn+1 − Pn) = λDTVn+1/2,

where

Vn+1/2 and Pn+1 are velocity and pressure grid vectors,

M and K are diagonal density and bulk modulus matrices,

D is undivided difference operator,

Fn = f (n∆t)Ddh(i + 1/2) is a source.

Discrete energy inner product:〈 (
V 1

P1

)
,

(
V 2

P2

) 〉
E

=
〈
V 1,MV 2

〉
+

〈
P1,K−1P2

〉
−λ

2

(〈
V 1,DP2

〉
+

〈
V 2,DP1

〉)
.
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Regularization Result
Assume

(v, p) solve the dipole problem,

(v̄, p̄) solve the time-reversed problem with smooth source,

(Vn+1/2,Pn+1) solve the discrete dipole problem,

(V̄n+1/2, P̄n+1) solve the discrete time-reversed problem,

discrete delta function dh satisfies appropriate number of
moment conditions.

Then for T = (N + 1)∆t

( (
v(T )
p(T )

)
,

(
v̄(T )
p̄(T )

) )
E

=

〈 (
VN+1/2

PN+1

)
,

(
V̄N+1/2

P̄N+1

) 〉
E

+ O(∆t2 + h2),

where

( (
v(T )
p(T )

)
,

(
v̄(T )
p̄(T )

) )
E

= (v, ρv̄)L2 + (p, κ−1p̄)L2 .
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Summary

Nearly Perfectly Matched Layer (NPML) for staggered
finite-difference methods combines reasonable accuracy and
acceptable computational cost.

Straightforward approximations of point and dipole sources
converge only weakly (if at all).

Can we recover strong convergence?

regularization (analytical smoothing),
adaptive mesh refinement?
other approaches? Stay tuned...
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