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Goals and Tools

e Goal: Study Finite Differences (FD) and Discontinuous
Galerkin (DG) for the wave equation in the seismic context:

e impact of absorbing boundary conditions,
e singular sources,
o discontinuous coefficients (problems with interfaces).

@ Tools for the acoustic wave equation:

e DG (2D, C++) (Dr. Warburton).
e FD (nD, C, OpenMP, MPI) (I. Terentyev).

T. Vdovina, PML & Numerical Approximation of Singular Sources TRIP Meeting 2008 3/35



Outline

e Part I: Perfectly Matched Layer (PML).
e overview,
e PML for 1D acoustic wave equation,
o Nearly PML for acoustic wave equation.

@ Part Il: Point Source for Discontinuous Galerkin Method.
(joint work with Dr. Warburton)
e linear approximation,
e trigonometric approximation,
e adjoint interpolation.

@ Part Ill: Dipole Source for Finite Difference Methods.

e straightforward approximation,
e smoothed right-hand side,
e regularization
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Model problem: The Acoustic Wave Equation

1 9Op(x,t)
= —V-v(x,t),
K(x) Ot
o2 pe, ) + £t %),
@ p is pressure, @ « is bulk modulus,
@ v is velocity, @ p is density,
@ f is a source, e t>0,xeR"

Initial Conditions

p(0,x) = po(x), v(0,x) = vo(x).
Infinite Domain?
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Absorbing Boundary Conditions

@ Goal: Truncate domain without errors.

@ Idea: Use artificial boundary with special boundary conditions:

absorbing,

reflectionless,

accurate (reflection should be less than 1% ),
stable,

cheap,

easy to implement.

@ Popular approach: Perfectly Matched Layer (PML).
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Perfectly Matched Layer (Berenger, 1993)

@ ldea: Surround the domain by an absorbing medium.

@ Problem: Reflection coefficient depends on both the angle of
incidence and frequency.

Berenger’s absorbing layer

no reflections for any frequency and any angle of incidence J

+

exponential decay with distance into the layer J

@ i.e.: layer is perfectly matched and can itself be truncated.

T. Vdovina, PML & Numerical Approximation of Singular Sources TRIP Meeting 2008 7/35



Construction of the PML

@ Add damping terms to physical equations.

@ Damping terms should vanish in the physical domain.

@ Use damping terms to kill waves in the absorbing layer.
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PML for 1D Acoustic Problem

@ Convert the problem to the frequency domain:

0V(x)

—iwp(x) + K e 0, 0<x<A,
L o3
v+ LY gk ca
p Ox
| L >
0 A A* X

@ Choose o(x) =0 for 0 < x < A and add dumping terms:

(—iw + o(x)) p(x) + /{a‘(;(;) = 0, 0<x<A,
| o 10p) X
( /w+a(x))v(x)+;W = 0, 0<x<A.
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PML for 1D Acoustic Problem (cont.)

e Eliminate ¥, set v =1+ jo(x)/w:

1 d 1 d
— —D =0 0 A*.
R (v(x> dx”(X)> » 0=xs

@ Solution to the interface (x = A) problem:

A B leik(X—A) + Re—ik(X_A)’ 0<x< A,
P(x) =\ ok (x-n) L Ce WA A< x < AF

with k = and k* = ky = k + k2.
C w
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PML for 1D Acoustic Problem (cont.)

L 1A + Re kb=A), 0<x<A,
p= Teik(x—A)eféa(x)(fo) + Ce—ik(x—A)eéa(x)(XfA)7 A< x < A*.

@ Exponential decay in the pml layer.
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PML for 1D Acoustic Problem (cont.)

L 1A + Re kb=A), 0<x<A,
p= Teik(x—A)eféa(x)(fo) + Ce—ik(x—A)eéa(x)(XfA)7 A< x < A*.

@ Exponential decay in the pml layer.

@ All frequencies decay at the same rate (k = w/c = k/w = ¢).
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PML for 1D Acoustic Problem (cont.)

k

L 1ekx=A) +  Re k(x-A), 0<x<A,
b= Teik(X—A)efga(X)(XfA) + Ce—ik(x—A)e;a(x)(fo)7 A< x < A*.

@ Exponential decay in the pml layer.
@ All frequencies decay at the same rate (k = w/c = k/w = ¢).

@ Boundary condition at x = A* implies that C = 0.
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PML for 1D Acoustic Problem (cont.)

o | eik(x—A) +  Re k(x=A), 0<x <A,
P= Tek(x—A) g—Lo(x)(x—A) A< x < A%

@ Exponential decay in the pml layer.
@ All frequencies decay at the same rate (k = w/c = k/w = ¢).
@ Boundary condition at x = A* implies that C = 0.

@ Continuity of p and V at x = A implies that

I+ R=T. _ [R =0
| — R=T, | = T.

(since —£0'(x)(x — A) — £0(x) = 0 for x = A)
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PML for 1D Acoustic Problem (cont.)

L 1ekx=A) 0<x <A,
P [ eik(x—A) g— £ (x) (x—A) A< x < A%,
@ Exponential decay in the pml layer.
@ All frequencies decay at the same rate (k = w/c = k/w = ¢).
@ Boundary condition at x = A* implies that C = 0.
@ Continuity of p and V at x = A implies that
I + R=T, N R = 0,
I — R=T, I = T.
(since —£0'(x)(x — A) — £0(x) = 0 for x = A)

@ After discretization the reflection coefficient is not zero,
but is small ,provided that the discrete scheme is accurate.
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Nearly PML (NPML) for 2D acoustic equation
10p Ovx Oy,

ot Tax T =% PML vs. NPML
p% i op —0 @ NPML is less expensive and easier
ot ox to implement (Cummer 2003)
p%vty + gp 0. @ mathematically equivalent
y
NPML Formulation
OPx _ _Op
10p, 0% 0% _ or TP e
kOt  Ox  Ox %4-0( b _op
ot YIPy = 5t
Ovx aﬁx o ov ov,
Por tox 0 5r Holom = T,
% % =0, aVy 8vy

ot dy ot +o(y)vy = ot
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Nearly PML (NPML) for 2D acoustic equation

@ 2D: 9 domains, 7 variables
@ 3D: 27 domains, 10 variables
@ Igor's modification:

o 2D: 4 variables
o 3D: 6 variables

NPML Formulation

10
K Ot

Oy

O | 0wy
Ox

ox 0,
I
P or
vy
P ot

OB
ox
opy

Py 9
Oy ’

0,
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PV, v,
all 7 5 v, all7
PV, V, PV, V,
_ P Vy Vy _
B Vx B Vi
PV, Vv,
all 7 RV, all7
Opx - op
é)t _+- (j-()() X 69 t )
opy _ Op
s +o(y)py = ErE
Ovy (x)7 Ovy
X)Wy = —,
ot ot
ov, _ vy
at (y)vy - (9t
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Nearly PML (NPML) for 2D acoustic equation

PV, V,

@ 2D: 9 domains, 7 variables all7 3 vyy all7

@ 3D: 27 domains, 10 variables PV PV, V,

@ Igor's modification: R Vi s B Vi
o 2D: 4 variables e Pﬁ Vx ny all 7
o 3D: 6 variables Y

NPML Formulation

Opx - _ap
1op 0w 0% _ 5 TP =
kOt  Ox ox @ _ _@

ot +o(y)py = ot’

Ovx  Obx _ ov. ov.
Par Tox 0 +o(x)n= o,
P 55 ot ot
pﬂ 9Py _, 8Vy+ ()v—%

T. Vdovina, PML & Numerical Approximation of Singular Sources TRIP Meeting 2008 12/35



Numerical Example

play
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Error (float)

@ Homogeneous medium p =1, Kk = 1.
@ Size of the domain Q = [-2,2] x [-2,2].

@ Absorbing layer is two-wavelength wide.

nx X nz hy = hz | ||pn — pllinf

100 x 100 0.04 4.118e-04
200 x 200 0.02 4.048e-04
400 x 400 0.01 4.043e-04
800 x 800 0.005 4.043e-04
1600 x 1600 | 0.0125 | 4.043e-04

@ PML gives accurate results at acceptable computational cost.
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Parts Il and Ill: Numerical Approximation of Singular
Sources

First step: Code validation by means of convergence tests:

@ smooth source, const coefficients: optimal order for DG & FD,
@ singular source, const coefficients,

@ singular source, discontinuous coefficients.
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DG: Point Source

@ Acoustic problem with point source scaled by Ricker's wavelet:

Ip(x, t)
= = —V -v(x, t) + F(t)d(x),
avg:t) = —C(X)2Vp(x,t)7

@ Analytical solution is given by Poisson’s formula:

_ 5(¢)de
o) = s [0 O

1 /\/flx/c f’(t— xl/c—7%),
= T
mct Jo VT2 +2x|/c

e Gaussian 8-node adaptive quadrature (l. Terentyev).
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Linear Approximation: [ d(x)dx =1

Linear approximation

Support




Linear Approximation of the Delta Function (cont.)

Traces of the numerical solution (red) and
reference solution (blue)

1.5 T T T T T T T T

pressure
<

'1.5 1 1 1 1
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Numerical Solution
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Trigonometric Approximation: [ d(x)dx =1

Support Trigonometric approximation
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Numerical Solution
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Trigonometric Approximation of the Delta Function (cont.)

Traces of the numerical solution (red) and
reference solution (blue)

0.4

pressure
=1
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FE Approximation: [ d(x)dx =1

Support FE approximation

6000 |
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Numerical Solution
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FE Approximation of the Delta Function (cont.)

Traces of the numerical solution (red) and
reference solution (blue)
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FDM: Dipole Source

@ Acoustic problem with diplole source scaled by Gaussian:

1 Op(x,t) vlx
( ) 8 - v ( 7t)7
o002 gp(e, ) + H( V),

@ Analytical solution is given by Poisson’s formula:

N
7rc2 0 VT2 +2|x|/c

p(x,t) =

@ 2-4 staggered finite differences scheme.
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Numerical results for the Dipole Problem

Traces of the numerical solution (blue) and
reference solution (red)

pressure

0 250 500
it
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Error (floats) and Rate of Convergence

@ Naive approximation of the dipole is reasonably accurate.

@ No point-wise convergence.

mxxnz | he=h; | |lpn— pllinr | Ut
500 x 500 10 4.502e-07 | 1.131e-02
1000 x 1000 5 3.057e-07 | 7.684e-03
2000 x 2000 2.5 3.025e-07 | 7.602e-03
4000 x 4000 1.25 3.227e-07 | 8.112e-03
8000 x 8000 | 0.625 4.775e-07 | 1.200e-02

@ The solution is smooth away from the source location.

@ ldea: construct a “smooth” problem that away from the

source gives us a solution equivalent to the solution of the

dipole problem.
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Smoothed Source Functions

Let
@ (p,v) solve the dipole problem in Q for —T/2 < t < Ty,

@ (ps, Vvs) solve the problem with the smoothed source functions
Fp(x,t) and F (x,t) in Q for —T/2 < t < T.

Then
@ (p,v) and (ps, vs) are equivalent for |[x —xs|| > Rand t > T,

provided that

@ source wavelet f(t) vanishes for
it >T/2,

e k(x) = ks, p(X) = ps in a region of
radius R about source xs.

-T/2<t<T
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Construction of Smoothed Source Functions (2D)

Fo(x,t) = :spo(x, t)ag(tt) and F,(x,t) = psvo(x, t) 82(:),
where
o po(x,t) = ‘1/ I AUl T ko PR
’ mc2 Jo \/W ,

1 t
e vo(x,t) = _p/ Vpo(x, 7)dT,
s Jo

e o(t) =
1J
0

-T/2 0 T/2 T 3T/2
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Error (floats) and Rate of Convergence (2D)

@ Appears to converge with optimal rate.

nx X nz hy = h, M Rate
Hlenf
250 x 250 20 | 468906 | -
500 x 500 10 6.856e-07 | 6.83

1000 x 1000 5 2.041e-07 | 3.35
2000 x 2000 2.5 5.329e-08 | 3.83
4000 x 4000 1.25 - -

@ Too slow in 2D (about 5 days for 2000 x 2000 problem).
@ Acceptably fast in 3D (no numerical integration).

@ Limitation: homogeneity assumption around the source.
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Regularization of Singular Sources

e Elliptic problems: Peskin (1977), Beyer & LeVeque (1992),
Tornberg & Engquist (2002)
o ldea: replace d(x) with discrete approximation dp(x) that

e has bounded support,
e satisfies vanishing moment conditions:

Z dn(x;) = 1 and ij’"dh(xj) =0mo form=1,...,p.
J J

@ Result: Error is determined by the order of the difference
scheme and number of moment conditions satisfied by the
discrete delta function.

e Hyperbolic systems in 1D with discontinuous initial data:
Lax ('06) optimal weak convergence for initial data smoothed
by averaging kernel that satisfies moment conditions.
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2, 2k order staggered scheme for the dipole problem

M(Vpi1/2 = Via1/2) = —ADPn+ AtF,,
K Y (Poy1— Pn) = ADTV, 1),

where

® V12 and Pnyq are velocity and pressure grid vectors,
M and K are diagonal density and bulk modulus matrices,
D is undivided difference operator,
Fn = f(nAt)Ddy(i +1/2) is a source.

@ Discrete energy inner product:

((5)(2)),- ey e

A

-5 ((V',DP?) + (V2 ,DP')).
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Regularization Result
Assume

e (v, p) solve the dipole problem,

@ (v, p) solve the time-reversed problem with smooth source,
o (V, n+1/25 P,11) solve the discrete dipole problem,

° (V,,H/Q, P,11) solve the discrete time-reversed problem,

@ discrete delta function dj, satisfies appropriate number of
moment conditions.

Then for T = (N 4+ 1)At

(G )Gm) ), = (OB ) (B ) ),
+ O(At? + h?),

where ( ( -0 )( " ) )g = (v, 7)1z + (P i)
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Summary

e Nearly Perfectly Matched Layer (NPML) for staggered
finite-difference methods combines reasonable accuracy and
acceptable computational cost.

@ Straightforward approximations of point and dipole sources
converge only weakly (if at all).

@ Can we recover strong convergence?

o regularization (analytical smoothing),
e adaptive mesh refinement?
e other approaches? Stay tuned...
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