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Abstract

The Nonlinear Differential Semblance Algorithm for Plane

Waves in Layered Media

by

Dong Sun

This thesis proposes an alternative approach to the output least-squares (OLS) seismic

inversion for layered-media. The latter cannot guarantee a reliable solution for either

synthetic or field data, because of the existence of many spurious local minima of the

objective function for typical data, which lack low-frequency energy. To recover the

low-frequency lacuna of typical data, I formulate waveform inversion into a differential

semblance optimization (DSO) problem with artificial low-frequency data as control

variables. To my knowledge, this approach is the first version of differential semblance

with non-linear modeling that may properly accounts for nonlinear effects of wave

propagation, such as multiple reflections. Numerical experiments with synthetic data

indicate the smoothness and convexity of the proposed objective function. These

results suggest that gradient-related algorithms may successfully approximate a global

minimizer from a crude initial guess for typical band-limited data.
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Chapter 1

Introduction

In this thesis, I propose a nonlinear differential semblance algorithm to solve the

inverse problem of reflection seismology for a layered constant-density acoustic media.

I describe an implementation and provides some evidence that this approach may

avoid the severe convergence difficulties associated with the classical output least

squares (OLS) seismic inversion, and accounts in a natural way for nonlinear effects

(such as multiple reflection) frequently encountered in actual data.

The introduction chapter is intended to provide a historical and scientific base for

the work presented and put the thesis into context. More specifically, this chapter

starts with an overview of the underling inverse problem of reflection seismology

(Section 1.1). Section 1.2 then describes a common approach to this inverse problem

— waveform inversion. Particularly, I discuss some important references about the

OLS inversion and its intrinsic difficulties, which motivate this work. Next, Section

1.3 renders the idea, goal, and contribution of this thesis. Finally, this chapter ends

with an agenda of this thesis.

1
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1.1 Overview of the Inverse Problem

This section briefly reviews the geophysical experiment leading to this inverse prob-

lem.

A common objective of reflection seismology is to make inferences about physical

features (model) of subsurface (e.g., velocity distribution, impedance profile, etc.)

from data (seismogram) recorded on or near the surface. In general, with reasonably

idealized setting, the laws of physics provide the governing equations for computing

the data values given a model. This is called the forward problem. A common

idealized setting in reflection seismology is based on the assumption that the earth is

a linearly acoustic isotropic body supporting wave propagation governed by acoustic

wave equations.

In the inverse problem, the reflection seismic experiment introduces a mechanical

vibration at a point on or near the surface of the earth; the mechanical response of the

earth to the excitation is measured on or near the surface; the aim is to reconstruct

the physical properties (model) from a set of measurements (data). Usually, this

inverse problem does not have unique solutions, because: (1) the amount of data

is finite and cannot carry sufficient information to determine the model uniquely

(underdetermination), or, (2) the data has more degrees of freedom than those of

the desired model (overdetermination) and are inconsistent (because of measurement

errors).

Fortunately, it is possible to construct a type of inverse through minimization of an

objective function that measures the difference between two points in the data space.

Thus, the inversion becomes a model-based data-fitting process that provides a “best

fit” solution to the inverse problem. This inversion is called waveform inversion,
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and has been studied extensively over 30 years. A common objective function is

the “least squares” objective function, which yields the maximum likelihood criterion

if experimental errors have Gaussian distributions Tarantola and Vallette (1982).

However, this approach (output least squares inversion) is impractical in exploration

seismology because of some intrinsic difficulties, particularly the existence of many

spurious local minima of the objective function for typical seismic data, which lacks

low-frequency energy.

This thesis proposes an alternative approach to waveform inversion for layered

acoustic media to avoid the severe convergence difficulties associated with the output

least squares (OLS) inversion. To recover the low-frequency lacuna of typical data, I

formulate waveform inversion into a differential semblance optimization (DSO) prob-

lem with artificial low-frequency data as control variables. To my knowledge, this

approach is the first version of differential semblance algorithm with non-linear mod-

eling that properly accounts for nonlinear effects (such as multiple reflections) of wave

propagation. Numerical experiments with synthetic data indicate the smoothness and

convexity of the proposed objective function so that gradient-related algorithms can

approximate the global minimum from a coarse initial guess for typical band-limited

data.

The following paragraphs present a literature review on waveform inversion, and

describe the alternative developed in the rest of the thesis.

1.2 Waveform Inversion

Waveform inversion is an important model-based data-fitting approach to reflection

seismology, which aims to determine the features of subsurface structure from seismic
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reflection data collected by groups of receivers (hydrophones or geophones) located

on or near surface. The most familiar objective function for waveform inversion is

the “least squares” objective function. It is popular because: (1) it is very simple

and yields the maximum likelihood criterion if experimental errors have Gaussian

distributions; (2) it does not require picked travel time and can take into account

essentially any physics of seismic wave propagation and reconstruct detailed features

of subsurface structure.

Tarantola and Valette (1982) stated a general definition of the nonlinear least

squares inversion, which is valid for various kinds of problems (including discrete and

continuous, overdetermined and underdetermined, linear and nonlinear problems).

Here comes an abstract setting for the least-squares inverse problem over a constant

density acoustics media: The model space M is a set of possible velocity distributions

v, and usually of large degrees of freedom especially for three-dimensional problems

(e.g., 5050); the data space D consists of samples d of reflection response (data) on or

near the surface over a time interval. D is regarded as a Hilbert space with norm ‖.‖.
The forward map S : M → D is a function of the input velocity model v, denoted

by S[v], which builds a nonlinear relation between M and D. The simplest version

of data fitting inversion is an Output Least Squares problem:

min
v∈M

JOLS :=
1

2
‖S[v]− dobs‖2.

Most attempts to minimize JOLS are to compute the gradient of JOLS with respect

to v and search in the direction related to this gradient for an update. The gradient

vanishes at a stationary point, which could be a minimum of JOLS. Gauss-Newton

and nonlinear conjugate gradient are examples of these kinds of methods. With some
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version of the L2 norm in M , the gradient can be computed through standard adjoint

state method and written as ∇vJOLS = DS[v]∗ (S[v]− dobs), where DS[v]∗ is the

adjoint of the linearized forward map DS[v] of S[v] at the point v. In Gauss-Newton

algorithm, the searching direction can be expressed as
(−(DS∗DS)†∇vJ

)
, which is

the solution of the linearized least squares problem

min
δv

1

2
‖DS[v]δv − (Sdata − S[v])‖2 .

Lailly (1983) applied the adjoint state method to seismic inverse problem and

found that DS∗ is equivalent to a migration operator. The linearized inversion can

be computed through conjugate gradient method. Tarantola (1984a) discussed solv-

ing the linearized problem using iterative algorithms, and showed that the rigorous

solution of the linearized seismic inversion can be achieved using the classical meth-

ods of migration. As a generalization, Tarantola (1984b) developed a gradient-related

iterative approach to solve the nonlinear least-squares inverse problem in the acoustic

approximation for seismic reflection data with nonlinear effects (such as multiple re-

flection). No numerical examples were provided in Tarantola (1984b).

These kinds of methods are called Newton-like iterative approaches, which only

use local information of a current iterate v and yield local convergence. It is possible

to use global optimization methods to minimize JOLS such as genetic (Sen and Stoffa,

1991b) and simulated annealing (Sen and Stoffa, 1991a) methods. These methods use

some random search strategies to traverse the model space in order to find the global

minimum which corresponds to the smallest objective value. Though global methods

don’t need a good start model and gradient, they require a great many of evaluations

of the objective function (forward problem) before they converge. Considering that
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a model space in reflection seismology usually has millions or even billions degrees of

freedom, global methods are currently infeasible. So far, only Newton-like methods

have been computationally feasible for such a large scale problem.

In this work, I use conjugate gradient method to obtain 1D linearized inversion

as an updating direction for Gauss-Newton algorithm which is applied to solve the

nonlinear least squares problem. More discussion about the least squares inversion

comes in Chapter 2.

Modifications of the OLS Inversion

Though the OLS inversion with Newton-like approaches is conceptually attractive,

its applications in reflection seismology have been strictly restricted by two major

obstacles (Symes, 2007). The first is the computational intensity of wave field mod-

eling and various computation required by the OLS inversion, especially in 3D. This

computational obstacle is weakening with continuous advances in computer hardware

and simulation techniques.

The second obstacle is more fundamental. OLS objective function is very ill-

conditioned and has many spurious local minima which will trap any Newton-like

iteration. Therefore this inversion doesn’t work with any Newton-like optimization

method unless the starting velocity model is so accurate that it has the same velocity

trend (long scale structure) as the true velocity model. This fact is well observed and

discussed in literature. Gauthier et al. (1986) implemented the first realistic example

of multidimensional, nonlinear inversion of multioffset seismic reflection data and

proved the feasibility of the nonlinear inversion method proposed by Tarantola (1986).

This paper showed that the OLS problem is strongly nonlinear and has secondary
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minima. Also, it demonstrated that the OLS inversion is good for estimating short

scale structure but cannot recover the long scale structure. Santosa and Symes (1989)

explored in detail the success and limitations of the OLS inversion in the context of

the layered velocity model. They partly released the obstacle by redefining the least-

squares problem to match only the precritical part of the data. But their approach still

essentially suffered from the same impedient discussed above. Symes and Carazzone

(1992) illustrated the high non-convexity of the OLS objective function clearly via a

plot of the mean square error over a line segment connecting constant back ground

velocity with the reference velocity. I present similar plots in Chapter 3 for both

the OLS inversion and the proposed method. These plots demonstrate the proposed

method is superior to the OLS inversion for layered media.

The main factor appears to drive the above behavior of output least squares inver-

sion is the band-limitation of typical field data, especially the lack of low frequencies,

which leads to the reconstruction ambiguous (Santosa and Symes, 1989). Lots of

work has shown that the impedance as a function of vertical travel time in a layered

acoustic medium could be reconstructed from the impulse response, which contains

all frequency components down to 0 Hz, (Bamberger et al., 1979; Symes, 1981, 1986b;

Sacks and Santosa, 1987). For several dimensional problem, numerical examples in-

dicate that impulse responses may determine constant-density acoustic models via

the OLS inversion (?Shin and Min, 2006). Low-frequency data appear to contain

information about the trend of the true model. The OLS inversion cannot infer the

velocity trend from bandlimited reflection data.

Many attempts have been tried to deal with the local minima issue associated

with the OLS inversion.

A number of papers tried to diminish the problem of local minima by a decomposi-
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tion of the seismic inversion problem by scale. Kolb et al. (1986) suggested a pre-stack

continuum inversion algorithm for 1D acoustic medium. This algorithm first recovers

the low-frequency trend of the velocity model via inversion of the low-frequency part

of the data. Next, a progressive downward determination process is employed to infer

the velocity distribution layer by layer. The numerical results demonstrate the effi-

ciency of this continuum inversion process only for data with the very low-frequency

components. This approach inspires me with the continuum low-frequency inversion

strategy for data with low-frequency components down to 0 Hz, which leads to a

much more efficient approach than the conventional inversion approach. I use this

strategy to solve the least-squares subproblem embedded in the proposed algorithm.

For 2D pre-stack seismic inversion, ? showed that a multiscale approach is effective

in releasing the difficulty of local minima only for data with much lower frequencies

than is normally available in realistic seismic data sets.

Shin and Min (2006) introduced a new objective function to overcome the non-

convexity associated with the classical objective function. The new objective can take

into account phase and amplitude separately or simultaneously, and then yield three

different inversions. Some tests showed that this approach could lead to a better

result than the conventional least-squares inversion for some synthetic data with very

low-frequencies down to 0.3121 Hz. While the inversion results were not good for

data without frequencies below 5 Hz.

All the above approaches adopt special strategies to solve the OLS inversion.

But none essentially release the problem of local minima that has been the main

impediment to full waveform inversion.
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Differential Semblance

In contrast, the differential semblance approach is based on a modified least-squares

principle which essentially avoids the non-convexity of the OLS inversion, hence leads

to a well-behaved inversion (Symes and Carazzone, 1991; Symes, 1991a, 1993, 1999).

Many versions of the differential semblance algorithm have been implemented all

based on linearized scattering theory, e.g., (Symes and Versteeg, 1993; Chauris and

Noble, 2001; Verm and Symes, 2006; Li and Symes, 2007). Some theoretical evidence

exists that a similar algorithm based on (nonlinear) scattering might be feasible, and

account in a natural way for nonlinear effects (such as multiple reflection) frequently

encountered in actual data (Symes, 1991b). This thesis aims to develop and clarify

such a nonlinear differential semblance algorithm in a relatively simple wave propaga-

tion framework, that of plane waves propagating and scattering in a layered acoustic

medium.

1.3 Idea, Goal, and Claim of the Proposed Method

The task of this thesis is to introduce an alternative approach to the OLS inversion

for layered acoustic media.

Through Radon transform, I decompose the original wave equation into a series of

1D plane-wave equations characterized by vertical velocities v[c, p] = c√
1−c2p2

, where

c is the true depth dependent velocity model, p is the plane-wave slowness. Each of

these 1D problems corresponds to a nonlinear least squares inversion. It has been

shown that 1D models could be reconstructed from their impulse responses which are

the data with all frequencies, especially the very low frequencies (Bube and Burridge,

1983; Symes, 1986b). I demonstrate this key fact by some numerical experiments
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in Chapter 2. This fact means that with the very low-frequency data, each 1D least

squares inversion yields a unique “best fit” solution. Therefore, I can view the velocity

model v[c, p] as a function of the data, via the solvability of the 1D impulsive inverse

problem.

However, field experiments don’t have the very low frequency data. The most

important goal of this thesis is trying to get around the limitation of not having the

lowest frequencies available. The central idea of this work is to add in artificial low

frequency data as controls in order to make the 1D nonlinear inversions solvable. From

the previous discussion, each v[c, p] can be regarded as a function of the low frequency

controls. Through those 1D inversions, I get a set of vertical velocities v[c, p], from

which the target velocity models c[p](z) are computed. If the low frequency data

added at the beginning was correct, all the vertical velocities v should lead to the

same c[p](z), i.e. the velocity model c[p](z) should not depend on slowness p, because

the earth is unique.

Hence, this inverse problem is posed as:

min
dl

1

2
‖Q[v]‖2 s.t. ‖Sl[v]− (dobv + dl)‖ ' 0,

where Q[v] satisfies that Q[v] = 0 ⇒ ∂c
∂p

= 0, dobv are the observed band-limited data,

and dl are the low frequency controls.

This objective function aims to quantify the coherency condition ( ∂c
∂p

= 0) and is

parameterized over a space of low-frequency data. Chapter 3 demonstrates the con-

vexity of the objective function over line segments that connect the true data with the

data which have the true high frequency data components but some specified or ran-

domly perturbed low frequency components. These “scan” experiments demonstrate



11

the smoothness and convexity of the proposed DS objective function, and thus in

some extent verify the feasibility and efficiency of Newton-like optimization method.

I derives the theoretical computation of the gradient of the objective function with

respect to low-frequency controls (Appendix A). Thereby, a standard Newton-like

optimization approach can be used to solve this inverse problem. Implementation of

the proposed algorithm will be a future work.

The next chapter presents the method in detail. Chapter 4 shows some numerical

results that demonstrate the feasibility of the proposed method. In Chapter 5, the

thesis ends with some conclusions and discussions of prospects for further develop-

ment.
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Chapter 2

Theory and Method

This chapter elaborates the construction of the proposed differential semblance ap-

proach via three sections. First, I set up the layered constant-density acoustic model,

introduce the plane-wave decomposition and present the original settings via Ex-

tended Modeling concept, which renders a general form of the inverse problem of

reflection seismology. Second, as the original problem is reduced to a set of one-

dimensional plane-wave problems, I review some results about one-dimensional in-

verse problem of wave propagation, and the important role played by the very low-

frequency information. And I try to see the relation between velocity models and

low-frequency components of data. Third, based on Extended Modeling concept and

the relation between velocity models and low-frequency information, I propose the

differential semblance approach with nonlinear modeling.

13
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2.1 The Plane Wave Model and its Extension

As the first step of developing an algorithm, this thesis concerns a simple model for

reflection seismology — the layered constant-density acoustic model — to simplify the

derivation and focus on the main tasks: avoiding the intrinsic difficulties of the OLS

inversion, recovering the low-frequency lacuna, and accounting for nonlinear effects

of wave propagation. The layered media assumption is a reasonable approximation

as sediments retain a large degree of lateral homogeneity in many areas. With this

assumption, the ideas of the proposed approach could be most clearly expressed and

illustrated numerically, and some rigorous mathematical backup is available. Exten-

sions of the proposed method to more complicated media go beyond the intention of

the present paper.

In the layered constant-density acoustic model, the wave field potential u(x, z, t)

(x, z ∈ IR) is governed by the wave equation

(
1

c2(z)

∂2

∂t2
−∇2

)
u(x, z, t) = ω(t)δ(x, z), (2.1)

u(x, z, t) = ut(x, z, t) ≡ 0, t < 0,

where c(z) is the sound velocity, and the right-hand side is an isotropic point energy

source with the source wavelet ω(t). Notice that ω(t) is usually chosen to be band-

limited, as is required by observations of the spectra of seismograms: for various

physical limitations, real reflection seismograms don’t have fourier components at

very low (< ξl Hz) and very high (> ξh Hz) temporal frequencies 1. Assume that

c(z) is a function only of the depth variable z and subject to some constraints and

regularity condition, such as 0 < cmin ≤ c(z) ≤ cmax, c(z) = c0 for z < 0, c(z) = cb

1The positive numbers ξl and ξh depend on specific physical settings of real experiments. For
example, ξl = 5, ξh = 60.
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for z > zmax, and c ∈ H1
loc(IR).

The seismogram is a sampling of the pressure field ∂u
∂t

(x, 0, t) at a number of

“receiver” points over a time interval 0 ≤ t ≤ tmax. I adopt the idealization that

the “receiver” points form the continuum z = 0 and that the measurement of ∂u
∂t

is

continuous in time. Given the source time function ω(t), the seismogram becomes a

function of the sound velocity:

s[c](x, t) :=
∂u

∂t
(x, 0, t), 0 ≤ t ≤ tmax.

The goal is to find c(z) for 0 ≤ z ≤ zmax from the observed seismogram sdata such

that s[c] ' sdata.

Now, we introduce the Radon transformed field

U(p, z, t) =

∫
dx u(x, z, t + px), p ∈ IR.

Given the layered medium assumption and |p|c(z) < 1, I decompose the original

problem into a set of 1-D plane-wave problems

(
1

v2(p, z)

∂2

∂t2
− ∂2

∂z2

)
U(p, z, t) = ω(t)δ(z), (2.2)

U(p, z, t) ≡ 0, t < 0,

where the vertical velocity v(p, z) = c(z)/
√

1− c2(z)p2, and p denotes the ray para-

meter (slowness). The vertical travel-time is

T (z, p) =

∫ z

0

dζ
1

v(p, ζ)
.
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For any α with 0 < α < 1 (for example, α = 0.1), let pmax = 1
cmax

√
1− α2, and

tmax(p) = 2 T (zmax, p) for p ∈ [−pmax, pmax].

Then, the plane-wave seismogram is defined by

Sω[c](p, t) :=
∂U

∂t
(p, 0, t) for all (p, t) ∈ P, (2.3)

where

P = {(p, t) : |p| ≤ pmax, 0 ≤ t ≤ tmax(p)} .

Remark. In fact, one can define (α) precritical depth function

Zα(p) = max
{

z : 0 ≤ ζ ≤ z, c(ζ)|p| ≤
√

1− α2
}

.

Let p∗max = max
{

p : c(z)|p| ≤
√

1− ζ2, 0 ≤ z ≤ zmax

}
. Then the plane-wave

seismogram can be defined on the (α) precritical region P∗ defined by

P∗ = {(p, t) : |p| ≤ p∗max, 0 ≤ t ≤ tmax(p)} .

(Santosa and Symes, 1989, Chapter 2)

During the inversion, the region P∗ is unknown. One needs some sophisticated

strategy to update the computing region to make it as close to P∗ as possible. For

the simplicity of implementation, this thesis concerns a fixed domain P, which is

only a subset of the precritical region P∗.

Notice that Equation (2.2) becomes a one-dimensional equation for each slowness

p, which governs the propagation of a plane wave.

Given the plane-wave seismogram d(p, t) (i.e., d = Sdata
2), this thesis focuses on

2Sdata can be computed from sdata by Radon transform. To focus on the principal algorithm, I
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the inverse problem:

Find c(z) ∈ M

s.t. Sω[c] ' d,
(2.4)

where the model space M denotes a set of possible velocity models, incorporating

bounds on values (e.g., 0 ≤ cmin ≤ c(z) ≤ cmax, c(z) = c0 for z < 0, c = cb for

z > zmax) and other regularity constraints (e.g., c(z) ∈ H1
loc(IR)).

This inversion is often constructed through minimization of an objective func-

tion to obtain a “best fit” solution. The most common objective function is the

least-squares objective function, which yields the OLS inversion. This thesis aims to

construct a new objective function that leads to the proposed differential semblance

(DS) approach to avoid the intrinsic difficulties associated with the OLS inversion

discussed in Chapter 1.

Before elaborating the construction of the proposed DS approach, I would like

to present the inverse problem (2.4) via a unifying concept — Extended Modeling,

discussed in (Symes, 2007), which sets up a general framework for the inverse problem

of reflection seismology.

Extended Modeling

Recall that regarding the source time function ω(t) is known, the forward map Sω :

M −→ D is defined by (2.3), where D is the data space.

leave out this computation and assume that Sdata is known.



18

The extended model space M is defined as

M := {c(p, z) : 0 ≤ cmin ≤ c(p, z) ≤ cmax for 0 ≤ z ≤ zmax and |p| ≤ pmax,

c(p, z) = cb for z > zmax, c ∈ H1
}

.

Then, the corresponding vertical velocity to c(p, z) is

v(p, z) :=
c(p, z)√

1− c2(p, z) p2
,

and the extended forward map Sω : M −→ D is defined as

Sω[c(p, z)](p, t) :=
∂U

∂t
(p, 0, t) for all (p, t) ∈ P, (2.5)

where U(p, z, t) satisfies (2.2).

The extension operator E : M −→ M is defined as

E[c(z)] := c(p, z),

where c(p, z) = c(z) for all z ∈ IR.

Then, the extension of model Sω : M −→ D consists of

• the extended model space M;

• the extension operator E : M −→ M;

• the extended modeling operator Sω : M −→ D satisfying Sω[c] = Sω[E[c]] for

any c ∈ M.

For this extended model, the extended inverse problem is: given d ∈ D, find c̄(p, z) ∈
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M so that Sω[c̄] ' d. Notice that E[M] ⊂ M. E[M] corresponds to the “physical

models”. While the extended models could be “unphysical” in the sense that c̄(p, z) ∈
M could vary with respect to p. A solution c̄ is physically meaningful only if c̄ = E[c]

for some c ∈ M, and then c is a solution of the original inverse problem, i.e., Sω[c] =

Sω[c̄] ' d. That is, to find a solution to the extended inverse problem that belongs

to E[M] to solve the original inverse problem. Generally, “'” is in the least-squares

sense.

To turn the inverse problem into an optimization problem, we need to figure out

an operator to measure the extent to which a solution to the extended inverse problem

is physically meaningful. Since E[M] is a linear subspace of M, any linear operator

vanishing on this subspace gives rise to a quadratic form which can serve as such an

objective. An annihilator is a map A[c̄] from M to some other Hilbert space H so

that

c̄ ∈ E[M] ⇐⇒ A[c̄] = 0.

With the above notations, a general form of the inverse problem could be stated as

minc̄∈M JA[c̄, d] :=
1

2
‖A[c̄]‖2

H (2.6)

s.t. ‖Sω − d‖2
D ' 0,

where ‖ · ‖H and ‖ · ‖D respectively stand for Hilbert norms in the space H and D.

Recall that problem (2.1) is reduced to a set of 1D plane-wave problems (2.2) via

Radon Transform. Before building the proposed DS approach, I would like to review

some results about 1D inverse problem of wave propagation and extract some relation

between low-frequency components of data and extended velocity models. Based on

this relation, in section 2.3, I will propose the differential semblance approach via using
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some type of differential semblance as an annihilator. In Chapter 3, I will illustrate

the behavior of the corresponding objective JDS through numerical experiments (scan

tests).

2.2 1D Plane-Wave Problem and Low-frequencies’ Influence

In this section, I will recall some results about the one-dimensional inverse problem

of reflection seismology and try to build some relation between low-frequency infor-

mation and velocity models.

Recall the notations given in section 2.1. Equation (2.2) is a one-dimensional form

for each fixed p, which governs the propagation of a plane wave.

For fixed p ∈ {p : |p| ≤ pmax}, let’s define the map Fp,ω : H1[0, zmax] −→ H2[0, tmax(p)]

as

Fp,ω[y] :=
∂U

∂t
(p, 0, t) for all 0 ≤ t ≤ tmax(p),

where U satisfies (2.2) with source wavelet ω(t) and v(p, z) = y(z) for z ∈ [0, zmax].

For the choice of ω = δ, the corresponding ∂U
∂t

(p, 0, t) is called an impulsive response.

Both this source and its response have all frequency components. In this case, given

the members of H1 and H2 are sufficiently differentiable, Fp,−δ is one-to-one. That

is, given d(p, t) ∈ Range(F ) (0 ≤ t ≤ tmax(p)), there is uniquely determined v(p, z)

on [0, zmax] so that Fp,−δ[v(p, z)] = d(p, t). See (Bamberger et al., 1979; Symes, 1981,

1986b; Sacks and Santosa, 1987) for details.

If we change the depth scale by replacing depth z by its corresponding travel

time τ(z) =
∫ z

0
dz

v(p,z)
, then similarly we can define a map F̃p,ω : H1[0, tmax(p)/2] −→
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H2[0, tmax(p)] as

F̃p,ω[ỹ] :=
∂Ũ

∂t
(p, 0, t) for all 0 ≤ t ≤ tmax(p),

where Ũ defined by

Ũ(p, τ(z), t) := U(p, z, t),

satisfies

1

ṽ(p, τ)

∂2Ũ

∂t2
− ∂

∂τ

1

ṽ(p, τ)

∂Ũ

∂τ
= 0 (2.7)

∂Ũ

∂τ
= v(p, 0)ω(t)

Ũ(p, τ, t) = Ũt(p, τ, t) ≡ 0, t << 0.

Let r = ∂
∂τ

(log ṽ) (i.e., ṽ = exp(
∫ τ

0
r)), then equation (2.7) becomes

∂2Ũ

∂t2
− ∂2Ũ

∂τ 2
+ r

∂Ũ

∂τ
= 0, (2.8)

which defines a map F̂p,ω[r] = ∂Ũ
∂t

(p, 0, t), 0 < t < tmax(p).

Note that

F̂p,ω[r] = ω ∗ F̂p,δ[r]. (2.9)

Given ω = δ, we have the following theorem (Symes, 1986b,Theorem 0.3):

Theorem 1: F̂p,ω is a C1 diffeomorphism: L2[0, tmax(p)
2

] −→ L2[0, tmax(p)].

So F̃p,−δ is a C1-diffeomorphism of H1[0, tmax(p)/2] into L2[0, tmax(p)].

Hence, given impulsive response d(p, t), v(p, z) and ṽ(p, τ) are uniquely deter-

mined, and
(
F̃p,−δ

)−1

is continuously differentiable.



22

Remark. Lots of work has shown that inversion for the impedance as a function of

vertical travel-time in a layered acoustic medium is well-posed provided that all

frequency components down to 0 Hz are available in the data. Here I could review

these results about 1-D inversions for the velocity, since the density is assumed to be

constant.

Let’s write d(p, t) as

d(p, t) = dl(p, t) + dl⊥(p, t), (2.10)

where

dl(p, t) =

∫

|ξ|≤ξl

dξ e2πiξtη(p, ξ)

and

dl⊥(p, t) =

∫

|ξ|>ξl

dξ e2πiξtη(p, ξ),

in which

η(p, ξ) =

∫
dt e−2πiξtd(p, t),

and ξl is a positive number (e.g., ξl = 5).

Then, given dl⊥(p, t) (or η(p, ξ) for |ξ| > ξl), v(p, z) and ṽ(p, τ) can be regarded

as functions of dl(p, t) (or η(p, ξ) for |ξ| ≤ ξl). And ṽ[dl] (or ṽ[η]) is continuously

differentiable respect to dl (or η(p, ξ) for |ξ| ≤ ξl). Generally, the 1D inverse problem

is posed as a least squares problem. In practice, due to various physical limitations,

ω(t) and the corresponding reflection seismogram is band-limited. The instability

resulting from the absence of high frequency information may be ameliorated by

regularization. In contrast, the lack of low-frequency data poses a very serious obstacle

to successful inversion. Here I demonstrate this key fact by a numerical experiment.

Figure 2.1 shows the amplitude spectra of the two source time functions, of which the
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one on the left doesn’t have the very low frequency energy and the other one does.

Figure 2.2 presents the target velocity profile v (solid line), the starting model v0

(dot line), and the results vinv got from the OLS inversions corresponding to the two

source time functions. The data fitting performance for the two inversions is showed

in Figure 2.3. Apparently both estimated models fit the data very well. However,

only the inversion with the presence of the very low frequency energy leads to the

estimated model with the same velocity trend as the target. The other one is far from

the target velocity, i.e., it is a spurious local minimum.
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Figure 2.1: Source time functions (in frequency domain): the upper one with the
very low-frequency components, the other without those components.

Thus, with the very-low frequency information, a 1D least-squares problem is

solvable in the sense that the inversion could recover the long-scale structure of some

velocity model. Thus, if given a source time function ω(t) with the low-frequency

components down to 0 Hz, the least-squares inversion does associate a velocity model

v(p, t) with a data point d(p, t) which has the very low-frequency components.
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Figure 2.2: Comparison of two velocity profiles (dot line): the one on the left derived
from OLS inversion using the source without the very-low frequency components, the
other one derived from OLS inversion using the source with low frequency data. (the
target velocity profile (dash-dot line), the starting velocity v0(z) = 2)

Separating d(p, t) similarly as (2.10) does,

d(p, t) = dl(p, t) + dl⊥(p, t),

where

dl(p, t) =

∫

|ξ|≤ξl

dξ e2πiξtη(p, ξ)

and

dl⊥(p, t) =

∫

ξl<|ξ|≤ξh

dξ e2πiξtη(p, ξ),

in which

η(p, ξ) =

∫
dt|ξ|≤ξh

e−2πiξtd(p, t),

and 0 < ξl < ξh (e.g., ξl = 5, ξh = 60).

Then, given dl⊥(p, t) (or η(p, ξ) for ξl<|ξ|≤ξh
), v(p, z) can be regarded as functions of
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Figure 2.3: Data fitting performance for the two experiments: the left two plots are
for the experiment without the very low-frequency energy; the right two is for the
experiment with the very low-frequency energy. The upper two plots compare the
observed and predicted seismograms. The lower two render the relative data fitting
error.
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dl(p, t) (or η(p, ξ) for |ξ| ≤ ξl).

Based on the above observation, I will propose a Differential Semblance approach to

recover the low-frequency lacuna and release the difficulties associated with the OLS

inversion.

2.3 Differential Semblance Approach

In this section, I develop a new approach to the inverse problem (2.4), which falls into

the category of differential semblance methods. Differential semblance criterion has

been discussed in detail in (Symes and Carazzone, 1991; Symes, 1991a, 1993, 1999).

The underlying idea is the concept of semblance of redundant images, i.e., due to

the high redundancy of a typical survey, predictions of some model parameters are

redundant and unlikely to be consistent (flat in common image panels) unless the

velocity model is correct.

Recall Extended Modeling concept in section 2.1 via a simple diagram

M

E
²²

Sω // D

M
Sω

>>}}}}}}}

.

A general form of the target inverse problem could be stated as (2.6), i.e.,

minc̄∈M JA[c̄, d] :=
1

2
‖A[c̄]‖2

H

s.t. ‖Sω − d‖2
D ' 0,

where A is an annihilator.

From the discussion about the solvability of the 1D impulsive inverse problem (see
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section 2.2), we have

c̄(p, z) =
(
Sδ

)−1
[dl + dl⊥ ].

For each fixed p, given the source time function

ωb(t) =

∫

ξl<|ξ|≤ξh

dξ e2πiξtg(ξ)

and the corresponding reflection response

db(p, t) =

∫

ξl<|ξ|≤ξh

dξ e2πiξtη(p, ξ),

take

ω(t) = ωl(t) + ωb(t),

where

ωl(t) =

∫

|ξ|≤ξl

dξ e2πiξtg(ξ).

Then, regarding the source time wavelet ω(t) with the low-frequency components

down to 0 Hz and db(p, t) fixed, v(p, z) can be regarded as a function of dl(p, t) (or

η(p, ξ) for |ξ| ≤ ξl), where

dl(p, t) =

∫

|ξ|≤ξl

dξ e2πiξtη(p, ξ). (2.11)

Through 1-D OLS inversion, adding dl(p, t), we could estimate v(p, z) for each p, and

then get c̄(p, z) = v(p, z)
/√

1 + v2(p, z) p2 . Generally, c̄(p, z) computed through this

process will depend on p. But a physically meaningful c̄(p, z) shouldn’t depend on

p, because of the uniqueness of the subsurface structure! This proposes somewhat a

coherency condition, that is ∂c̄ /∂p = 0. (Symes, 1991b)
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Hence, in this case, the annihilator is chosen as

A[c̄] :=
∂c̄

∂p
.

I can now state a version of the inverse problem as:

minη(p,ξ), (p,ξ)∈Ω JDS :=
1

2
‖A[c̄]‖2 (2.12)

s.t. ‖Sω[c̄](p, t)− db(p, t)− dl[η](p, t)‖D ' 0, p ∈ [0, pmax]

where A[c̄] := ∂c̄
∂p

, Ω =: {(p, ξ) : 0 ≤ p ≤ pmax, |ξ| ≤ ξl}.

Remark: To make the computation more efficient and stable, one can choose

another A[c̄] with the property that A[c̄] = 0 ⇒ ∂c̄
∂p

= 0. This issue will be discussed

in next chapter.

As for all versions of Newton-related method, smoothness of the objective JDS is

essential. Now let’s adopt the travel-time trick used by Symes (1991b) to show that

JDS is continuously differentiable with respect to the low-frequency components η.

Let

τ(z, c̄) :=

∫ z

0

dσ

c̄(σ, p)
,

and

˜̄c(τ(z, c̄)) := c̄(z).

Then

dz

dτ
= ˜̄c(τ(z, c̄)),
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and

JDS =

∫
dp dz

(
∂c̄

∂p

)2

=

∫
dp dτ ˜̄c

(
∂ ˜̄c

∂p

)2

.

The map

Q [˜̄c ] := (˜̄c)1/2

(
∂ ˜̄c

∂p

)

is continuously differentiable with respect to ˜̄c over M . Theorem 1 tells us that for

each p, ˜̄c [dl(p, t)] is continuously differentiable with respect to dl(p, t) over Range(F̃p,ω).

And, dl(p, t)[η(p, ξ)] is continuously differentiable with respect to η(p, ξ).(see (2.11))

Thus, JDS is continuously differentiable with respect to η.

Note that η(p, ξ) must be positive to ensure dl(p, t) ∈ Range(F̃p,ω). See equation

(2.9).

I will sketch the gradient computation for the new objective function in Appendix

A. The proposed inverse procedure is summarized in Figure 2.4. This thesis aims

to clarify the ideas of this new approach and verify the convexity of the proposed

optimization problem through numerical experiments. In next chapter, I will demon-

strate via some numerical experiments that this problem is smooth and convex so

that one may apply a Newton-like method to solve it.
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Figure 2.4: Flow chart of the proposed differential semblance approach.



Chapter 3

Numerical Experiments

In this chapter I will conduct some primary numerical experiments (“scan” tests), in

which the proposed differential semblance (DS) objective function is evaluated over

line segments in the space of low-frequency controls, to display the smoothness and

convexity of the proposed objective function. More specifically, I evaluate the DS

objective function at some data points Dµ(for some µ ∈ [0, 1.5]) defined by

Dµ = {(1− µ)Dlpert(pi) + µDobv(pi)}Np

i=1, (3.1)

where data Dlpert(pi) at slowness pi (i = 1, 2, · · · , Np) differ from the observed data

Dobv(pi) only by their low-frequency components.

3.1 Two-Layer Media

In this section I will present a set of numerical experiments using a two-layer veloc-

ity model c∗(z) exhibited in Figure 3.1 to generate the plane wave seismograms of

31



32

Figure 3.3 for different slowness

p = (0, 0.0149, 0.0299, 0.0448, 0.0597, 0.0747, 0.0896, 0.1045, 0.1195, 0.1344, 0.1493,

0.1643, 0.1792, 0.1941, 0.2091, 0.2240, 0.2389, 0.2539, 0.2688, 0.2837, 0.2987,

0.3136, 0.3285, 0.3435, 0.3584, 0.3733, 0.3883, 0.4032, 0.4181, 0.4330) (3.2)

by numerically solving Equation (2.2) with the absorbing boundary conditions on the

surface and bottom, and with the time source function w(t) plotted in Figure 3.2. I

use this two-layer model because this simple model presents the most fundamental

block embedded in many complicated models.
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V
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ity

 c
* (z

)

Velocity Profile (Two−Layer Model)

Figure 3.1: Velocity profile (a two-layer model).

For each slowness, I solve the corresponding 1-D least squares problem (??)

for v(p, z) and then compute c[p](z) from c[p](z) = v(p,z)√
1+v2p2

. More specifically,

in each 1-D inversion, the iteration stops when fobjnew ≤ 1.e × 10−4 ∗ fobj0 or

‖gradientnew‖ ≤ 1.e× 10−4 or fobjnew ≥ fobjprev. The resulting velocities cinv[p](z)
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Figure 3.3: Scaled seismograms vs slowness p. The ith trace stands for the seismogram
for the ith slowness (i.e., p(i + 1)). And p = (0, 0.0149, · · · , 0.4330) (see Form (3.2)).
(pmax < 1

max(c)
= 0.4444)

for the synthetic seismogram with true low-frequency components are plotted in Fig-

ure 3.4. The Figure 3.5 shows the corresponding data fitting performance for these

1-D OLS inversions.

Figure 3.8 renders a 1-D scan of OLS objective function, which evaluates this

objective function at velocities cµ defined by

cµ(z) = (1− µ)chom + µc∗(z)

with µ = 0.0, 0.1, · · · , 1.2. This scan demonstrates once again the multimodality

of this objective function, which severely jeopardize the application of Newton-like

methods.

As a contrast, the curve in Figure 3.7 interpolates samples of the DS objective
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And p = (0, 0.0149, · · · , 0.4330) (see Form (3.2)). (pmax < 1

max(c)
= 0.4444)

function at data point Dµ defined by Equation (3.1) with µ = 0.0, 0.1, · · · , 1.2,

p specified in Form (3.2), and the perturbed seismogram Dlpert(pi) at slowness pi

(i = 1, 2, · · · , Np = 29), of which the low-frequency components (0 to 5Hz) are the

corresponding low-frequency components of the seismogram derived from the homo-

geneous velocity model chom(z) = 1.84. Figure 3.6 plots the velocities derived from

the 1-D OLS inversions when µ = 0 (i.e., Dµ = Dlpert), which clearly presents the

bending of the velocity cinv(p, z) with respect to slowness p. This 1-D scan of the DS

objective function appears to exhibit the smoothness (at least at the sample scale)

and convexity near the minimum. Also, the minimum is achieved at the data point

with correct low-frequency components (µ = 1). Therefore, at least if restricted to

this 1-D slice, the proposed DSO overcomes the severe convergence difficulties of the

OLS inversion, and would recover the velocity model in a few steps of Newton-like

methods.
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Form (3.2)), Dlpert(p) has the same low-frequency components (0 to 5Hz) of the seismogram derived
from the homogeneous velocity model chom(z) = 1.84.
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Figure 3.7: The value JDSO[Dµ] plotted against µ. Here µ = 0.0, 0.1, 0.2, · · · , 1.2,
p = (0, 0.0149, · · · , 0.4330) (see Form (3.2)), and Dlpert(p) has the same low-frequency
components (0 to 5Hz) of the seismogram derived from the homogeneous velocity
model chom(z) = 1.84.
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Figure 3.8: The value JOLS[cµ] plotted against µ. Here µ = 0.0, 0.1, · · · , 1.2, p =
(0, 0.0149, · · · , 0.4330) (see Form (3.2)), and cµ(z) = (1 − µ)chom + µc∗(z), where
chom(z) = 1.84 and c∗(z) is the target velocity model.

3.2 Four-Layer Medium

In this section I will present two groups of “scan” tests using a four-layer velocity

model c∗(z) exhibited in Figure 3.9 with different boundary conditions on the surface,

i.e., the absorbing boundary and free surface boundary conditions. The following tests

use the same time source function w(t) as the one employed in the previous section.

The synthetic seismogram Dobv with the very low frequency components are generated

via numerically solving Equation (2.2) for each slowness with corresponding boundary

conditions. In this section, instead of directly partitioning the slowness p evenly, I

discretize the slowness p such that p2 is separated evenly. In such a way, more traces

are assigned for larger slowness to achieve better efficiency and performance, because

the incorrectness of cinv increases dramatically as slowness becomes larger and closer

to the critical value, as can been seen in Figure 3.6.
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Figure 3.9: Velocity profile (a four-layer model).

Experiments with absorbing boundary on the surface

As in the previous test for two-layer model, the absorbing boundary conditions are

employed on the surface and bottom of the four-layer media. To evaluate the dif-

ferential semblance objective at some data point, I solve for each slowness the cor-

responding 1-D least squares problem (??) to get v(p, z), and then compute c[p](z)

from c[p](z) = v(p,z)√
1+v2p2

, and finally compute the differential semblance.

The curve in Figure 3.11 interpolates samples of the DS objective function at data

point Dµ defined by Equation (3.1) with µ = 0.0, 0.1, 0.2, · · · , 1.5,

p = (0, 0.0497, 0.0703, 0.0861, 0.0994, 0.1111, 0.1217, 0.1315, 0.1406, 0.1491, 0.1572,

0.1648, 0.1722, 0.1792, 0.1860, 0.1925, 0.1988, 0.2049, 0.2109, 0.2166, 0.2223,

0.2278, 0.2331, 0.2384, 0.2435, 0.2485, 0.2534),
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and the perturbed seismogram Dlpert(pi) at slowness pi (i = 1, 2, · · · , 27) differs from

the observed seismogram Dobv(pi) only by the very low-frequency components (0

to 5Hz). More specifically, the low-frequency components (0 to 5Hz) of Dlpert are

the corresponding low-frequency components of the seismogram derived from the

homogeneous velocity model chom(z) = 2. This 1-D slice through the DS objective

function appears to exhibit the smoothness (at least at the sample scale) and convexity

near the minimum. Also, the minimum is achieved at the data point with correct low-

frequency components (µ = 1). Figure 3.10 shows the cinv(p, z) driven from selected

data points Dµ (µ = 0, 0.4, 0.7, 1.0, 1.2, 1.5). As a contrast, Figure 3.12 presents a

similar “scan” experiment, which evaluates the OLS objective function at velocities

cµ defined by

cµ(z) = (1− µ)chom + µc∗(z)

with µ = 0.0, 0.1, 0.2, · · · , 1.5. This 1-D scan shows that the minimum is achieved

at the desired targets (µ = 1). But it (Figure 3.12) clearly demonstrates the mul-

timodality, that is, this objective function has many spurious local minima, which

badly jeopardizes the application of Newton-like methods.
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Figure 3.10: Velocities cinv[p](z) derived from 1-D OLS inversions for different data
points, i.e., µ = 0, 0.4, 0.7, 1.0, 1.2, 1.5.
And p = (0, 0.0497, · · · , 0.2485, 0.2534). (pmax < 1

max(c)
= 0.2857)
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Figure 3.11: The value JOLS[cµ] plotted against µ. Here µ = 0.0, 0.1, · · · , 1.5, p =
(0, 0.0497, · · · , 0.2485, 0.2534), and Dµ = (1 − µ)Dlpert + µDobv, where Dlpert has
the same low-frequency components (0 to 5Hz) of the seismogram derived from the
homogeneous velocity model chom(z) = 2.
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Figure 3.12: The value JOLS[cµ] plotted against µ. Here µ = 0.0, 0.1, 0.2, · · · , 1.5,
p = (0.0, 0.0165, · · · , 0.1320), and cµ(z) = (1 − µ)chom + µc∗(z), where chom(z) = 2
and c∗(z) is the target velocity model.

Experiments with free surface boundary condition

An important objective of the proposed algorithm is to account for the nonlinear

effects of wave propagation such as multiple reflections. Hence, it is desired to know

how this new differential semblance objective behave for problems with free surface,

which is an important cause of multiple reflections. In the following tests, the free

surface boundary condition is employed.

The curves in Figure 3.14 evaluate the DS objective function at data point Dµ

defined by Equation (3.1) with µ = 0.0, 0.1, 0.2, · · · , 1.2 and µ = 0.0, 0.05, 0.1, · · · , 1.2
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respectively, and with

p = (0, 0.0382, 0.0541, 0.0662, 0.0765, 0.0855, 0.0937, 0.1012, 0.1081, 0.1147, 0.1209,

0.1268, 0.1324, 0.1379, 0.1431, 0.1481, 0.1529, 0.1576, 0.1622, 0.1667, 0.1710,

0.1752, 0.1793, 0.1834, 0.1873, 0.1912, 0.1950, 0.1987, 0.2023, 0.2059, 0.2094,

0.2129, 0.2163, 0.2196, 0.2229, 0.2262, 0.2294, 0.2326, 0.2357, 0.2388, 0.2418,

0.2448, 0.2478, 0.2507, 0.2536, 0.2565, 0.2593, 0.2621, 0.2649, 0.2676),

and the perturbed seismogram Dlpert(pi) at slowness pi (i = 1, 2, · · · , 50) differs from

the observed seismogram Dobv(pi) only by the very low-frequency components (0

to 5Hz). More specifically, the low-frequency components (0 to 5Hz) of Dlpert are

the corresponding low-frequency components of the seismogram derived from the

homogeneous velocity model chom(z) = 2. Figure 3.13 shows the cinv(p, z) driven from

selected data points Dµ (µ = 0, 0.2, 0.4, 0.7, 1, 1.2). The two 1-D slices through the

DS objective function exhibit the convexity near the minimum. Also, the minimum

is achieved at the data point with correct low-frequency components (µ = 1). But

for the finer grids of µ, the lower figure of Figure 3.14 appears to be flat near µ =

1 and possess some bumps. These features could badly jeopardize the application

of Newton-like methods. Those small bumps may come from the numerical errors

accumulated during all the approximating computations. To improve the behavior

of DS objective function, one can apply a number of strategies to decrease numerical

errors, such as using smaller tolerance for 1-D inversions, employing finer slowness

grids, choosing different expressions of differential semblance objective and adopting

some regularization techniques to smooth cinv(p, z) with respect to p, etc.. I consider

some of these improving strategies in the rest of this section.
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Figure 3.13: Velocities cinv[p](z) derived from 1-D OLS inversions for different data
points, i.e., µ = 0, 0.2, 0.4, 0.7, 1.0, 1.2.
And p = (0, 0.0382, · · · , 0.2649, 0.2676). (pmax < 1

max(c)
= 0.2857)
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Figure 3.14: The value JOLS[cµ] plotted against µ. Here µ = 0.0, 0.1, · · · , 1.2
for the upper figure, µ = 0.0, 0.05, 0.1 · · · , 1.2 for the lower figure, and p =
(0, 0.0382, · · · , 0.2649, 0.2676), and Dµ = (1 − µ)Dlpert + µDobv, where Dlpert has
the same low-frequency components (0 to 5Hz) of the seismogram derived from the
homogeneous velocity model chom(z) = 2.
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Smoothing cinv(p, z) with respect to p

Figure 3.16 presents a scan of the DS objective function through the data points Dµ

defined by Equation (3.1) with µ = 0.0, 0.1, 0.2, · · · , 1.2 and µ = 0.0, 0.05, 0.1, · · · , 1.2

respectively. All the settings are the same as the previous scan test for the four-

layer media with free surface except that cinv(p, z) is smoothed with respect to p via

minimizing the Total Variation of cinv(p, z) with respect to p for each z. Figure 3.17

shows the cinv(p, z) driven from selected data points Dµ (µ = 0, 0.2, 0.4, 0.7, 1, 1.2).

These two 1-D slices through the DS objective function exhibit the smoothness (at

least at the sample scale) and convexity. Also, the minimum is achieved at the data

point with correct low-frequency components (µ = 1).

Take DS objective as JDSO := 1
2
‖∂(1/c)

∂p
‖2

Given the same settings as the previous scan test for the four-layer free surface

media with smoothing cinv with respect to p, take JDSO = 1
2
‖∂(1/c)

∂p
‖2. Figure 3.17

shows the 1
cinv(p,z)

for selected data points Dµ (µ = 0, 0.2, 0.4, 0.7, 1, 1.2). Figure 3.18

presents the corresponding scans of this objective function, which exhibit convexity

and better smoothness than the previous test, though the bottoms of them are nearly

flat. Also, the minimum is achieved µ = 1.

Remark I confess that the examples so far do not show clearly any influence of

nonlinearity, and that it is needed to create some other examples with more

reflectors in them.
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Figure 3.15: Velocities cinv[p](z) derived from 1-D OLS inversions for different data
points after smoothing in p. Here µ = 0, 0.2, 0.4, 0.7, 1.0, 1.2.
And p = (0, 0.0382, · · · , 0.2649, 0.2676). (pmax < 1

max(c)
= 0.2857)
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Figure 3.16: The value JOLS[cµ] plotted against µ. Here µ = 0.0, 0.1, · · · , 1.2
for the upper figure, µ = 0.0, 0.05, 0.1 · · · , 1.2 for the lower figure, and p =
(0, 0.0382, · · · , 0.2649, 0.2676), and Dµ = (1 − µ)Dlpert + µDobv, where Dlpert has
the same low-frequency components (0 to 5Hz) of the seismogram derived from the
homogeneous velocity model chom(z) = 2.
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Figure 3.17: 1
cinv

derived from 1-D OLS inversions for different data points after
smoothing in p. Here µ = 0, 0.2, 0.4, 0.7, 1.0, 1.2.
And p = (0, 0.0382, · · · , 0.2649, 0.2676). (pmax < 1

max(c)
= 0.2857)
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Figure 3.18: The value JOLS[cµ] = 1
2
‖∂(1/c)

∂p
‖2 plotted against µ. Here µ =

0.0, 0.1, · · · , 1.2 for the upper figure, µ = 0.0, 0.05, 0.1 · · · , 1.2 for the lower figure,
and p = (0, 0.0382, · · · , 0.2649, 0.2676), and Dµ = (1− µ)Dlpert + µDobv, where Dlpert

has the same low-frequency components (0 to 5Hz) of the seismogram derived from
the homogeneous velocity model chom(z) = 2.
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Chapter 4

Discussion and Conclusion

From the numerical experiments discussed in Chapter 3, I draw the following conclu-

sions:

First, for synthetic data, the target model is amongst the minima of JDSO. Thus,

the velocity distribution obtained by minimization of JDSO is consistent with the

target model.

Second, 1-D slices of the DS objective function are sort of smooth and convex,

provided large enough ranges of slowness; while the corresponding scans of the OLS

objective function demonstrate strong multi-modality.

Third, Newton-like methods seem to provide a promising approach to solve the

proposed DSO problem, because of the smoothness and convexity demonstrated by

numerical experiments. Implementation of such a Newton-like method will be the

next work.

The above three points make the proposed method a promising alternative to wave-
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form inversion. There are still some important concerns about the proposed approach:

First, DS is based on precritical slowness, i.e., c|p| < 1. For better performance,

the construction of DS objective needs as large range of slowness as possible. However,

the very depth of “precritical” depends on the model, i.e., on c, which is to be sought.

Thus, a prediction about the large enough slowness, needed to construct the proposed

DSO problem, is very important. I discuss such a prediction for two-layer models

in Appendix B. What’s more, to balance the efficiency and reliability of this DSO

approach, a strategy to adaptively determine the range of slowness appears desirable,

which will be a future work.

Second, one should adopt some regularization strategy in order to get a more

reliable and smooth DS objective function. Additionally, lots of adjustments could

help decrease numerical errors further, such as adjusting the stopping criteria, op-

timizing regularization parameters, refining the slowness grid (e.g., evenly partition

the squares of slowness), etc.

As a summary, I have described a new DSO approach for velocity estimation. I have

demonstrated by some numerical experiments how this new objective function avoids

the non-convexity of least-squares forms. Also, the calculation of gradient and the

prediction of large enough slowness (for two-layer media) are addressed in the ap-

pendix. This promising approach avoids the severe convergence difficulties associated

with the classical output least squares (OLS) seismic inversion, and would lead to

reasonably accurate result from a coarse initial guess for typical band-limited data.
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Appendix A

Calculation of Gradient via Adjoint State Method

Recall that the proposed DS optimization problem is

minη(p,ξ), (p,ξ)∈Ω JDS :=
1

2
‖A[c̄]‖2 (A-1)

s.t. c̄ = Argmin
1

2

∥∥Sω[c̄](p, t)− db(p, t)− dl[η](p, t)
∥∥

D
, for p ∈ [0, pmax]

where A[c̄] := ∂c̄
∂p

, Ω =: {(p, ξ) : 0 ≤ p ≤ pmax, |ξ| ≤ ξl}, p is slowness, dl are the

artificial low-frequency controls that make up the missing very low-frequency data.

Now let’s compute the gradient∇ηJDS. Assume all the derivatives in the following

computation exist. The computation consists of three steps.

Step 1. Compute δηdl

Recall that

dl(p, t) =

∫

|ξ|≤ξl

dξ e2πiξtη(p, ξ).

Applying regular perturbation to the above equation, we have

δdl(p, t) ≈
∫

|ξ|≤ξl

dξ e2πiξtδη(p, ξ) = Y δη(p, ξ) (A-2)

Step 2. Compute δdl
c̄

Let

E[c̄, dl] :=
1

2

∥∥Sω[c̄](p, t)− db(p, t)− dl[η](p, t)
∥∥

D
.
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The first order development of E gives:

δE =
1

2

{∥∥Sω[c̄ + δc̄]− db − dl

∥∥2

D
−

∥∥Sω[c̄]− db − dl

∥∥2

D

}

≈ 〈
Sω[c̄]− db − dl, DSω[c̄]δc̄

〉
D

=
〈
DSω[c̄]T

(
Sω[c̄]− db − dl

)
, δc̄

〉
M

.

The first order necessity of the least-squares subproblem gives:

DSω[c̄]T
(
Sω[c̄]− db − dl

)
= 0.

Applying regular perturbation to the above equation, we have

DSω[c̄]T
(
DSω[c̄]δc̄−−δdl

) ≈ 0,

i.e.,

DSω[c̄]T DSω[c̄]δc̄ ≈ DSω[c̄]T δdl.

Thus,

Ddl
c̄ =

(
DSω[c̄]T DSω[c̄]

)†
DSω[c̄]T (A-3)

δdl
c̄ = Ddl

c̄δdl (A-4)

Step 3. Compute δc̄JDS
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The first order development of JDS gives:

δc̄JDS =
1

2

{∥∥∥∥
∂c̄ + δc̄

∂p

∥∥∥∥
2

M

−
∥∥∥∥

∂c̄

∂p

∥∥∥∥
2

M

}

≈
〈

∂c̄

∂p
,
∂δc̄

∂p

〉

M

= −
〈

∂2c̄

∂p2
, δc̄

〉

M

+

∫
dz

(
∂c̄

∂p
δc̄

)∣∣∣∣
pmax

0

= −
〈

∂2c̄

∂p2
, δc̄

〉

M

.

Thus,

δηJDS = −
〈

∂2c̄

∂p2
, δc̄

〉

M

= −
〈

∂2c̄

∂p2
, Ddl

c̄δdl

〉

M

= −
〈

(Ddl
c̄)T ∂2c̄

∂p2
, δdl

〉

D

= −
〈

(Ddl
c̄)T ∂2c̄

∂p2
, Y δη

〉

D

= −
∫

|ξ|≤ξl

dξ Y T (Ddl
c̄)T ∂2c̄

∂p2
δη

Since

δηJDS =

∫

|ξ|≤ξl

dξ∇ηJDSδη,

∇ηJDS = Y T (Ddl
c̄)T ∂2c̄

∂p2
. (A-5)
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Appendix B

Prediction of the large enough slowness for two-layer model

A two layer model is:

cr(z) =





c∗ for 0 ≤ z < z∗,

c2 for z ≥ z∗.

In the inverse problem, we try to approximate the reference velocity c∗ by a trial

velocity ct which is updated in every step. For the reference velocity c∗, the vertical

velocity is

v∗(p) =
c∗√

1− (p c∗)2
,

where slowness |p| ≤ p∗max (|p∗max cr(z)| < 1). Introducing a mechanical vibration

at the point z = 0, one expects to receive a response corresponding to the velocity

discontinuity located at z∗. The corresponding two way travel time τ(p) of this

response is:

τ(p) =
2z∗

v∗(p)
.

In the inverse process, the vibration is considered to travel at the speed vt(p), and

then the discontinuity seems to be located at the depth zt(p) computed by:

zt(p) =
1

2
vt(p) τ(p) ,

where vt(p) = ct√
1−(p ct)2

, in which |p| ≤ pt
max (|pt

max ct(z)| < 1).

Thus,

zt(p)

z∗(p)
=

vt(p)

v∗(p)
=

ct

√
1− (p c∗)2

c∗
√

1− (p ct)2
.
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Let a = ct

c∗
, then

zt(p)− z∗(p) =

(
a

√
1− (p c∗)2

√
1− (a p c∗)2

− 1

)
z∗ for all p ∈ P, (B-1)

where P := {p : |p| ≤ pmax}, and pmax := min{p∗max, p
t
max}.

To differentiate vt(p) from v∗(p), the difference between zt(p) and z∗(p) must be no

less than some scalar λ which is related to the wavelength determined by the problem

settings, such as the frequency band of the source wavelet, the range of possible

velocity distribution, etc.. The aim of this appendix is to predict the large enough

p (say plowmax) that could make true |zt(p) − z∗(p)| ≥ λ. The following paragraphs

discuss how to achieve such a prediction of plow in three cases.

Case 1 : a = 1, i.e., ct = c∗.

For all p ∈ P , zt = z∗. No need to do inversion.

Case 2 : a > 1, i.e., ct > c∗.

Then, |zt(p)− z∗(p)| = zt(p)− z∗(p). And

|zt(p)− z∗(p)| ≥ λ ⇐⇒ a

√
1− (p c∗)2

√
1− (a p c∗)2

− 1 ≥ λ

c∗

⇐⇒ a2 (1− (p c∗)2)

1− (a p c∗)2
≥ (1 +

λ

c∗
)2

⇐⇒ a2 − 1

1− (a p c∗)2
≥ (1 +

λ

c∗
)2 − 1

⇐⇒ p2 ≥ 1

c2
t


1− a2 − 1(

λ
z∗

+ 1
)2

− 1


 (B-2)

Let b = 1− a2−1

( λ
z∗+1)

2−1
, then:
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• if 0 < b < 1, i.e.,

0 <
a2 − 1(

λ
z∗

+ 1
)2

− 1
< 1 ⇐⇒ a2 <

(
λ

z∗
+ 1

)2

⇐⇒ a <
λ

z∗
+ 1

⇐⇒ ct − c∗
c∗

<
λ

z∗

⇐⇒ ct − c∗ <
2 λ

τ(0)
, (B-3)

then

Form (B-2) ⇐⇒ |p| ≥ 1

ct

√√√√√√


1− a2 − 1(

λ
z∗

+ 1
)2

− 1


 ; (B-4)

• if b ≤ 0, i.e., ct − c∗ ≥ 2 λ
τ(0)

, then all p ∈ P works.

• b 6≥ 1, because a2−1

( λ
z∗+1)

2−1
≥ 0.

The above discussion concludes that if the difference between ct and c∗ is larger

than 2 λ
τ(0)

, then for any possible p, |zt(p)− z∗(p)| ≥ λ, i.e., one could differentiate

vt(p) from v∗(p); if 0 < ct − c∗ < 2 λ
τ(0)

, then for

p ∈ P
⋂





p : |p| ≥ 1

ct

√√√√√√


1− a2 − 1(

λ
z∗

+ 1
)2

− 1








,

|zt(p)− z∗(p)| ≥ λ.
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Hence, in this case,

plowmax =
1

ct

√√√√√√


1− a2 − 1(

λ
z∗

+ 1
)2

− 1


. (B-5)

Case 3 : a > 1, i.e., ct < c∗.

Then, |zt(p)− z∗(p)| = z∗(p)− zt(p). And

|zt(p)− z∗(p)| ≥ λ ⇐⇒ 1− a

√
1− (p c∗)2

√
1− (a p c∗)2

≥ λ

c∗

⇐⇒ λ

z∗
< 1 and

a2 (1− (p c∗)2)

1− (a p c∗)2
≤ (1− λ

c∗
)2

⇐⇒ λ

z∗
< 1 and p2 ≥ 1

c2
t


1− a2 − 1(

1− λ
z∗

)2

− 1


 (B-6)

Let q = 1− 1−a2

1−(1− λ
z∗ )

2 , then:

• if 0 < q < 1, i.e.,

1− a2 < 1−
(

1− λ

z∗

)2

⇐⇒ a2 >

(
1− λ

z∗

)2

⇐⇒ a > 1− λ

z∗

⇐⇒ c∗ − ct

c∗
<

λ

z∗

⇐⇒ c∗ − ct <
2 λ

τ(0)
, (B-7)

then

Form (B-6) ⇐⇒ λ

z∗
< 1 and |p| ≥ 1

ct

√√√√√√


1− 1− a2

1−
(

1−λ
z∗

)2


 ; (B-8)
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• if q ≤ 0, i.e., c∗ − ct ≥ 2 λ
τ(0)

, then all p ∈ P works, provided λ
z∗

< 1.

• q 6≥ 1, because 1−a2

1−(1− λ
z∗ )

2 ≥ 0.

The above discussion concludes that: given λ
z∗

< 1, if the difference between ct

and c∗ is larger than 2 λ
τ(0)

, then for any possible p, |zt(p)− z∗(p)| ≥ λ, i.e., one could

differentiate vt(p) from v∗(p); if 0 < c∗ − ct < 2 λ
τ(0)

, then for

p ∈ P
⋂





p : |p| ≥ 1

ct

√√√√√√


1− 1− a2

1−
(
1− λ

z∗

)2








,

|zt(p)− z∗(p)| ≥ λ.

Hence, in this case,

plowmax =
1

ct

√√√√√√


1− 1− a2

1−
(
1− λ

z∗

)2


. (B-9)

As a summary, I have got the predictions (Forms (B-5) and (B-9)) on the smallest

slowness required to differentiate a trial velocity ct from the reference velocity c∗. The

above discussion tells us that: with z∗ decreasing (to 0) or ct approaches to c∗, plowmax

increases (to pmax), and thus the difficulty increases for differentiating ct from c∗.
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