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Previously . ..
Constant density acoustic wave equation:

% pre(x, t) — V2p(x, £) = 0

Goals:

» Regular rectangular grids — typical for seismic numerical
experiments

» Very large-scale problems ~~ coarse computational grids
(a few g/p per wavelength)

» Explicit finite difference (FD) schemes

» Want to “preserve” subgrid information
(provided analytically or on a fine grid)
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Finite Element Method

Weak formulation:

/”“Xt /vpxt Vu(x) =0, WYveV
Q

Discretization:
1. Finite-dimensional space V := V},
2. Basis {v1,...,vn} in Vj
3. Solution represented as p(x, t) = > p;(t) vj(x)
J

E.g.: Q! nodal basis functions — tensor products of 1D piecewise linear
“hat” functions on a chosen grid.
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Finite Element Method

Semi-discrete problem:

M:btt—'_s,b:O? :b:[ﬁla,b27"']-r

mij:/m7 sj = /Vv, - Vv(x)
Q

c2

Second-order discretization in time:

Mp"tt = 2Mp" — Mp"~t — At?Sp"

FE discretization properties:

> Stiffness matrix S = {s;;} same as 2nd order FD “cross" stencil
after order-preserving numerical integration.

» 2nd order scheme for solutions smooth (bandlimited) in time, even
for discontinuous c(x)

» Implicit (non-diagonal M) difference scheme
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Explicit System

Mass lumping:
» Mass matrix M is replaced with a diagonal one: diag(my, ..., my)
> Simplest rule: m; =Y m; (P! or Q' elements)

j
(more sophisticated involve Gauss-Lobatto quadrature, see Cohen 2001)

Theoretical result:
» Constant density acoustic wave equation
» Solutions smooth in time
» Arbitrary discontinuous coefficients (log ¢ measurable and bounded)

THEN: mass-lumped approximation with Q! elements preserves the
convergence order 2
NB (numerical result):

Replacing stiffness matrix S with a higher-order FD stencil does not
change convergence order
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Mass-lumped FE Using Q' Elements

Computationally equivalent to FD method of 2-2K order:
'bn+l _ 2,5n _ ﬁn_l 4 Atz(m_IS)ﬁ

» Explicit scheme
> Special stencil coefficients (averaged over elements):
vi(x)
mi = mj = /
2.m= Jy )
> Second order for solutions smooth (bandlimited) in time, even for
discontinuous ¢(x)

1.0
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Example 1: Dipping Interface

» Domain: 4 km x 4 km
» Simulation time: 0.5 s
» Source: Ricker, 15 Hz

» Discretization: 3.33 m grid
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Example 1: Dipping Interface

» Domain: 4 km x 4 km
» Simulation time: 0.5 s
» Source: Ricker, 15 Hz

» Discretization: 3.33 m grid

Same FLOP counts and execution times!

offset (km) offset (km)
2 2

depth (km)
depth (km)

FD, 2-2 Lumped Q! FE, 2-4 Rl%g]f



Example 2: Dome Model

» Domain: 7 km x 4.2 km;
» Simulation time: 0.7 s
» Source: Ricker, 15 Hz

» Discretization: 10 m grid
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Example 2: Dome Model

» Domain: 7 km x 4.2 km;
» Simulation time: 0.7 s
» Source: Ricker, 15 Hz

» Discretization: 10 m grid

Same FLOP counts and execution times!

offset (km) offset (km)
0 2 4 6

depth (km)

Lumped Q! FE, 2-8 FD, 2-8 RICE



Stencil Coefficient Optimization
Idea:

» Modification of FD coefficients to improve scheme accuracy over a
given source frequency bandwidth.

Numerical phase or group velocity error is minimized.

Allows coarser grids / more compact stencil.

NB: formal scheme order is actually reduced.

History:

Holberg 1987, Mittet et al. 1988, Kindelan et al. 1990
Jastram et al. 1993 — weight based on source spectrum

Etgen 2007 — considered spatial and temporal errors
Many others

vV vy VvYy

Mass lumping and coefficient optimization:
> Preserving convergence rate of the standard lumped scheme?
» Optimized scheme behavior at interfaces?

> Practical applicability to real problems (coarse grids):
how to choose the optimized functional?
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Numerical Group and Phase Velocities

1D "2-2K" scheme:
p(x,t+7)+ p(x,t — 7) — 2p(x, t)

2,2
1 o _ _
™ > ajlp(x + jh, t) + p(x — jh, t) — 2p(x, t)]
j=1
Frequency domain:
coswt — 1 1 < )
= gz 2 Aleoskih ~1),

j=1
c n

wla, ¢, h,v](k) = - arccos(l + 12 Z aj[cos kjh — 1])
j=1

where v = ¢7/h denotes the Courant number.

. . Ow w
Numerical velocities:  vg = 2% =%
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Optimization

Numerical scheme is improved by minimizing weighted error E[a](k):

a= argile)gmin |W(x) E[a](“)HLp[no,m]’

where k = kh (k = 7 corresponds to the Nyquist wavenumber).

E.g., minimization of the phase velocity error:

Epnlal(x) =1 M

Q={aeR" : vula,c,v](r) €R, Vr}.

Convergence study (7, h — 0) is equivalent to kg, x1 — 0
(assuming fixed, limited bandwidth source).

Therefore, it is reasonable to investigate E[a](x) as k — 0



0-minimized Schemes

Taylor expansion of numerical phase velocity at Kk = 0:

vph[a, c, I/](n) =
n 1/2
=c <ijaj) [1+H2R2+I<64R4+...—|—/§2mR2m+O(H2m+2)]
j=1
Minimization around zero frequency leads to:

n 1/2
c <Zj2aj> [14+ K2Ry + k* R+ ...+ K2 Rom] = ¢
j=1

Therefore: . 12
()
j=1
R, =
Ry =0
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0-minimized Schemes
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0-minimized Scheme Coefficients

do -2

ail 1

ao —5/2+1/202

a1 4/3 —1/31°

a —1/1241/1212

a | —49/18+7/9v —1/18*

a 3/2 —13/24v° + 1/2414

a —3/2041/6v2 — 1/60v*

as 1/90 — 1/72v2 + 1/360v*

ap | —205/72 4+ 91/961% — 4/481* 4 1/2881°

a1 8/5 — 61/9002 + 29/3601* — 1/3600°
a —1/5+169/7201% — 13/360v* + 1/7200/°
a3 8/315 — 1/301% + 1/120v* — 1/25200°

a, | —1/560+ 7/288002 — 1/14400* + 1/201601°

Black color — standard FD coefficients.
Red color — corrections from minimization.
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0-minimized Scheme Properties

» Stable if v < 1 (stability criteria for the 3-point scheme)

> “Interpolate” between higher-order schemes (v = 0) and 3-point
scheme (v =1)

» In case of the homogeneous wave equation, scheme with 2K + 1
points is of order 2K both in time and space

> Coefficients can be efficiently computed “on the fly”
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Numerical Velocities
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Courant number v =1/2
Solid — optimized scheme, dashed — standard scheme

Blue color — 2-4 scheme
Green color — 2-6 scheme
Red color — 2-8 scheme
Cyan color — 2-10 scheme
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Mass Lumping + Optimized Coefficients

>
>
| 2
| 2
>

Single interface, ¢y = 1.5 km/sec and ¢, = 4.5 km/sec

Ricker source wavelet with 15 Hz peak frequency

Simulation time 5.333 sec.

Coarsest grid step 6.25 m.

Courant number v =1/2

Ref Non-opt. Opt., original ¢(x) | Opt., lumped c(x)
et RMS error | Ratio | RMS error | Ratio | RMS error | Ratio
1 6.1-1071 - 8.7-1072 - 8.7-1072 -

2 1.9-1071 326 | 42107 | 210 | 421073 | 208
4 471072 | 4.02 | 131073 | 327 | 1.1-107% | 3.71
8 121072 | 404 | 46-107* | 276 | 3.5-107* | 3.28

16 2.9.1073 399 | 2.1.107* 2.19 1.5-107* | 2.25
32 7.2.1073 4.01 8.4.107° 249 | 6.0-107° 2.54
64 1.8-107* 3.99 | 471075 1.78 | 29-107° 2.08

NB. In case of continuous ¢(x) 2nd order is preserved.



Future Work

Lumping:

» First order systems (via mixed FEs) ~~ elastics

Lumping + Coefficient optimization:
more questions than answers ...

» Keeping second order of the original mass-lumped method
» Multiple dimensions

» Improving minimized functional for coarse grids



THANK YOU!
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