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Previously . . .

Constant density acoustic wave equation:

1

c2(x)
ptt(x , t) −∇2p(x , t) = 0

Goals:

◮ Regular rectangular grids – typical for seismic numerical
experiments

◮ Very large-scale problems  coarse computational grids
(a few g/p per wavelength)

◮ Explicit finite difference (FD) schemes

◮ Want to “preserve” subgrid information

(provided analytically or on a fine grid)



Finite Element Method

Weak formulation:
∫

Ω

ptt(x , t)v(x)

c2(x)
+

∫

Ω

∇p(x , t) · ∇v(x) = 0, ∀v ∈ V

Discretization:

1. Finite-dimensional space V := Vh

2. Basis {v1, . . . , vN} in Vh

3. Solution represented as p(x , t) =
∑

j

p̂j(t) vj (x)

E.g.: Q1 nodal basis functions – tensor products of 1D piecewise linear
“hat” functions on a chosen grid.



Finite Element Method

Semi-discrete problem:

Mp̂tt + Sp̂ = 0, p̂ = [p̂1, p̂2, . . . ]T

mij =

∫

Ω

vi (x) vj(x)

c2(x)
, sij =

∫

Ω

∇vi (x) · ∇vj(x)

Second-order discretization in time:

Mp̂n+1 = 2Mp̂n − Mp̂n−1 − ∆t2Sp̂n

FE discretization properties:

◮ Stiffness matrix S = {sij} same as 2nd order FD “cross” stencil
after order-preserving numerical integration.

◮ 2nd order scheme for solutions smooth (bandlimited) in time, even
for discontinuous c(x)

◮ Implicit (non-diagonal M) difference scheme



Explicit System

Mass lumping:

◮ Mass matrix M is replaced with a diagonal one: diag(m1, . . . , mN)

◮ Simplest rule: mi =
∑

j

mij (P1 or Q1 elements)

(more sophisticated involve Gauss-Lobatto quadrature, see Cohen 2001)

Theoretical result:

◮ Constant density acoustic wave equation

◮ Solutions smooth in time

◮ Arbitrary discontinuous coefficients (log c measurable and bounded)

THEN: mass-lumped approximation with Q1 elements preserves the

convergence order 2

NB (numerical result):

Replacing stiffness matrix S with a higher-order FD stencil does not

change convergence order



Mass-lumped FE Using Q1 Elements

Computationally equivalent to FD method of 2-2K order:

p̂n+1 = 2p̂n − p̂n−1 + ∆t2(m−1S)p̂

◮ Explicit scheme

◮ Special stencil coefficients (averaged over elements):

mi =
∑

j

mij =

∫

Ω

vi (x)

c2(x)

◮ Second order for solutions smooth (bandlimited) in time, even for
discontinuous c(x)

vi (x)/c2(x):



Example 1: Dipping Interface

◮ Domain: 4 km × 4 km

◮ Simulation time: 0.5 s

◮ Source: Ricker, 15 Hz

◮ Discretization: 3.33 m grid



Example 1: Dipping Interface

◮ Domain: 4 km × 4 km

◮ Simulation time: 0.5 s

◮ Source: Ricker, 15 Hz

◮ Discretization: 3.33 m grid

Same FLOP counts and execution times!

FD, 2-2 Lumped Q1 FE, 2-4



Example 2: Dome Model

◮ Domain: 7 km × 4.2 km;

◮ Simulation time: 0.7 s

◮ Source: Ricker, 15 Hz

◮ Discretization: 10 m grid



Example 2: Dome Model

◮ Domain: 7 km × 4.2 km;

◮ Simulation time: 0.7 s

◮ Source: Ricker, 15 Hz

◮ Discretization: 10 m grid

Same FLOP counts and execution times!

Lumped Q1 FE, 2-8 FD, 2-8



Stencil Coefficient Optimization

Idea:

◮ Modification of FD coefficients to improve scheme accuracy over a
given source frequency bandwidth.

◮ Numerical phase or group velocity error is minimized.

◮ Allows coarser grids / more compact stencil.

◮ NB: formal scheme order is actually reduced.

◮ History:

◮ Holberg 1987, Mittet et al. 1988, Kindelan et al. 1990
◮ Jastram et al. 1993 – weight based on source spectrum
◮ Etgen 2007 – considered spatial and temporal errors
◮ Many others

Mass lumping and coefficient optimization:

◮ Preserving convergence rate of the standard lumped scheme?

◮ Optimized scheme behavior at interfaces?

◮ Practical applicability to real problems (coarse grids):
how to choose the optimized functional?



Numerical Group and Phase Velocities

1D “2-2K” scheme:

p(x , t + τ) + p(x , t − τ) − 2p(x , t)

c2τ2
=

=
1

h2

n
∑

j=1

aj [p(x + jh, t) + p(x − jh, t) − 2p(x , t)]

Frequency domain:

cosωτ − 1

c2τ2
=

1

h2

n
∑

j=1

aj [cos kjh − 1],

ω[a, c , h, ν](k) =
c

νh
arccos

(

1 + ν2
n

∑

j=1

aj [cos kjh − 1]
)

where ν = cτ/h denotes the Courant number.

Numerical velocities: vgr =
∂ω

∂k
, vph =

ω

k



Optimization

Numerical scheme is improved by minimizing weighted error E [a](κ):

â = argabsmin
a∈Ω

∥

∥W(κ)E [a](κ)
∥

∥

Lp[κ0,κ1]
,

where κ = kh (κ = π corresponds to the Nyquist wavenumber).

E.g., minimization of the phase velocity error:

Eph[a](κ) = 1 −
vph[a, c , ν](κ)

c
,

Ω =
{

a ∈ R
n : vph[a, c , ν](κ) ∈ R, ∀κ

}

.

Convergence study (τ, h → 0) is equivalent to κ0, κ1 → 0
(assuming fixed, limited bandwidth source).

Therefore, it is reasonable to investigate E [a](κ) as κ → 0



0-minimized Schemes

Taylor expansion of numerical phase velocity at κ = 0:

vph[a, c , ν](κ) =

= c

( n
∑

j=1

j2aj

)1/2

[1 + κ2R2 + κ4R4 + . . . + κ2mR2m + O(κ2m+2)]

Minimization around zero frequency leads to:

c

( n
∑

j=1

j2aj

)1/2

[1 + κ2R2 + κ4R4 + . . . + κ2mR2m] = c

Therefore:
( n

∑

j=1

j2aj

)1/2

= 1

R2 = 0

R4 = 0

...



0-minimized Schemes

R2 =
1

24

[

ν2
n

∑

j=1

j2aj −

∑n

j=1 j4aj
∑n

j=1 j2aj

]

,

R4 =
1

16

[

3ν4

40

( n
∑

j=1

j2aj

)2

−
1

72

(

∑n

j=1 j4aj
∑n

j=1 j2aj

)2

−
ν2

12

n
∑

j=1

j4aj +
1

45

∑n

j=1 j6aj
∑n

j=1 j2aj

]

,

R6 =
1

128

[

5ν6

56

( n
∑

j=1

j2aj

)3

−
1

216

(

∑n
j=1 j4aj

∑n

j=1 j2aj

)3

+
ν2

45

n
∑

j=1

j6aj

−
ν4

8

( n
∑

j=1

j2aj

)( n
∑

j=1

j4aj

)

+
1

135

(
∑n

j=1 j4aj

)(
∑n

j=1 j6aj

)

(
∑n

j=1 j2aj

)2

+
ν2

72

(
∑n

j=1 j4aj

)2

∑n

j=1 j2aj

−
1

315

∑n

j=1 j8aj
∑n

j=1 j2aj

]

.



0-minimized Scheme Coefficients

a0 −2
a1 1

a0 −5/2 + 1/2ν2

a1 4/3 − 1/3ν2

a2 −1/12 + 1/12ν2

a0 −49/18 + 7/9ν2 − 1/18ν4

a1 3/2 − 13/24ν2 + 1/24ν4

a2 −3/20 + 1/6ν2 − 1/60ν4

a3 1/90 − 1/72ν2 + 1/360ν4

a0 −205/72 + 91/96ν2 − 4/48ν4 + 1/288ν6

a1 8/5 − 61/90ν2 + 29/360ν4 − 1/360ν6

a2 −1/5 + 169/720ν2 − 13/360ν4 + 1/720ν6

a3 8/315− 1/30ν2 + 1/120ν4 − 1/2520ν6

a4 −1/560 + 7/2880ν2 − 1/1440ν4 + 1/20160ν6

Black color – standard FD coefficients.

Red color – corrections from minimization.



0-minimized Scheme Properties

◮ Stable if ν ≤ 1 (stability criteria for the 3-point scheme)

◮ “Interpolate” between higher-order schemes (ν = 0) and 3-point
scheme (ν = 1)

◮ In case of the homogeneous wave equation, scheme with 2K + 1
points is of order 2K both in time and space

◮ Coefficients can be efficiently computed “on the fly”



Numerical Velocities
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Mass Lumping + Optimized Coefficients

◮ Single interface, cl = 1.5 km/sec and cr = 4.5 km/sec

◮ Ricker source wavelet with 15 Hz peak frequency

◮ Simulation time 5.333 sec.

◮ Coarsest grid step 6.25 m.

◮ Courant number ν = 1/2

Ref.
Non-opt. Opt., original c(x) Opt., lumped c(x)

RMS error Ratio RMS error Ratio RMS error Ratio

1 6.1 ·10−1 – 8.7 ·10−2 – 8.7 ·10−2 –
2 1.9 ·10−1 3.26 4.2 ·10−3 21.0 4.2 ·10−3 20.8
4 4.7 ·10−2 4.02 1.3 ·10−3 3.27 1.1 ·10−3 3.71
8 1.2 ·10−2 4.04 4.6 ·10−4 2.76 3.5 ·10−4 3.28
16 2.9 ·10−3 3.99 2.1 ·10−4 2.19 1.5 ·10−4 2.25
32 7.2 ·10−3 4.01 8.4 ·10−5 2.49 6.0 ·10−5 2.54
64 1.8 ·10−4 3.99 4.7 ·10−5 1.78 2.9 ·10−5 2.08

NB. In case of continuous c(x) 2nd order is preserved.



Future Work

Lumping:

◮ First order systems (via mixed FEs)  elastics

Lumping + Coefficient optimization:
more questions than answers . . .

◮ Keeping second order of the original mass-lumped method

◮ Multiple dimensions

◮ Improving minimized functional for coarse grids



THANK YOU!


