Accurate Finite Difference Schemes for Constant Density Acoustics Mass Lumping and Stencil Coefficient Optimization

Igor Terentyev

TRIP Annual Meeting

January 29, 2010

Agenda

- Finite element (FE) methods for constant density acoustics
 - FE discretization
 - Explicit scheme of same accuracy via mass lumping
 - Numerical examples
- Stencil coefficient optimization
 - Optimization approach
 - Optimization at zero frequency
 - Optimization and mass lumping
- Future work

Previously ...

Constant density acoustic wave equation:

$$\frac{1}{c^2(x)}\rho_{tt}(x,t)-\nabla^2\rho(x,t)=0$$

Goals:

- Regular rectangular grids typical for seismic numerical experiments
- Very large-scale problems → coarse computational grids (a few g/p per wavelength)
- Explicit finite difference (FD) schemes
- ► Want to "preserve" subgrid information (provided analytically or on a fine grid)

Finite Element Method

Weak formulation:

$$\int_\Omega rac{p_{tt}(x,t) v(x)}{c^2(x)} + \int_\Omega
abla p(x,t) \cdot
abla v(x) = 0, \quad orall v \in V$$

Discretization:

- 1. Finite-dimensional space $V := V_h$
- 2. Basis $\{v_1, \ldots, v_N\}$ in V_h
- 3. Solution represented as $p(x, t) = \sum_{j} \hat{p}_{j}(t) v_{j}(x)$

E.g.: Q^1 nodal basis functions – tensor products of 1D piecewise linear "hat" functions on a chosen grid.

Finite Element Method

Semi-discrete problem:

$$\begin{split} M\hat{p}_{tt} + S\hat{p} &= 0, \quad \hat{p} = [\hat{p}_1, \hat{p}_2, \dots]^\mathsf{T} \\ m_{ij} &= \int_\Omega \frac{v_i(x) \, v_j(x)}{c^2(x)}, \quad s_{ij} = \int_\Omega \nabla v_i(x) \cdot \nabla v_j(x) \end{split}$$

Second-order discretization in time:

$$M\hat{p}^{n+1} = 2M\hat{p}^n - M\hat{p}^{n-1} - \Delta t^2 S\hat{p}^n$$

FE discretization properties:

- ► Stiffness matrix S = {s_{ij}} same as 2nd order FD "cross" stencil after order-preserving numerical integration.
- 2nd order scheme for solutions smooth (bandlimited) in time, even for discontinuous c(x)
- ▶ Implicit (non-diagonal *M*) difference scheme

Explicit System

Mass lumping:

- Mass matrix M is replaced with a diagonal one: diag (m_1, \ldots, m_N)
- ► Simplest rule: $m_i = \sum_j m_{ij}$ (P^1 or Q^1 elements) (more sophisticated involve Gauss-Lobatto quadrature, see Cohen 2001)

Theoretical result:

- Constant density acoustic wave equation
- Solutions smooth in time
- Arbitrary discontinuous coefficients (log c measurable and bounded)
- THEN: mass-lumped approximation with Q^1 elements preserves the convergence order 2

NB (numerical result):

Replacing stiffness matrix ${\cal S}$ with a higher-order FD stencil does not change convergence order

Mass-lumped FE Using Q^1 Elements

Computationally equivalent to FD method of 2-2K order:

$$\hat{p}^{n+1} = 2\hat{p}^n - \hat{p}^{n-1} + \Delta t^2 (m^{-1}S)\hat{p}$$

Explicit scheme

Special stencil coefficients (averaged over elements):

$$m_i = \sum_j m_{ij} = \int_{\Omega} \frac{v_i(x)}{c^2(x)}$$

 Second order for solutions smooth (bandlimited) in time, even for discontinuous c(x)

Example 1: Dipping Interface

- Domain: 4 km × 4 km
- Simulation time: 0.5 s
- ► Source: Ricker, 15 Hz
- Discretization: 3.33 m grid

Example 1: Dipping Interface

- Domain: 4 km × 4 km
- Simulation time: 0.5 s
- Source: Ricker, 15 Hz
- Discretization: 3.33 m grid

Same FLOP counts and execution times!

RICE

Example 2: Dome Model

- Domain: 7 km × 4.2 km;
- Simulation time: 0.7 s
- Source: Ricker, 15 Hz
- Discretization: 10 m grid

Example 2: Dome Model

- Domain: 7 km × 4.2 km;
- Simulation time: 0.7 s
- ▶ Source: Ricker, 15 Hz
- Discretization: 10 m grid

Same FLOP counts and execution times!

Stencil Coefficient Optimization

Idea:

- Modification of FD coefficients to improve scheme accuracy over a given source frequency bandwidth.
- ► Numerical phase or group velocity error is minimized.
- Allows coarser grids / more compact stencil.
- ▶ NB: formal scheme order is actually reduced.
- History:
 - ▶ Holberg 1987, Mittet et al. 1988, Kindelan et al. 1990
 - Jastram et al. 1993 weight based on source spectrum
 - Etgen 2007 considered spatial and temporal errors
 - Many others

Mass lumping and coefficient optimization:

- Preserving convergence rate of the standard lumped scheme?
- Optimized scheme behavior at interfaces?
- Practical applicability to real problems (coarse grids): how to choose the optimized functional?

Numerical Group and Phase Velocities

1D "2-2K" scheme:

$$\frac{p(x, t + \tau) + p(x, t - \tau) - 2p(x, t)}{c^2 \tau^2} = \frac{1}{h^2} \sum_{j=1}^n a_j [p(x + jh, t) + p(x - jh, t) - 2p(x, t)]$$

Frequency domain:

$$\frac{\cos\omega\tau - 1}{c^2\tau^2} = \frac{1}{h^2}\sum_{j=1}^n a_j[\cos kjh - 1],$$
$$\omega[\mathbf{a}, c, h, \nu](k) = \frac{c}{\nu h}\arccos\left(1 + \nu^2\sum_{j=1}^n a_j[\cos kjh - 1]\right)$$

where $\nu=c\tau/h$ denotes the Courant number.

Numerical velocities:
$$v_{gr} = \frac{\partial \omega}{\partial k}, v_{ph} = \frac{\omega}{k}$$

Optimization

Numerical scheme is improved by minimizing weighted error $E[\mathbf{a}](\kappa)$:

$$\hat{\mathbf{a}} = \underset{\mathbf{a} \in \Omega}{\operatorname{argabsmin}} \left\| W(\kappa) E[\mathbf{a}](\kappa) \right\|_{L^{p}[\kappa_{0}, \kappa_{1}]},$$

where $\kappa = kh$ ($\kappa = \pi$ corresponds to the Nyquist wavenumber).

E.g., minimization of the phase velocity error:

$$\begin{split} & E_{ph}[\mathbf{a}](\kappa) = 1 - \frac{v_{\text{ph}}[\mathbf{a}, c, \nu](\kappa)}{c}, \\ & \Omega = \big\{ \mathbf{a} \in \mathbb{R}^n \ : \ v_{\text{ph}}[\mathbf{a}, c, \nu](\kappa) \in \mathbb{R}, \ \forall \kappa \big\}. \end{split}$$

Convergence study $(\tau, h \rightarrow 0)$ is equivalent to $\kappa_0, \kappa_1 \rightarrow 0$ (assuming fixed, limited bandwidth source).

Therefore, it is reasonable to investigate $E[\mathbf{a}](\kappa)$ as $\kappa \to 0$

0-minimized Schemes

Taylor expansion of numerical phase velocity at $\kappa = 0$:

$$v_{\rm ph}[\mathbf{a}, c, \nu](\kappa) = \\ = c \left(\sum_{j=1}^{n} j^2 a_j\right)^{1/2} [1 + \kappa^2 R_2 + \kappa^4 R_4 + \ldots + \kappa^{2m} R_{2m} + O(\kappa^{2m+2})]$$

Minimization around zero frequency leads to:

$$c\left(\sum_{j=1}^{n} j^{2} a_{j}\right)^{1/2} [1 + \kappa^{2} R_{2} + \kappa^{4} R_{4} + \ldots + \kappa^{2m} R_{2m}] = c$$

Therefore:

$$\left(\sum_{j=1}^{n} j^2 a_j\right)^{1/2} = 1$$

 $R_2 = 0$
 $R_4 = 0$

0-minimized Schemes

$$R_{2} = \frac{1}{24} \bigg[\nu^{2} \sum_{j=1}^{n} j^{2} a_{j} - \frac{\sum_{j=1}^{n} j^{4} a_{j}}{\sum_{j=1}^{n} j^{2} a_{j}} \bigg],$$

$$R_{4} = \frac{1}{16} \left[\frac{3\nu^{4}}{40} \left(\sum_{j=1}^{n} j^{2} a_{j} \right)^{2} - \frac{1}{72} \left(\frac{\sum_{j=1}^{n} j^{4} a_{j}}{\sum_{j=1}^{n} j^{2} a_{j}} \right)^{2} - \frac{\nu^{2}}{12} \sum_{j=1}^{n} j^{4} a_{j} + \frac{1}{45} \frac{\sum_{j=1}^{n} j^{6} a_{j}}{\sum_{j=1}^{n} j^{2} a_{j}} \right],$$

$$\begin{split} R_6 &= \frac{1}{128} \bigg[\frac{5\nu^6}{56} \bigg(\sum_{j=1}^n j^2 a_j \bigg)^3 - \frac{1}{216} \bigg(\frac{\sum_{j=1}^n j^4 a_j}{\sum_{j=1}^n j^2 a_j} \bigg)^3 + \frac{\nu^2}{45} \sum_{j=1}^n j^6 a_j \\ &- \frac{\nu^4}{8} \bigg(\sum_{j=1}^n j^2 a_j \bigg) \bigg(\sum_{j=1}^n j^4 a_j \bigg) + \frac{1}{135} \frac{(\sum_{j=1}^n j^4 a_j) \left(\sum_{j=1}^n j^6 a_j \right)}{\left(\sum_{j=1}^n j^2 a_j \right)^2} \\ &+ \frac{\nu^2}{72} \frac{\left(\sum_{j=1}^n j^4 a_j \right)^2}{\sum_{j=1}^n j^2 a_j} - \frac{1}{315} \frac{\sum_{j=1}^n j^8 a_j}{\sum_{j=1}^n j^2 a_j} \bigg]. \end{split}$$

0-minimized Scheme Coefficients

<i>a</i> 0	-2
a_1	1
<i>a</i> 0	$-5/2 + 1/2\nu^2$
a_1	$4/3 - 1/3\nu^2$
<i>a</i> ₂	$-1/12 + 1/12\nu^2$
<i>a</i> 0	$-49/18 + 7/9\nu^2 - 1/18\nu^4$
a_1	$3/2 - 13/24 u^2 + 1/24 u^4$
a ₂	$-3/20 + 1/6\nu^2 - 1/60\nu^4$
a ₃	$1/90 - 1/72 u^2 + 1/360 u^4$
<i>a</i> 0	$-205/72 + 91/96 u^2 - 4/48 u^4 + 1/288 u^6$
a_1	$8/5 - 61/90 u^2 + 29/360 u^4 - 1/360 u^6$
a_2	$-1/5 + 169/720 \nu^2 - 13/360 \nu^4 + 1/720 \nu^6$
a ₃	$8/315 - 1/30 u^2 + 1/120 u^4 - 1/2520 u^6$
a ₄	$-1/560 + 7/2880 \nu^2 - 1/1440 \nu^4 + 1/20160 \nu^6$

Black color – standard FD coefficients. Red color – corrections from minimization.

0-minimized Scheme Properties

- Stable if $\nu \leq 1$ (stability criteria for the 3-point scheme)
- ► "Interpolate" between higher-order schemes (v = 0) and 3-point scheme (v = 1)
- ► In case of the homogeneous wave equation, scheme with 2K + 1 points is of order 2K both in time and space
- Coefficients can be efficiently computed "on the fly"

Numerical Velocities

Courant number $\nu = 1/2$ Solid – optimized scheme, dashed – standard scheme

> Blue color – 2-4 scheme Green color – 2-6 scheme Red color – 2-8 scheme Cyan color – 2-10 scheme

Mass Lumping + Optimized Coefficients

- $\blacktriangleright\,$ Single interface, $c_{\rm l}=1.5$ km/sec and $c_{\rm r}=4.5$ km/sec
- Ricker source wavelet with 15 Hz peak frequency
- Simulation time 5.333 sec.
- Coarsest grid step 6.25 m.
- Courant number $\nu = 1/2$

Ref.	Non-opt.		Opt., original $c(x)$		Opt., lumped $c(x)$	
	RMS error	Ratio	RMS error	Ratio	RMS error	Ratio
1	$6.1 \cdot 10^{-1}$	_	$8.7 \cdot 10^{-2}$	-	$8.7 \cdot 10^{-2}$	-
2	$1.9 \cdot 10^{-1}$	3.26	$4.2 \cdot 10^{-3}$	21.0	$4.2 \cdot 10^{-3}$	20.8
4	$4.7 \cdot 10^{-2}$	4.02	$1.3 \cdot 10^{-3}$	3.27	$1.1 \cdot 10^{-3}$	3.71
8	$1.2 \cdot 10^{-2}$	4.04	$4.6 \cdot 10^{-4}$	2.76	$3.5 \cdot 10^{-4}$	3.28
16	$2.9 \cdot 10^{-3}$	3.99	$2.1 \cdot 10^{-4}$	2.19	$1.5 \cdot 10^{-4}$	2.25
32	$7.2 \cdot 10^{-3}$	4.01	$8.4 \cdot 10^{-5}$	2.49	$6.0 \cdot 10^{-5}$	2.54
64	$1.8 \cdot 10^{-4}$	3.99	$4.7 \cdot 10^{-5}$	1.78	$2.9 \cdot 10^{-5}$	2.08

NB. In case of continuous c(x) 2nd order is preserved.

Future Work

Lumping:

▶ First order systems (via mixed FEs) → elastics

Lumping + Coefficient optimization: more questions than answers

- Keeping second order of the original mass-lumped method
- Multiple dimensions
- Improving minimized functional for coarse grids

THANK YOU!

