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Linear Inverse Scattering

• m: model (material parameters: velocity, impedance,
density . . . )

• Write m = m0 + δm
m0: Reference or macro model (given - result of model
building, velocity analysis, . . . )
δm: First order perturbation about m0 (to be found)

• Linear (Born) modeling operator F[m0], models primary
reflections

• Linear inversion: given observed data traces Sobs,
background traces S0, find δm so that:

F[m0]δm ≈ Sobs − S0 := d

• Form of AVO analysis
• Component in FWI algorithms



Normal Equations

Interpret as least squares problem: need to solve normal
equations

N[m0]δm := F∗[m0]F[m0]δm = F∗[m0]d

N := F∗[m0]F[m0] : Normal Operator (Modeling + Migration),
b := F∗d : migrated image
• Large Scale: millions of equations/unknowns, also
δm→ N δm expensive

• Cannot use Gaussian elimination⇒ need rapidly
convergent iteration⇒ good preconditioner

• Not narrow band (like Laplace in 2D/3D)⇒ matrix
preconditioners ineffective

• Alternative: low order polynomial preconditioner, not
obvious



Agenda

• How to build effective low degree polynomial
preconditioner

Nδm = b⇒ δm '
p∑

i=1

ciNi−1b,

• p number of material parameters
• ci operators, cheap to apply
• ci computable by rapidly converging iteration

• Cost: few Modeling/Migration iterations
• Justification
• Applicability/limitations



ΨDOs and their symbols

• N is matrix of ΨDOs for smooth (non-reflective) m0
(Beylkin,1985; Rakesh,1988) = operators defined by
symbols a(x, ξ)

Op(a)u(x) =
∫ ∫

a(x, ξ)u(y)e−i[(x−y).ξ] dξ dy,

• a(x, ξ): Scalar function of position x and wavenumber ξ

|a(x, ξ)| = O(|ξ|m), as |ξ| → ∞;

m = ord(a) := ord(Op(a))
• Calculus of scalar symbols:

1. Op(α1a1 + α2a2) = α1Op(a1) + α2Op(a2), α1, α2 scalars
2. Op(a1a2) ' Op(a1)Op(a2) ' Op(a2)Op(a1)
3. ord(a1a2) = ord(a1) + ord(a2)

( ': difference is lower order ΨDO)



Properties of Normal Operator

• Matrix of pseudodifferential operators, when a polarized
signal is scattered uniquely to another polarized signal
(P-P, P-S, S-S). (Beylkin and Burridge, 1989; De Hoop,
2003)

• N = Op(A), A = p× p matrix of scalar symbols

Op(A)u(x) =
∫ ∫

A(x, ξ)u(y)e−i[(x−y).ξ] dξ dy,



Polynomial Approximate Inverse
• A(x, ξ) is p× p matrix: satisfies its own characteristic

equation (Cayley-Hamilton):

I −
p∑

i=1

ai(x, ξ)Ai(x, ξ) = 0,

where ai(x, ξ) are symbols
• Inverse of A(x, ξ): polynomial of degree p− 1 in A:

I =

( p∑
i=1

ai(x, ξ)Ai−1(x, ξ)

)
A(x, ξ)

• Symbol calculus⇒ ∃ scalar ΨDOs {c̄1, . . . , c̄p} s.t.,
c̄i = Op(ai), N† ≈ ”polynomial” of degree p− 1:

I ≈

( p∑
i=1

Op(ai)op(Ai−1)

)
op(A) ≈

( p∑
i=1

c̄iNi−1

)
N



Solved Problem . . . Not Yet!

• Don’t know symbol A of N
• Only have ability to apply N (modeling + migration)
• Not really a polynomial: coefficients are operators!
• Need an independent method to determine coefficient

operators, and must be able to apply efficiently



Polynomial Preconditioning

• Don’t need N†, only need to solve Nx = b, b = F∗d
• Approximation of ci in data adaptive way:

{c1, . . . , cp} = argmin
c1,...,cp∈ΨDO

∥∥∥∥∥
(

I −
p∑

i=1

ciNi

)
b

∥∥∥∥∥
2

.

Know from Cayley-Hamilton that min ≈ 0 ( for ci = c̄i)
• Get approximate solution:

x = N−1b ≈ N−1
p∑

i=1

ci Ni b ≈
p∑

i=1

ci Ni−1 b := xinv



Approximation of ΨDO
How to represent ci?
• The action of the ΨDO in 2D (Bao and Symes, 1996):

Op(a) u(x, z) ≈
∫ ∫

a(x, z, ξ, η)û(ξ, η)ei(xξ+zη) dξ dη

û = F [u].
• Direct Algorithm O(N4 log(N)) complexity (N = O(103))!
• Finite Fourier series of length K:

a(x, z, ξ, η) ≈
l=K/2∑

l=−K/2

âl(x, z)eilθ,

θ = arctan
(
η

ξ

)
• Use FFT⇒ O(KN2[log(N) + log(K)])
• K independent of N, depends on smoothness of a
• θ captures dip-dependence



Recap

To solve
Nx = b,

where N = F∗F, b = F∗d.

Given, b = F∗d, . . . ,Npb
• Represent ci = Op(ai)

• Compute {c1, . . . , cp} = argmin
c1,...,cp∈ΨDO

∥∥(I −∑p
i=1 ciNi

)
b
∥∥2
.

• Approximate xinv :=
∑p

i=1 ci Ni−1 b ≈ N−1b = x



Scaling Methods

• p = 1 :
• NO ≈ multiplication by a smooth function (Claerbout and

Nichols, 1994; Rickett, 2003)
• Near Diagonal Approximation of NO (Guitton, 2004)
• Special case (well defined dip): normal operator ≈

multiplication by smooth function after composition with
power of Laplacian (correction to Claerbout-Nichols -
Symes, 2008)
Polynomial preconditioning reduces to this method when
p = 1,K = 1.

• Herrmann et al. (2007) derive a scaling method using
curvelets to approximate eigenvectors

• p > 1 :
• New explanation
• Old example
• New conditioning study



Scaling Methods

• p = 1 :
• NO ≈ multiplication by a smooth function (Claerbout and

Nichols, 1994; Rickett, 2003)
• Near Diagonal Approximation of NO (Guitton, 2004)
• Special case (well defined dip): normal operator ≈

multiplication by smooth function after composition with
power of Laplacian (correction to Claerbout-Nichols -
Symes, 2008)
Polynomial preconditioning reduces to this method when
p = 1,K = 1.

• Herrmann et al. (2007) derive a scaling method using
curvelets to approximate eigenvectors

• p > 1 :
• New explanation
• Old example
• New conditioning study



Example: Multi-parameter Case, p = 2

Example: Variable density acoustics, impedance and density.
Formally the same, solve

Nx = b

• N is a 2× 2 matrix of pseudodifferential operators
• b = F∗d consists of two images, one for each parameter



Geometry

N calculated analytically for variable density acoustics, constant
background velocity.



The Challenge: Separation
Build model and perturbations, use analytical formula for N to
get b = Nx

x

z

δσ
σ

 

 

−5 0 5

2

4

6

8

10

12 −0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x

z

 

 

−5 0 5

2

4

6

8

10

12

−80

−60

−40

−20

0

20

40

60

x

z

δρ
ρ

 

 

−5 0 5

2

4

6

8

10

12 −0.4

−0.3

−0.2

−0.1

0

0.1

0.2

x

z

 

 

−5 0 5

2

4

6

8

10

12

−60

−40

−20

0

20

40

True model: x Mig images: b



Polynomial Preconditioning

To solve
Nx = b,

where N = F∗F and b = F∗d ∈ Range(N).

Given b, Nb and N2b. Compute c1, c2:

{c1, c2} = argmin
c1,c2∈ΨDO

‖b− c1 Nb− c2 N2b‖2.

Then,

x = N−1b ≈ N−1(c1 Nb + c2 N2b) ≈ c1b + c2 Nb := xinv



What to expect from N
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Conditioning of N
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Figure: spatial variation of the condition number of the symbol of N



Preconditioning the Preconditioner

Compute a preconditioner P ≈ N−1 using full aperture. Then,
• b→ Pb
• Nb→ PNPb
• N2b→ PNPNPb

Compute polynomial preconditioner:
• {c1, c2} = argmin

c1,c2∈ΨDO
‖Pb− c1 PNPb− c2 PNPNPb‖2

• x = N−1b = (PN)−1Pb ≈ c1 Pb + c2 PNPb := xinv



Preconditioned Images
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Results
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Conditioning of NP
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Conditioning of symbol of N, continued

• Previous preconditioner specific to problem
• Find more general preconditioner?
• The symbol of N = op(A) for variable density acoustics has

the form:

A = f (θ)
(

1 sin2( θ2 )
sin2( θ2 ) sin4( θ2 )

)
|ξ|

• Opening angle θ: function of position of sources, receiver,
and spatial coordinates.

• Ill-conditioning of N captured by the matrix part



Goal: Optimal Weights

• Study conditioning of matrices of the form

N =
∫ θmax

0
dθ f (θ)

(
1 sin2( θ2 )

sin2( θ2 ) sin4( θ2 )

)
• Minimize the condition number:

κ =
λmax

λmin
, s.t. f ≥ 0,

∫ θmax

0
f (θ) dθ = 1

• Parametrize in terms of : S = λmax + λmin = trace(N) and
P = λmaxλmin = det(N)

•

κ =
S +
√

S2 − 4P

S−
√

S2 − 4P



Reference Case
• Let f (θ) = 1
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Figure: Condition Number as a function of θmax



Optimal Low Offset/Large Offset Stack

• Look for optimal low offset/large offset stack:

f (θ) = (1− α)δ(θ) + αδ(θ − θmax), 0 ≤ α ≤ 1

• Minimizing κ, letting β = sin4( θmax
2 ):

α =
1

2 + β
,

κmin =
β + 1 +

√
1 + β

β + 1−
√

1 + β

• Note: for large offset (θmax → π), small offsets weighted
double!



How Much Better?
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A Closer Look

For small θmax

• Reference case:
• λmax = 2 +O(θ4

max)
• λmin = θ4

max
90 +O(θ6

max)
• κr = 180

θ4
max

+O(θ−2
max)

• Optimal stacks:
• λmax = 2 +O(θ4

max)
• λmin = θ4

max
32 +O(θ8

max)
• κmin = 64

θ4
max

+O(1)

• Same asymptotics



First Order Conditions

• First variation of the condition number:

δκ = 0⇒ 2
δS
S

=
δJ
J

• Gives a different parametrization:

S2 = LP⇒ S2

P
= L

• With L ≥ 4,

κ =
S +
√

S2 − 4P

S−
√

S2 − 4P
=

1 +
√

1− 4
L

1−
√

1− 4
L

• Minimizing κ⇔ Minimizing S2

P
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Future Work

• Derive a class of preconditioners for different geometries
• Precondition a RTM code for variable density acoustics
• Apply for variable density acoustics
• Generalize to linear elasticity
• Extend to 3D



Summary

Multi-parameter case: Polynomial Preconditioning
• Necessity of preconditioning for success
• Apply to variable density acoustics
• Intrinsic ill-conditioning in variable density acoustics
• Linear elasticity . . .
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