The Conditioning of the Normal Operator for Variable Density Acoustics

Rami Nammour

William Symes

The Rice Inversion Project
Rice University

January 29, 2010 / TRIP Annual Meeting

Linear Inverse Scattering

- m: model (material parameters: velocity, impedance, density ...)
- Write $m=m_{0}+\delta m$
m_{0} : Reference or macro model (given - result of model building, velocity analysis, ...) δm : First order perturbation about m_{0} (to be found)
- Linear (Born) modeling operator $F\left[m_{0}\right]$, models primary reflections
- Linear inversion: given observed data traces $S^{o b s}$, background traces S_{0}, find δm so that:

$$
F\left[m_{0}\right] \delta m \approx S^{o b s}-S_{0}:=d
$$

- Form of AVO analysis
- Component in FWI algorithms

Normal Equations

Interpret as least squares problem: need to solve normal equations

$$
N\left[m_{0}\right] \delta m:=F^{*}\left[m_{0}\right] F\left[m_{0}\right] \delta m=F^{*}\left[m_{0}\right] d
$$

$N:=F^{*}\left[m_{0}\right] F\left[m_{0}\right]:$ Normal Operator (Modeling + Migration), $b:=F^{*} d$: migrated image

- Large Scale: millions of equations/unknowns, also $\delta m \rightarrow N \delta m$ expensive
- Cannot use Gaussian elimination \Rightarrow need rapidly convergent iteration \Rightarrow good preconditioner
- Not narrow band (like Laplace in 2D/3D) \Rightarrow matrix preconditioners ineffective
- Alternative: low order polynomial preconditioner, not obvious

Agenda

- How to build effective low degree polynomial preconditioner

$$
N \delta m=b \Rightarrow \delta m \simeq \sum_{i=1}^{p} c_{i} N^{i-1} b
$$

- p number of material parameters
- c_{i} operators, cheap to apply
- c_{i} computable by rapidly converging iteration
- Cost: few Modeling/Migration iterations
- Justification
- Applicability/limitations

$\Psi D O s$ and their symbols

- N is matrix of $\Psi D O s$ for smooth (non-reflective) m_{0} (Beylkin,1985; Rakesh,1988) = operators defined by symbols $a(x, \xi)$

$$
O p(a) u(x)=\iint a(x, \xi) u(y) e^{-i[(x-y) \cdot \xi]} d \xi d y
$$

- $a(x, \xi)$: Scalar function of position x and wavenumber ξ

$$
|a(x, \xi)|=\mathcal{O}\left(|\xi|^{m}\right), \quad \text { as }|\xi| \rightarrow \infty
$$

$$
m=\operatorname{ord}(a):=\operatorname{ord}(O p(a))
$$

- Calculus of scalar symbols:

1. $O p\left(\alpha_{1} a_{1}+\alpha_{2} a_{2}\right)=\alpha_{1} O p\left(a_{1}\right)+\alpha_{2} O p\left(a_{2}\right), \alpha_{1}, \alpha_{2}$ scalars
2. $O p\left(a_{1} a_{2}\right) \simeq O p\left(a_{1}\right) O p\left(a_{2}\right) \simeq O p\left(a_{2}\right) O p\left(a_{1}\right)$
3. $\operatorname{ord}\left(a_{1} a_{2}\right)=\operatorname{ord}\left(a_{1}\right)+\operatorname{ord}\left(a_{2}\right)$
$(\simeq:$ difference is lower order $\Psi D O$)

Properties of Normal Operator

- Matrix of pseudodifferential operators, when a polarized signal is scattered uniquely to another polarized signal (P-P, P-S, S-S). (Beylkin and Burridge, 1989; De Hoop, 2003)
- $N=O p(A), A=p \times p$ matrix of scalar symbols

$$
O p(A) u(x)=\iint A(x, \xi) u(y) e^{-i[(x-y) \cdot \xi]} d \xi d y
$$

Polynomial Approximate Inverse

- $A(x, \xi)$ is $p \times p$ matrix: satisfies its own characteristic equation (Cayley-Hamilton):

$$
I-\sum_{i=1}^{p} a_{i}(x, \xi) A^{i}(x, \xi)=0
$$

where $a_{i}(x, \xi)$ are symbols

- Inverse of $A(x, \xi)$: polynomial of degree $p-1$ in A :

$$
I=\left(\sum_{i=1}^{p} a_{i}(x, \xi) A^{i-1}(x, \xi)\right) A(x, \xi)
$$

- Symbol calculus $\Rightarrow \exists$ scalar $\Psi D O s\left\{\bar{c}_{1}, \ldots, \bar{c}_{p}\right\}$ s.t., $\bar{c}_{i}=O p\left(a_{i}\right), N^{\dagger} \approx$ "polynomial" of degree $p-1$:

$$
I \approx\left(\sum_{i=1}^{p} O p\left(a_{i}\right) O p\left(A^{i-1}\right)\right) o p(A) \approx\left(\sum_{i=1}^{p} \bar{c}_{i} N^{i-1}\right) N
$$

Solved Problem ... Not Yet!

- Don't know symbol A of N
- Only have ability to apply N (modeling + migration)
- Not really a polynomial: coefficients are operators!
- Need an independent method to determine coefficient operators, and must be able to apply efficiently

Polynomial Preconditioning

- Don't need N^{\dagger}, only need to solve $N x=b, b=F^{*} d$
- Approximation of c_{i} in data adaptive way:

$$
\left\{c_{1}, \ldots, c_{p}\right\}=\underset{c_{1}, \ldots, c_{p} \in \Psi D O}{\operatorname{argmin}}\left\|\left(I-\sum_{i=1}^{p} c_{i} N^{i}\right) b\right\|^{2}
$$

Know from Cayley-Hamilton that $\min \approx 0\left(\right.$ for $\left.c_{i}=\bar{c}_{i}\right)$

- Get approximate solution:

$$
x=N^{-1} b \approx N^{-1} \sum_{i=1}^{p} c_{i} N^{i} b \approx \sum_{i=1}^{p} c_{i} N^{i-1} b:=x_{i n v}
$$

Approximation of $\Psi D O$

How to represent c_{i} ?

- The action of the Ψ DO in 2D (Bao and Symes, 1996):

$$
O p(a) u(x, z) \approx \iint a(x, z, \xi, \eta) \hat{u}(\xi, \eta) e^{i(x \xi+z \eta)} d \xi d \eta
$$

$\hat{u}=\mathcal{F}[u]$.

- Direct Algorithm $O\left(N^{4} \log (N)\right)$ complexity $\left(N=\mathcal{O}\left(10^{3}\right)\right)$!
- Finite Fourier series of length K :

$$
\begin{gathered}
a(x, z, \xi, \eta) \approx \sum_{l=-K / 2}^{l=K / 2} \hat{a}_{l}(x, z) e^{i l \theta} \\
\theta=\arctan \left(\frac{\eta}{\xi}\right)
\end{gathered}
$$

- Use FFT $\Rightarrow O\left(K N^{2}[\log (N)+\log (K)]\right)$
- K independent of N, depends on smoothness of a
- θ captures dip-dependence

Recap

To solve

$$
N x=b,
$$

where $N=F^{*} F, b=F^{*} d$.
Given, $b=F^{*} d, \ldots, N^{p} b$

- Represent $c_{i}=O p\left(a_{i}\right)$
- Compute $\left\{c_{1}, \ldots, c_{p}\right\}=\underset{c_{1}, \ldots, c_{p} \in \Psi D O}{\operatorname{argmin}}\left\|\left(I-\sum_{i=1}^{p} c_{i} N^{i}\right) b\right\|^{2}$.
- Approximate $x_{i n v}:=\sum_{i=1}^{p} c_{i} N^{i-1} b \approx N^{-1} b=x$

Scaling Methods

- $p=1$:
- $\mathrm{NO} \approx$ multiplication by a smooth function (Claerbout and Nichols, 1994; Rickett, 2003)
- Near Diagonal Approximation of NO (Guitton, 2004)
- Special case (well defined dip): normal operator \approx multiplication by smooth function after composition with power of Laplacian (correction to Claerbout-Nichols Symes, 2008) Polynomial preconditioning reduces to this method when $p=1, K=1$.
- Herrmann et al. (2007) derive a scaling method using curvelets to approximate eigenvectors

Scaling Methods

- $p=1$:
- $\mathrm{NO} \approx$ multiplication by a smooth function (Claerbout and Nichols, 1994; Rickett, 2003)
- Near Diagonal Approximation of NO (Guitton, 2004)
- Special case (well defined dip): normal operator \approx multiplication by smooth function after composition with power of Laplacian (correction to Claerbout-Nichols Symes, 2008) Polynomial preconditioning reduces to this method when $p=1, K=1$.
- Herrmann et al. (2007) derive a scaling method using curvelets to approximate eigenvectors
- $p>1$:
- New explanation
- Old example
- New conditioning study

Example: Multi-parameter Case, $p=2$

Example: Variable density acoustics, impedance and density. Formally the same, solve

$$
N x=b
$$

- N is a 2×2 matrix of pseudodifferential operators
- $b=F^{*} d$ consists of two images, one for each parameter

Geometry

N calculated analytically for variable density acoustics, constant background velocity.

The Challenge: Separation

Build model and perturbations, use analytical formula for N to get $b=N x$

True model: x
Mig images: b
RICE

Polynomial Preconditioning

To solve

$$
N x=b,
$$

where $N=F^{*} F$ and $b=F^{*} d \in \operatorname{Range}(N)$.
Given $b, N b$ and $N^{2} b$. Compute c_{1}, c_{2} :

$$
\left\{c_{1}, c_{2}\right\}=\underset{c_{1}, c_{2} \in \Psi D O}{\operatorname{argmin}}\left\|b-c_{1} N b-c_{2} N^{2} b\right\|^{2} .
$$

Then,

$$
x=N^{-1} b \approx N^{-1}\left(c_{1} N b+c_{2} N^{2} b\right) \approx c_{1} b+c_{2} N b:=x_{i n v}
$$

What to expect from N

Conditioning of N

Figure: spatial variation of the condition number of the symbol of N

Preconditioning the Preconditioner

Compute a preconditioner $P \approx N^{-1}$ using full aperture. Then,

- $b \rightarrow P b$
- $\mathrm{Nb} \rightarrow \mathrm{PNPb}$
- $N^{2} b \rightarrow P N P N P b$

Compute polynomial preconditioner:

- $\left\{c_{1}, c_{2}\right\}=\underset{c_{1}, c_{2} \in \Psi D O}{\operatorname{argmin}}\left\|P b-c_{1} P N P b-c_{2} P N P N P b\right\|^{2}$
- $x=N^{-1} b=(P N)^{-1} P b \approx c_{1} P b+c_{2} P N P b:=x_{i n v}$

Preconditioned Images

Results

Figure: Comparison between inverted and true image

Conditioning of $N P$

Figure: spatial variation of the condition number of the symbol of $N P$

Conditioning of symbol of N , continued

- Previous preconditioner specific to problem
- Find more general preconditioner?
- The symbol of $N=o p(A)$ for variable density acoustics has the form:

$$
A=f(\theta)\left(\begin{array}{cc}
1 & \sin ^{2}\left(\frac{\theta}{2}\right) \\
\sin ^{2}\left(\frac{\theta}{2}\right) & \sin ^{4}\left(\frac{\theta}{2}\right)
\end{array}\right)|\xi|
$$

- Opening angle θ : function of position of sources, receiver, and spatial coordinates.
- III-conditioning of N captured by the matrix part

Goal: Optimal Weights

- Study conditioning of matrices of the form

$$
N=\int_{0}^{\theta_{\max }} d \theta f(\theta)\left(\begin{array}{cc}
1 & \sin ^{2}\left(\frac{\theta}{2}\right) \\
\sin ^{2}\left(\frac{\theta}{2}\right) & \sin ^{4}\left(\frac{\theta}{2}\right)
\end{array}\right)
$$

- Minimize the condition number:

$$
\kappa=\frac{\lambda_{\max }}{\lambda_{\min }}, \quad \text { s.t. } f \geq 0, \quad \int_{0}^{\theta_{\max }} f(\theta) d \theta=1
$$

- Parametrize in terms of : $S=\lambda_{\max }+\lambda_{\min }=\operatorname{trace}(N)$ and $P=\lambda_{\text {max }} \lambda_{\text {min }}=\operatorname{det}(N)$

$$
\kappa=\frac{S+\sqrt{S^{2}-4 P}}{S-\sqrt{S^{2}-4 P}}
$$

Reference Case

- Let $f(\theta)=\frac{1}{\theta_{\max }}$

Figure: Condition Number as a function of $\theta_{\max }$

Optimal Low Offset/Large Offset Stack

- Look for optimal low offset/large offset stack:

$$
f(\theta)=(1-\alpha) \delta(\theta)+\alpha \delta\left(\theta-\theta_{\max }\right), \quad 0 \leq \alpha \leq 1
$$

- Minimizing κ, letting $\beta=\sin ^{4}\left(\frac{\theta_{\text {max }}}{2}\right)$:

$$
\begin{gathered}
\alpha=\frac{1}{2+\beta}, \\
\kappa_{\min }=\frac{\beta+1+\sqrt{1+\beta}}{\beta+1-\sqrt{1+\beta}}
\end{gathered}
$$

- Note: for large offset $\left(\theta_{\max } \rightarrow \pi\right)$, small offsets weighted double!

How Much Better?

Figure: Ratio of optimal condition number to reference

A Closer Look

For small $\theta_{\max }$

- Reference case:
- $\lambda_{\text {max }}=2+\mathcal{O}\left(\theta_{\max }^{4}\right)$
- $\lambda_{\text {min }}=\frac{\theta_{\text {max }}^{4}}{90}+\mathcal{O}\left(\theta_{\max }^{6}\right)$
- $\kappa_{r}=\frac{180}{\theta_{\text {max }}^{4}}+\mathcal{O}\left(\theta_{\max }^{-2}\right)$
- Optimal stacks:
- $\lambda_{\text {max }}=2+\mathcal{O}\left(\theta_{\text {max }}^{4}\right)$
- $\lambda_{\text {min }}=\frac{\theta_{\text {max }}^{4}}{32}+\mathcal{O}\left(\theta_{\text {max }}^{8}\right)$
- $\kappa_{\text {min }}=\frac{64}{\theta_{\text {max }}^{\text {m }}}+\mathcal{O}(1)$
- Same asymptotics

First Order Conditions

- First variation of the condition number:

$$
\delta \kappa=0 \Rightarrow 2 \frac{\delta S}{S}=\frac{\delta J}{J}
$$

- Gives a different parametrization:

$$
S^{2}=L P \Rightarrow \frac{S^{2}}{P}=L
$$

- With $L \geq 4$,

$$
\kappa=\frac{S+\sqrt{S^{2}-4 P}}{S-\sqrt{S^{2}-4 P}}=\frac{1+\sqrt{1-\frac{4}{L}}}{1-\sqrt{1-\frac{4}{L}}}
$$

- Minimizing $\kappa \Leftrightarrow$ Minimizing $\frac{S^{2}}{P}$

Figure: Condition number as a function of $L=\frac{S^{2}}{P}$

Future Work

- Derive a class of preconditioners for different geometries
- Precondition a RTM code for variable density acoustics
- Apply for variable density acoustics
- Generalize to linear elasticity
- Extend to 3D

Summary

Multi-parameter case: Polynomial Preconditioning

- Necessity of preconditioning for success
- Apply to variable density acoustics
- Intrinsic ill-conditioning in variable density acoustics
- Linear elasticity ...

Acknowledgments

- Dr. Eric Dussaud
- Dr. Fuchun Gao
- TRIP sponsors
- NSF grant: DMS 0620821

THANK YOU!

References

- Beylkin, G. (1985). Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized radon transform. Journal of Mathematical Physics, 26:99-108
- Rakesh (1988). A linearized inverse problem for the wave equation. Communications on Partial Differential Equations, 13(5):573-601
- G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustics and elasticity Wave Motion, 12, 1, pp. 15-52, 1990
- Claerbout, J. and Nichols, D. (1994). Spectral preconditioning. Technical Report 82, Stanford Exploration Project, Stanford University, Stanford, California, USA
- Bao, G. and Symes, W. (1996). Computation of pseudo-differential operators. SIAM J. Sci. Comput., 17(2):416-429
- Rickett, J. E. (2003). Illumination-based normalization for wave-equation depth migration. Geophysics, 68:1371-1379
- De Hoop, M. V. (2003). Microlocal Analysis of Seismic Inverse Scattering. Inside Out: Inverse Problems
- Guitton, A. (2004). Amplitude and kinematic corrections of migrated images for nonunitary imaging operators. Geophysics, 69:1017-1024
- Herrmann, F., Moghaddam, P., and Stolk, C. (2008b). Sparsity- and continuity promoting seismic image recovery with curvelet frames. Applied and Computational Harmonic Analysis, 24:150-173
- Herrmann, F., Brown, C., Erlangga,Y., Moghaddam, P., Curvelet-based migration preconditioning. SEG Expanded Abstracts 27, 2211 (2008); DOI:10.1190/1.3059325
- Symes, W. W. (2008). Approximate linearized inversion by optimal scaling of prestack depth migration. Geophysics, 73:R23-R35

