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ABSTRACT

This thesis describes an implementation of the discontinuous Galerkin finite element

time domain (DGTD) method on unstructured meshes to solve acoustic wave equa-

tions in discontinuous media. In oil industry people use finite difference time domain

(FDTD) methods to compute solutions of time domain wave equations and simu-

late seismic surveys, the first step to explore oil and gas in the earth’s subsurface,

conducted either in land or sea. The results in this thesis indicate that the first

order time shift effect resulting from misalignment between numerical meshes and

material interfaces in the DGTD method occurs the same way as interface errors in

the finite difference simulation of wave propagation. This thesis describes two ap-

proaches: interface-fitting mesh and local mesh refinement, without modifying the

DGTD scheme, to decrease this troublesome effect with verifications of 2D examples.

The comparison in this thesis between the DGTD method on the piecewise linear

interface-fitting mesh and the staggered FDTD method both applied to a square-circle

model and a 2D dome model confirms the fact that the DGTD method can achieve

a second order convergence rate while the error in the staggered FDTD method is

dominated by the first order interface error. I end with the conclusion that the DGTD

method requires less computation cost than the staggered FDTD method for the two

solutions to have roughly the same accuracy for the more realistic 2D dome model.
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INTRODUCTION CHAPTER

The numerical solutions of wave propagation have numerous applications. One

of particular interest and importance is to simulate seismic surveys in oil and gas

exploration. Various numerical methods have been developed to carry out this simu-

lation. In this thesis I describe an implementation of the discontinuous Galerkin finite

element time domain method (DGTD) applied to acoustic wave equations in hetero-

geneous media and use computer programs I developed to evaluate its accuracy and

efficiency. Furthermore, I will make comparison between DGTD and finite difference

time domain method, a fully-developed method used daily as the wave propagator

in reflection seismology for decades. This comparison may shed light on people’s

understanding of benefits and drawbacks of the two methods.

Motivation

The first step in oil and gas exploration either in land or sea is to conduct seismic

surveys, which typically consists in sending into the ground sound waves generated

by sources at the surface such as air guns in marine surveys or dynamite in land ac-

quisition and through sensors called geophones recording echoes of the sending waves,

caused by the heterogeneity of the earth’s subsurface. Seismologists and geoscientists

then can analyze the recorded time series of data called seismic traces or seismograms

and interpret the earth’s interior properties by imaging technologies based on the ba-

sic mathematical point of view that "waves transfer space-time resolved information

from one place to another with (relatively) little loss” (Symes, 2003).

Numerical seismic modeling, duplicating the seismic survey procedure and gen-

erating synthetic seismograms provided the earth’s subsurface structure, has appli-
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cations at least in two aspects including the inversion process and the experimental

design. Reflection seismic inversion problem is usually set to find the geological model

given observed seismic data. For example, in linearized inversion problems the oscil-

latory part of the geological model is updated iteratively by minimizing an objective

function, for example, a distance function related to observed data (seismograms)

and synthetic data. Since each iteration a wave propagation problem with highly

intensive computation must be solved and thousands of iterations are required, an

efficient and accurate wave propagation solver is highly demanded in this context.

In addition, numerical modeling has been used for designs of acquisition geome-

tries. Source and receiver geometries decide the subsurface image quality in the later

process after seismic surveys. Regone (2007) used 3D finite difference modeling, in-

stead of unfeasible 3D field surveys due to the cost, to convince people the great

improvement in image quality with wide-azimuth surveys over traditional narrow-

azimuth towed-streamer surveys, and came up with two newly acquisition geometries:

receivers distributed in a sparse grid on the ocean floor with sources distributed in a

dense grid on the surface (OBS) and multiple vessels wide-azimuth towed-streamer

surveys (WATS), which both have been used in practice.

Various numerical methods are applicable to wave propagation problems. Fi-

nite difference (FD) and discontinuous Galerkin (DG) methods are of this thesis’s

concerns. FD methods become an industry standard for solving wave propagation

problems due to their desirable trade-off between the computation efficiency and ac-

curacy, as well as the relatively easy implementation of FD methods. Discontinuous

Galerkin (DG) methods draw a lot of attentions in computational electromagnetic

and fluid dynamics communities recently since DG methods specialize in solving hy-

perbolic partial differential equation (PDE) and dealing with complex geometries.

Because (a) seismic wave equations are one class of the most basic linear hyperbolic

PDEs, (b) the heterogeneity of geological model and the irregular surface landform
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in land acquisition are in need of discrete grids having the flexibility to represent

complex structures precisely, DG methods are a competitive candidate for seismic

wave simulation.

Though a lot of efforts have been paid on both methods respectively, there are

few works regarding careful comparison between them. This work as intended is to

study this aspect within the context of reflection seismology, and come up with some

useful conclusions which may provide a guideline of choosing the proper method for

the proper problem.

In this work I choose the acoustic wave equations (pressure-velocity formulation)

to which the two methods are applied. The acoustic wave equations form a linear PDE

system in which the acoustic pressure and particle velocity interact with one another,

according to Hooke’s law and conservation of momentum, to propagate acoustic waves

through materials. Although elastic wave simulation is more close to the way waves

propagate in the subsurface, acoustic modeling is good enough for this study for

several reasons.

First, material parameters are easier to prepare for acoustic modeling. Mate-

rial density and bulk modulus, or sound speed, are all needed for acoustic modeling,

while in elastic modeling the stress-strain relation itself can asks for up to 21 indepen-

dent material parameters, some of which are still mysterious. Even in the isotropic

case, how to interpret shear velocity near the ocean bottom is still a mystery to geo-

scientists. Second, one can obtain analytic solutions of acoustic wave equations in

some cases. Therefore I can carry out conventional convergence tests rather than the

ones through error estimations. Third, for free surface boundary, absorbing bound-

ary, ocean floor nearby and so on, the two methods in elastic modeling have their

own delicate numerical treatments, which may render the comparison less objective.

Acoustic wave equations as a simplified model don’t have these tedious and tricky
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implementation issues. The comparison for acoustic modeling can reveal underlying

intrinsic natures of the two methods themselves as much as possible. Last but not

least, acoustic modeling has been used as grounds for many of processing technologies.

In future work, I may use acoustic modeling based on DGTD methods as a built-in

part of imaging process and evaluate it at the next level of applications in reflection

seismology.

Review

Characterizations of convection phenomenons are illustrated through natural and

artificial events from the hurricane formation to the oil and gas production. A class

of hyperbolic PDEs under certain mathematical assumptions give descriptions of the

evolution of these phenomenons. Toro (1997) from both theoretical and numerical

aspects give a review of hyperbolic PDEs originating from fluid dynamics. Mathe-

matical derivations of both acoustic and elastic wave equations of this thesis’s interest

can be seen in Leveque (2002), which also includes theories and numerical methods

(finite volume methods) for general hyperbolic problems. Bedford and Drumheller

(1994) offers a basic introduction to linear elasticity for wide audience. The first part

of Cohen (2002) also provides a good reference for understanding basic definitions

and properties of wave equations.

DG methods have been applied to a wide range of hyperbolic problems, includ-

ing gas and fluid dynamics (Cockburn and Shu, 1989; Bassi and Rebay, 1997; Giraldo

et al., 2002), Maxwell’s equations (Warburton, 1999; Hesthaven and Warburton, 2002;

Cockburn et al., 2004; Cohen et al., 2006), acoustic and elastic wave equations (Atkins

and Shu, 1998; Käser and Dumbser, 2006) and so on for more than three decades,

since the first DG scheme was introduced by Reed and Hill (1973) for solving a

neutron transport equation. DG methods can be viewed as an extension of finite vol-
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ume (FV) methods in the sense that DG methods allow discontinuous approximation

of solutions. Techniques developed for FV methods fit into DG methods naturally

(Cockburn et al., 1999). For example, numerical fluxes, through which underlying

physical laws could be imposed into the numerical scheme so as to ensure the numer-

ical stability, have been studies for a while by authors (Toro, 1997; Leveque, 2002),

whose results can be directly used in the DG framework. Hesthaven and Warbur-

ton (2008) scrutinize DG methods together with other popular numerical methods

for PDEs and outline the general properties of DG methods and conclude that DG

methods possess every useful feature discussed. Cockburn et al. (1999) and Hesthaven

and Warburton (2008) list generic properties of DG methods as follows,

- DG methods are good at dealing with complex geometries and usually form

easy implementations for boundary conditions.

- For time dependent PDEs, DG methods can formulate explicit semi-discrete

form due to the locally defined mass matrix. This avoids inverting a large-scale

mass matrix such as in conventional finite element methods. high order schemes

- High order accuracy under DG framework is achievable for the problems whose

exact solutions are smooth. This is a good news for this work because solutions

of wave equations usually have certain smoothness property.

- Implementation of hp-adaptivity in DG methods is less troublesome than con-

forming finite element methods, because no continuity restrictions are imposed

on numerical solutions.

The convergence analysis of DG methods, started by Lesaint and Raviart (1974)

assuming analytic solutions are smooth, proved hp+ε convergence rate, where h is grid

size, p is the degree of local basis polynomials and the value ε is determined by ways of

the triangulation, for example, 0 for general grids and 1 for Cartesian grids. Johnson
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and Pitkaranta (1986) later ameliorated ε to be 1/2 for general grids. Ainsworth

(2004) studied the dispersive behavior of DG methods and showed an exponential

decay of the relative phase error provided 2p+ 1 ≈ ckh for some fixed constant c > 1,

where k is spatial wave-number. This result is critical because it states a rule for

choosing the order of basis functions with respect to the grid size so as to achieve

the expected error in wave simulations with DG methods. A similar criterion for

finite-difference acoustic modeling can be found in Alford et al. (1974).

For time dependent problems, a proper time integration method, i.e., an ODE

solver, is required after the spatial discretization with DG methods. To avoid solving

large-scale linear systems each time step, an explicit ODE solver is preferred. Chavent

and Salzano (1982) formed a DG method for spatial discretization in 1D scalar con-

servation law and used a forward Euler method for time integration. This method by

a numerical analysis, however, is shown to be stable only if ∆t ∼ O(∆x3/2), which

implies unacceptably small time step. The high-order accurate Runge-Kutta (RK)

DG methods, generalized by Cockburn and Shu (1989), are widely used because they

match the temporal and spatial discretization accuracy, and just require ∆t ∼ O(∆x).

The ADER-DG methods in Käser and Dumbser (2006) are also an interesting way

to achieve high order accuracy in both space and time by using arbitrary high order

derivatives to construct time discretization. This work uses the low-storage five-stage

fourth-order explicit RK method for time discretization in the DG implementation

as discussed in Hesthaven and Warburton (2008).

Finite difference (FD) methods becomes a robust tool and an industry standard

in seismic wave simulation, because FD methods perform a good balance between

accuracy and efficiency and are easily implemented. Owing to the efforts of many

authors (Richtmyer and Morton, 1967; Mitchell and Griffiths, 1994; Cohen, 2002),

basic issues related to FD methods, such as consistency, stability and convergence,

are well studied and criterion for designing FD methods for different problems are
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provided. One can expect reliable and accurate solutions from a suitable FD method.

In FD methods, space and time are discretized by grids, where field variables as

well as material parameters are defined. Differential operators are approximated by

finite-difference formulas. In seismic wave simulation, the discrete grids are usually

distributed equally on a Cartesian coordinate system, though other systems are pos-

sible. The benefits of using such grids are explicit grid-neighbor relation and efficient

memory access pattern.

There are two approaches of FD methods, conventional-grid and staggered-grid

approaches differentiated with each other in the way whether unknowns of field vari-

ables and/or material parameters are defined on the same grid or not. In the 1960s

and 1970s, conventional-grid approach was popular for the displacement formulation

of elastic wave equations, of which functions are approximated at the same discrete

grid (Alford et al., 1974; Alterman and Karal, 1968; Boore, 1970, 1972; Dablain, 1986;

Kelly et al., 1976). Unfortunately, grid dispersion and numerical instabilities when

material parameters has high contrast discontinuities influence numerical solutions

badly in this approach. Staggered-grid approach, in which several grids are employed,

overcomes these difficulties and so are widely used recently. Yee (1966) first applied

a staggered-grid second order FD scheme to Maxwell’s equations in isotropic me-

dia. Madariaga (1976) later used a second order staggered-grid FD scheme to model

the earthquake rupture. Virieux (1984, 1986) formally established the staggered-grid

approach to solve velocity stress formulation of elastic wave equations. The fourth-

order staggered-grid FD method introduced by Bayliss et al. (1986) was then proved

to be more efficient and require less memory than the second-order method, since

the grid interval in the fourth-order method can be twice as much as the one in the

second-order method according to the rule of thumb proposed by Alford et al. (1974).

High-order FD time domain methods are constructed to control the grid dispersion



9

effectively for models with smooth parameters. However, FD methods for seismic

models with high contrast discontinuities of material parameters lead to a first-order

interface error, which is irrelevant to FD methods, but stems from the insufficient

representation of model parameters on discrete grids. Brown (1984) first analyzed

this first order error component of FD methods for an interface problem. Symes

and Vdovina (2009) theoretically and numerically quantify the first order interface

misalignment error for the second order in time and space staggered-grid FD method

applied to the pressure-velocity formulation of the acoustic wave equation, and provide

an explicit expression of a non-zero time shift of numerical solutions due to the first

order interface error. In their discussion, the interface error in staggered-grid FD

method is unavoidable for heterogeneous media, because several grids are employed

in staggered-grid FD method and misalignment with the material interface must occur

for at least one computational grid.

Claim

This thesis through numerical examples demonstrates DG methods somehow can

remedy this interface error by using the piecewise linear interface-fitting mesh and

local mesh refinement. Given a mesh of elements with straight-line edges (triangles for

example), each element can be considered as a homogeneous media. In this way, one

actually glues piecewise constant medium in each element together to approximate

the real model. Interface-fitting meshes align the vertices of elements with material

interfaces. Provided the seismic model can be detached into several homogeneous

media and interface-fitting mesh for this model is generated, (a) when interfaces are

composed of line segments, the model approximation on this mesh is exact, so the

numerical error comes from DG methods only; (b) when interfaces are curved and

this mesh is not too coarse, the model approximation brings in a second order error
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since line segments of elements can not fully represent the curved interfaces, therefore

the second order convergence rate is the best one can expect in this case. In short, by

using interface-fitting meshes, the second order convergence rate is achievable with

DG methods on interface-fitting meshes. However this kind of meshes sometimes are

hard to generate especially when the material structures are complicated.

Local mesh refinement is another approach proposed in this thesis to decrease the

interface error. By locally refining the mesh near the interface, the interface error is

reduced as the distance between the interface and the nearest grid points is shortened.

The drawback of this technique is that one can get very small time step due to the

small elements by the refinement.

I compares the computation cost, measured by the wall clock time or the number

of float point operations, for the two solutions by FD and DG methods to have roughly

the same accuracy. For the heterogeneous model with piece-wise constant media, DG

methods on a interface-fitting mesh can achieve second order convergence rate while

the numerical error of staggered-grid FD methods is dominated by the first order

interface error. In this case, DG methods are more efficient for a prescribed accuracy

(5% for example). This conjecture is demonstrated by numerical examples.

I also implement the low-storage curvilinear DG method. In this method curvilin-

ear elements instead of straight sided elements are used to approximate the geometry

of the model, such as the material interfaces or boundaries. In this way the geometry

representation by curvilinear elements complements the accuracy of the DG solver.

We can expect the optimal convergence rate for the numerical simulation. Compared

to the 2nd order convergence rate on straight sided elements, this method is more

tempting. In order to form the curvilinear elements, one need the geometry informa-

tion as precisely as possible. But the exact expression of the geometry for a realistic

model may be unknown. It’s impossible to built curvilinear elements and hence the
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curvilinear DG method is not applicable.

Agenda

This thesis is organized as follows. First the model problem, i.e., pressure-velocity

formulation of the acoustic wave equations, is introduced. For the model problem,

analytic solutions of three special cases are discussed. The first two cases are used in

the convergence tests later. The last one, called Riemann problem, showing a way to

construct numerical flux for the linear system PDE, is recalled when the DG method

is formulated. Then I construct the DG method following Hesthaven and Warburton

(2008). Later, two types of boundary conditions widely used in seismic simulation are

discussed. At the end of the method chapter, I present the 2-4 staggered-grid FDTD

method for acoustics used for the comparison.

Several numerical experiments are carried out for the convergence tests of DGTD

methods and comparison of DGTD and FDTD. I first present the point source wave

and plane wave experiments for the purpose of the convergence tests. Then the

interface error in DGTD methods is illustrated by using the misaligned mesh, while

the interface-fitting mesh and local refined mesh examples show the approaches at

mesh level in DGTD methods to reduce this unpleasant error component. At last I

make comparison of the two methods with respect to the computation cost and the

numerical accuracy. The square-circle model and 2D dome model are used for such

comparison.

After numerical experiments, I’ll discuss the formulation of the low-storage curvi-

linear DG method. Then this method is applied to the square-circle model and

2D dome model. The curvilinear DG method as shown in the numerical examples

achieves the optimal convergence rate.
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METHODS CHAPTER

Introduction

This chapter first introduces the pressure-velocity formulation of the acoustic wave

equations, for which three special cases are discussed. The analytic solutions of

the first two cases are provided for the convergence tests. The last case forms a

Riemann problem. The process for the construction of its solution shows a way to

formulate the numerical flux for the acoustic wave equations in DG methods. Next,

the DG discretization for AWE in space is built step by step following Hesthaven

and Warburton (2008). I omit basic theoretical discussions, but focus on presenting

a self-sustained construction procedure, with which one can develop and implement

a DG method by himself/herself. Finally, Richardson extrapolation is discussed for

convergence rate estimation in the case where the analytic solutions are inaccessible.

Model problem

The pressure-velocity formulation of the acoustic wave equations (AWE) is ex-

pressed as a linear PDE system, in which the acoustic pressure and particle velocity

interact with one another to propagate waves through materials. The purely hyper-

bolic property makes such system a good prototype (starting point) to understand

the behaviors of the hyperbolic PDEs and develop effective and efficient numerical

methods.

This first-order linear system in term of pressure p and velocity reads,

ρ(x)
∂v

∂t
+∇p = 0,

1

κ(x)

∂p

∂t
+∇ · v = f(x, t; xs), (1)
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where f represents source density function with respect to source location xs ∈ Rn

(n = 1, 2, or 3) as well as space x ∈ Rn and time t; ρ and κ denote the mass density

and bulk modulus, respectively, which are dependent of space x only; speed of the

wave is c(x) =

√
κ(x)

ρ(x)
and acoustic impedance is Z(x) =

√
κ(x)ρ(x)

Point source wave

Ideally, source density function f is viewed as a isotropic point radiator with a

known time-dependent function as,

f(x, t; xs) = w(t)δ(x− xs), (2)

which is a quite coarse approximation to the real source function. However, it is fairly

good for this thesis. Usually, the source pulse w(t) is of compact support in time,

that is w(t) = 0, |t| > t0. This mimics the acoustic energy generated by airguns and

dynamite during a limited time. To simply see how waves expand starting from a

point, I hereby assume the media is homogeneous, that is ρ(x) = ρ0 and κ(x) = κ0,

∀x. The model problem Eqs.(1) then are equivalent to the second order wave equation

for the acoustic potential u with proper initial and boundary conditions,

1

κ0

∂2u

∂t2
−∇ · 1

ρ0

∇u = w(t)δ(x− xs), (3)

where u(§, t) =
∫ t
−∞ p(x, s)ds, thereby p =

∂u

∂t
and v = −1

ρ0

∇u. The solution of

Eq.(3) with vanishing initial conditions describes outgoing spherical waves at speed

c0 as

u(x, t) = ρ0
w(t− r/c0)

4πr
, r = |x− xs|. (4)
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Two-layer media

The material parameters ρ and κ are usually non-constants, but vary with location.

Due to the material discontinuity, or called material interface, the incident wave is

decomposed into a transmitted wave and a reflected wave. Two-layer medium is a

good simplified model to replicate this wave decomposition procedure. In two-layer

medium, the material parameters have a jump at x = 0, but keep invariant with

respect to other spatial variables,

(κ(x), ρ(x)) =

 (κl, ρl), x ≤ 0

(κr, ρr), x > 0.
(5)

Eqs.(1) without source can be further simplified into 1D case, because of field variables

only dependent of x,

ρ(x)
∂v(x, t)

∂t
= −∂p(x, t)

∂x
,

1

κ(x)

∂p(x, t)

∂t
= −∂v(x, t)

∂x
. (6)

Assuming the incident wave impacts on the interface from the left (x<0), the solution

of Eqs.(6) with continuity restriction at the interface x = 0 is then given as,

p(x, t) =


g(t− x/cl)−

ρlcl − ρrcr
ρlcl + ρrcr

g(t+ x/cl), x ≤ 0

2ρrcr
ρlcl + ρrcr

g(t− x/cr), x > 0

v(x, t) =


1

ρlcl
(g(t− x/cl) +

ρlcl − ρrcr
ρlcl + ρrcr

g(t+ x/cl)), x ≤ 0

2

ρlcl + ρrcr
g(t− x/cr), x > 0

(7)

where g is a continuous function compatible with the initial condition.

Two-layer medium model as well as its solution set an interesting and practicable



15

example to study the error components in numerical methods, see Symes and Vdovina

(2009). I will use the same example to illustrate the error components in DG methods

later and propose approaches to suppress the interface error as much as possible.

Riemann problem

Previously I have studied the cases with continuous solutions due to the continuous

initial conditions. Now I consider the problem with piece-wise constant initial data,

called Riemann problem. I start with 1D acoustic wave equations Eqs.(6) in a constant

medium and construct its solution. Then I extend to the heterogeneous media and

multidimensional cases. The discussion below is partly adopted from Leveque (2002).

Eqs.(6) in a constant medium with piecewise constant initial data can be rewritten

into matrix-vector form as,

∂q

∂t
+ A(x)

∂q

∂x
= 0, (8)

q(x, 0) =

 qL, x < 0

qR, x > 0

with

q =

 v(x, t)

p(x, t)

 , qL =

 vL

pL

 , qL =

 vR

pR

 , A(x) =

 0 κ0

1/ρ0 0

 ,
where A is a constant matrix and diagonalizable, that is A = RΛR−1 with

R = [r1, r2] =

 −√ρ0κ0
√
ρ0κ0

1 1

 ,Λ =

 −c0 0

0 c0

 . (9)

By introducing characteristic variablesW = R−1Q = [w1, w2]
T and multiplying Eq.(8)
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byR−1, it is then deduced into two decoupled advection equations,

∂w1

∂t
− c0

∂w1

∂x
= 0,

∂w2

∂t
+ c0

∂w2

∂x
= 0, (10)

with piecewise constant initial conditions,

W (x, 0) =

 R−1qL := [w1,l, w2,l]
T , x < 0

R−1qR := [w1,r, w2,r]
T , x > 0

whose solutions are

w1(x, t) = w1(x+ c0t, 0) =

 w1,l, x+ c0t < 0

w1,r, x+ c0t > 0

w2(x, t) = w2(x− c0t, 0) =

 w2,l, x− c0t < 0

w2,r, x− c0t > 0

Finally, I can recovery the solution of Eq.(8) as a linear combination of the right

eigenvectors r1, r2 of A.,

q(x, t) = RW (x, t) = r1w1(x, t) + r2w2(x, t) (11)

=


r1w1,l + r2w2,l, x < −c0t

r1w1,r + r2w2,l, −c0t < x < c0t

r1w1,r + r2w2,r, x > c0t

The two characteristic lines x = ±c0t divide the upper-half x− t plane into three

regions. In each region, the solution q(x, t) is constant build up with different super-

position of r1, r2.

One thing to notice is that the above derivation is valid not only for constant
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Figure 1: Solution of Riemann problem in two-layer media in x−t plane has three
states separated by the two characteristic lines x = −clt and x = crt.

medium, but also for cases where R−1∂q

∂x
=

∂(R−1q)

∂x
, i.e., R is independent of x.

This is true when the left and right acoustic impedance’s equal, i.e., Zl = Zr for

two-layer medium (cl and cr are different). The solution of this case has the same

structure as Eqs.(11), but the left and right wave speeds are different.

If R(x) depends on x then R−1(x)
∂q(x, t)

∂x
=
∂(R−1(x)q(x, t))

∂x
− dR−1(x)

dx
q(x, t).

The extra term
dR−1(x)

dx
q(x, t) as a source term ruins the independence of the left-

going and right-going waves and couples them together. Thus the solutions are com-

plicated compared to the constant impedance case.

Leveque (2002) suggest to solve a general Riemann problem at a interface between

two different materials. As indicated in Fig.(1), the two characteristic lines x = −clt

and x = crt cut the upper half x− t plane into three regions. From Eqs.(11), it

is seen that the solution of Riemann problem is a linear combination of two waves

represented by the two right eigenvectors of the material matrix A. Since the waves

propagate the initial data to the left region (x < −clt) and the right region (x > crt),

ql(x, t) = qL and qr(x, t) = qR. The intermediate state qm(x, t) fill in the middle

region (−clt < x < crt) left by the left-going and right-going waves. We also notice
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that the solution jump across the two characteristic lines is parallel with an right

eigenvector of coefficient matrix A(x). Using this feature here gives,

qm − ql = α1

 −Zl
1

 and qr − qm = α2

 Zr

1

 ,
Combining the two equations yields

qr − ql = α1

 −Zl
1

+ α2

 Zr

1

 = Rlr

 α1

α2

 .
Thus one can obtain qm(x, t) = [vm(x, t), pm(x, t)]T , after solving this linear system

for α1, α2. When −clt < x < crt,

vm(x, t) =
ZlvL + ZrvR
Zl + Zr

− 1

Zl + Zr
(pR − pL),

pm(x, t) =
ZrpL + ZlpR
Zl + Zr

− ZlZr
Zl + Zr

(vR − vL).

Here the left-going and right-going waves are coupled together in the intermediate

state qm(x, t) though Rlr, which is composed by the left-going eigenvector from the

left medium and the right-going eigenvector from the right medium.

In two or three dimensions, two-layer media is too simple to describe the structure

of the real model. However, locally two-layer media structure is still a good approx-

imation for a small piece of model where two different materials are presented and

the interface is almost flat. The solution in 1D two-layer medium may extend to 2D

or 3D over such a piece of model in a short period of travel time. In a long period of

time, the extension does not work because the waves propagating from other places

interfere with the solution in an unexpected way.

As seen in Fig.(2), the material parameters vary along the direction ~n (= (nx, ny))
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at the interface, but keep constant along the tangent direction ~τ . After rotating the

x−y Cartesian system to ξ−η coordinate system whose axes are along ~n and ~τ , the 2D

Riemann problem can be decoupled into two 1D Riemann problems with respect to ξ

and η. The 1D Riemann problem with respect to τ is trivial since material parameters

and initial data are all homogeneous (constant) along the tangent direction. Along

the normal direction, the acoustic wave equations in term of the pressure p and

normal velocity v~n(= nxvx+nyvy, where vx, vy are velocity components) with piecewise

constant initial data (Riemann problem) read,

ρ(ξ)
∂v~n
∂t

+
∂p

∂ξ
= 0,

1

κ(ξ)

∂p

∂t
+
∂v~n
∂ξ

= 0, (12)

(v~n(ξ, 0), p(ξ, 0)) =

 (v1
~n, p

1), ξ < 0

(v2
~n, p

2), ξ > 0

(κ(ξ), ρ(ξ)) =

 (κ1, ρ1), ξ < 0

(κ2, ρ2), ξ > 0

where I use the fact that the field variables are independent of η and thereby

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η
= nx

∂

∂ξ
,

∂

∂y
=
∂ξ

∂y

∂

∂ξ
+
∂η

∂y

∂

∂η
= ny

∂

∂ξ
,

For three dimensions, the Riemann problem in two-layer media for acoustics is

decoupled into three 1D Riemann problem along the normal direction and two tangent

directions of the interface plane. The only nontrivial Riemann problem again is the

one along the normal direction, which is the same as Eqs.(12).

The Riemann solver discussed here is intended to construct numerical fluxes in
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~n

~τ

(κ1, ρ1)

(κ2, ρ2)

o

Figure 2: An illustration of two-layer media structure in 2D. ~n,~τ are the unit normal
vector and the unit tangent vector of the interface (dashed line), respectively. Here o
is the origin.

DG methods, rather than analytic solutions. As mentioned before, two copies of

degrees of freedom are defined at the same spatial point of the element edges in DG

methods, since the DG solution has no continuity requirement. A reasonable solution

at those points in a period of time combining information from both elements sharing

the same edge is needed to advance the numerical solution. A Riemann problem in

two-layer media fits for this setting ideally. For each point on an element edge, a

small tube centered at this point and orthogonal to the edge is considered as the

two-layer media model. The initial data are the numerical solutions at this common

point from both elements. Since this point as time goes by stay in the middle region

in the upper half x−t plane as shown in Fig.(1), the intermediate state solution is

the very ingredient to formulate the numerical flux.

The Riemann solver discussed above is fairly enough for the thesis. For other

hyperbolic PDEs, especially when non-linearity presents, an exact Riemann solver

is sometimes unlikely to build up. If needed, one may refer to Toro (1997), which

discusses a variety of approximate Riemann solvers for fluid dynamics.
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Discontinuous Galerkin Time Domain Methods for Acoustics

In this section, I first derive a DG spatial discretization for Eqs.(1) . Then the time

integration method used in this thesis is discussed. To complete the numerical method

for acoustic wave equations, I also include the two types of boundary conditions for

the numerical simulation.

DG Spatial Discretization

The pressure-velocity formulation of the acoustic wave equations in 2D can be

expressed as,

ρ(x, z)
∂vx
∂t

+
∂p

∂x
= 0,

ρ(x, z)
∂vz
∂t

+
∂p

∂z
= 0, (13)

1

κ(x, z)

∂p

∂t
+
∂vx
∂x

+
∂vz
∂z

= w(t)δ(x− xs)δ(z − zs).

To simplify the notation, I rewrite Eqs.(13) into a matrix-vector compact form,

∂q

∂t
+ A(x, z)

∂q

∂x
+B(x, z)

∂q

∂z
= [0, 0, κw(t)δ(x− xs)δ(z − zs)]T ., (14)

where q = [vx, vy, p]
T ,

A(x, z) =


0 0 1/ρ(x, z)

0 0 0

κ(x, z) 0 0

 B(x, z) =


0 0 0

0 0 1/ρ(x, z)

0 κ(x, z) 0

 .

Denote Th as a conforming triangulation of the computational domain Ω̄ ⊂ R2

made of non-overlapping simplices Tk (k = 1, · · · , K), i.e., triangles, with radius of the

inscribed circle denoted by hk. The intersection of two triangles Tj and Tk is either
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an edge or a vertex shared by them, or an empty set. For example, no neighbor

triangles in the mesh are as shown in Fig.(3). In each triangle, the mass density and

Tj

Tk

Figure 3: fault intersection of two triangles, which is not allowed in a conforming
triangulation

bulk modulus are assumed to be constant, that is ρ(x|Tk
= ρk, κ(x)|Tk

= κk. Under

this assumption the spatial derivatives of material parameters are excluded in the DG

method.

Unlike finite element method giving a globally continuous approximation of the

solutions, DG approximates the solutions on elements independently. On a triangular

element Tk, the interpolating Lagrange polynomials
{
lkj
}
j
of degree N (j = 1, · · · , Np,

where Np = (N+1)(N+2)/2) on the α-optimized warp & blend nodal set
{
xkj
}
j
⊂ T̄k

(lki (xkj ) = δij) as indicated in Fig.(4) by Warburton (2006) are the basis functions

for the spatial discretization. The numerical solution qh of Eqs.(13) on Tk is then

expressed as a linear combination of the polynomial basis functions as,

qh(x, t)|Tk
= [vx,h(x, t), vy,h(x, t), ph(x, t)]

T |Tk

= qkh(x, t) = [vkx,h(x, t), v
k
z,h(x, t), p

k
h(x, t)]

T =

Np∑
j=1

qh(x
k
j , t)l

k
j (x)

=

Np∑
j=1

qkj (t)l
k
j (x) =

Np∑
j=1

[vkx,j(t), v
k
z,j(t), p

k
j (t)]

T lkj (x). (15)
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The test function space Vh is then defined as, Vh =
K⊕
k=1

span
{
lkj
}
j
. This construction

here is a nodal version of DG discussed in Hesthaven and Warburton (2008). The

representation of qh with Lagrange basis functions allows me to get the facial values

at the boundary interpolating points directly. The advantage of using nodal basis

function will be seen when computing the boundary integral and the numerical flux.

Figure 4: Illustrations of α-optimized warp & blend nodal distribution on the equi-
lateral triangle. I use the α-optimized warp & blend nodes as the interpolating points
of Lagrange polynomial basis functions. N+1 points live on each edge of the triangle
when using basis functions of degree N . The three figures show the nodal distribution
for different N . On the left, N = 1, Np = 3; in the middle, N = 5, Np = 21; on the
right, N = 8, Np = 45.

Multiplying Eqs.(14) by a test function vh in Vh and taking integration over Tk

yields,

∫
Tk

vh
∂q

∂t
+

∫
Tk

vh(A
∂q

∂x
+B

∂q

∂z
)dV = [0, 0, κkw(t)vh(xs, zs)]

T .

Applying integration by parts gives,

∫
Tk

vh
∂q

∂t
+

∫
∂Tk

vhFdS −
∫
Tk

(
∂vh
∂x

Aq +
∂vh
∂z

Bq)dV = [0, 0, κkw(t)vh(xs, zs)]
T ,

where F(x, t) = (nxA+nzB)q(x, t) is the flux defined on Tk’s boundary ∂Tk of which

~n = [nx, nz] is the unit normal vector. Since I assume A and B are constant over Tk, no

spatial derivatives of A and B are shown in the above equation. Next, substituting
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q and vh with qkh and lki respectively and then partitioning ∂Tk into the edges ekm

(m = 1, 2, 3) shared by Tk’s neighbor triangle Tkm gives the following called a DG

scheme in weak form,

∫
Tk

lki
∂qkh
∂t

+
3∑

m=1

∫
ek
m

lki (F
k,m
h )∗dS

−
∫
Tk

(
∂lki
∂x

Akqkh +
∂lki
∂z

Bkqkh)dV = [0, 0, κkw(t)lki (xs, zs)]
T . (16)

Several things need to be clarified here. Since the support of lki is T̄k, lki (xs, zs) = 0

if (xs, ys) /∈ T̄k. For numerical stability consideration, I assume (xs, ys) ∈ T̊k for

some k. Therefore, the right hand side of Eq.(16) is nonzero only for one element.

~nk,m = (nk,mx , nk,mz ) is the unit normal vector of ekm pointing from Tk to Tkm . Ak and

Bk to denote the values of A and B on Tk. On the left hand side of Eq.(16), (Fk,m
h )∗ is

called the numerical flux approximating F on ekm. to match with the approximation

of the solution, (Fk,m
h )∗ is defined as a linear combination of the traces of the basis

functions along ekm. Because lki (x) ≡ 0 on ekm if xki /∈ ekm (since lki (x)
∣∣
ek
m

is of degree

N and vanishes at N + 1 points), (Fk,m
h )∗ is the sum of N + 1 terms associated with

the N + 1 interpolating points on ekm. Define xk,mj = xknm
j
∈ ekm and lk,mj = lknm

j

∣∣
ek
m

(j = 1, · · · , N + 1) for some index nmj . (Fk,m
h )∗ is then expressed as,

(Fk,m
h )∗(x, t) =

N+1∑
j=1

(nk,mx Ak + nk,mz Bk)q∗h(x
k,m
j , t)lk,mj (x)

=
N+1∑
j=1

(nk,mx Ak + nk,mz Bk)(qk,mj )∗(t)lk,mj (x), (17)

=
N+1∑
j=1

(nk,mx Ak + nk,mz Bk)[(vk,mx,j )∗(t), (vk,my,j )∗(t), (pk,mj )∗(t)]T lk,mj (x),

in which q∗h(x
k,m
j , t) can be viewed as a reconstruction of the numerical solution qh

at xk,mj . To see how q∗h is related to the solution of a Riemann problem, expanding
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(nk,mx A+ nk,mz Bk)q∗h(x
k,m
j , t) yields,

[
nk,mx
ρk

(pk,mj )∗,
nk,mz
ρk

(pk,mj )∗, κk(n
k,m
x (vk,mx,j )∗ + nk,mz (vk,mz,j )∗)]T .

One may notice that [nk,mx (vk,mx,j + nk,mz (vk,mz,j )∗), (pk,mj )∗]T := [(vk,m~n,j )∗, (pk,mj )∗]T is the

intermediate state solution of the local Riemann problem as stated in Eqs.(12) where

the initial data on the left and right of the interface are qkh and qkm
h at xk,mj . The

benefit of using nodal basis functions is that evaluation of qkh, qkm
h at xk,mj costs

nothing, recalling that xk,mj is an alias of an interpolating point xknm
j

of Tk for some

index nmj and by symmetry of the nodal points xk,mj is also an interpolating point of

Tkm on ekm.

Applying Green’s formula once again in Eq.(16) gives the DG scheme in strong

form for acoustic wave equations,

∫
Tk

lki
∂qkh(t)

∂t
+

3∑
m=1

∫
ek
m

lki ((F
k,m
h )∗ − Fk,m

h )dS

+

∫
Tk

(Ak
∂qkh
∂x

+Bk ∂q
k
h

∂z
)lki dV = [0, 0, κkw(t)lki (xs, zs)]

T , (18)

where Fk,m
h = (nk,mx A+nk,mz B)qkh. Substituting qkh in Eq.(18) with the linear combina-

tion of basis functions as indicated in Eq.(15) completes the spatial DG discretization

construction and yields a time dependent ordinary differential equation (ODE) sys-

tem,

Np∑
j=1

∂qkj (t)

∂t
(lki , l

k
j )Tk

+
3∑

m=1

N+1∑
j=1

(nk,mx Ak + nk,mz Bk)((qk,mj )∗(t)− qknm
j

(t))(lki , l
k,m
j )ek

m

+

Np∑
j=1

Akqkj (t)(l
k
i ,
∂lkj
∂x

)Tk
+

Np∑
j=1

Bkqkj (t)(l
k
i ,
∂lkj
∂z

)Tk
(19)

= [0, 0, κkw(t)lki (xs, ys)]
T ,
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where (·, ·)Tk
, (·, ·)ek

m
are the standard L2 inner product over Tk and ekm. Gathering

Eq.(19) for each lki together then gives a compact matrix-vector form by introducing

some new notations. First denote,

vkx(t) = [vkx,1(, t), · · · , vkx,Np
(t)]T ,

vkz (t) = [vkz,1(t), · · · , vkz,Np
(t)]T ,

pk(t) = [pk1(t), · · · , pkNp
(t)]T ,

(pk,m)∗(t)− pk,m(t) = [(pk,m1 )∗(t)− pknm
1

(t), · · · , (pk,mN+1)
∗(t)− pknm

N+1
(t)]T ,

(vk,m~n )∗(t) = [(vk,m~n,1 )∗(t), · · · , (vk,m~n,N+1)
∗(t)]T ,

vk,m~n (t) = [vk,m~n,nm
1

(t), · · · , vk,m~n,nm
N+1

(t)]T ,

where vk,m~n,nm
j

= nk,mx vk,mx,nm
j

+ nk,my vk,mz,nm
j
. Then define the local volume mass matrix

Mk ∈ RNp×Np , the local stiffness matrices Sx,k, Sz,k ∈ RNp×Np , the local edge mass

matrix Mk,mRNp×(N+1) as,

Mk
ij = (lki , l

k
j )Tk

, Sx,kij = (lki ,
∂lkj
∂x

)Tk
, Sz,kij = (lki ,

∂lkj
∂z

)Tk
, Mk,m

ij = (lki , l
k,m
j )ek

m
.

With these notations the compact matrix-vector form of Eq.(19) can be expressed

as,

Mk dv
k
x(t)

dt
+

1

ρk
Sx,kpk(t) +

3∑
m=1

n
ek
m
x

ρk
Mk,ek

m((pk,m)∗(t)− pk,m(t)) = 0,

Mk dv
k
z (t)

dt
+

1

ρk
Sz,kpk(t) +

3∑
m=1

n
ek
m
z

ρk
Mk,ek

m((pk,m)∗(t)− pk,m(t)) = 0,

Mk dp
k(t)

dt
+ κkS

x,kvkx(t) + κkS
z,kvkz (t) +

3∑
m=1

κkM
k,ek

m((vk,m~n )∗(t)− vk,m~n (t)) = κkw(t)lk(xs),

where lk(xs) = [lk1(xs), · · · , lkNp
(xs)]

T . Furthermore multiplying the above equations
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by (Mk)−1 yields an fully explicit form,

dvkx(t)

dt
= − 1

ρk
Dx,kpk(t)−

3∑
m=1

n
ek
m
x

ρk
Lk,m((pk,m)∗(t)− pk,m(t)),

dvkz (t)

dt
= − 1

ρk
Dz,kpk(t)−

3∑
m=1

n
ek
m
y

ρk
Lk,m((pk,m)∗(t)− pk,m(t)), (20)

dpk(t)

dt
= −κkDx,kvkx(t)− κkDz,kvkz (t)

−
3∑

m=1

κkL
k,m((vk,m~n )∗(t)− vk,m~n (t)) + κkw(t)(Mk)−1lk(xs),

where Dx,k = (Mk)−1Sx,k, Dz,k = (Mk)−1Sz,k, Lk,m = (Mk)−1Mk,ek
m . To reduce

the storage, each element Tk is considered to be the image of the reference triangle

D̂ = {(r, s)|−1 ≤ r, s; r+ s ≤ 0}. Then for example the mass matrix Mk for the k’th

element is given by

Mk
ij =

∫
D̂
li(r, s)lj(r, s)J

k(r, s)drds, (21)

where {lj(r, s)}Np

j=1 are the basis functions on D̂. Since I use straight sided element

now, the Jacobian Jk is a constant, independent of (r, s). The mass matrix for Tk can

be expressed as a scalar Jk multiple of the mass matrix on the reference element D̂,

Mk
ij = JkMij, (22)

where Mij =
∫
D̂ li(r, s)lj(r, s)drds. We only need to store the mass matrix on the

reference element or its inverse. In the same way the stiffness matrices and the edge

mass matrices is stored only for the reference element. For the edge mass matrices,

the reference element becomes I = {r| − 1 ≤ r ≤ 1}. To get the explicit formulation

of these matrices, one may refer to Hesthaven and Warburton (2008).

Now it can be seen clearly that once the numerical fluxes are computed, the time
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update is explicit and completely independent for each element. This feature is useful

especially for parallelization.

Time Discretization

After the spatial discretization, an ODE system needs to be solved to march the

numerical solution along time,

dQk
h

dt
= Rh(Q

k
h, (Q

k,1
h )∗, (Qk,2

h )∗, (Qk,3
h )∗, t). (23)

where Rh is the operator grouping the right hand side terms in Eq.(20) together, and

Qk
h =


vkx

vky

(pk)

 , (Qk,m
h )∗ =

 (vk,m~n )∗

(pk,m)∗


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In this thesis, I use the low-storage five-stage fourth-order explicit Runge-Kutta (RK)

method to solve Eq.(23) by Carpenter and Kennedy (1994),

for each k

Uk
0 = Qk

h(t), hk0 = 0

end

for i = 1 : 5

for each k

update (Qk,m
h )∗with Uk

i and Ukm
i ,m = 1, 2, 3

hki = aih
k
i−1 + ∆tRh(U

k
i−1, (Q

k,1
h )∗, (Qk,2

h )∗, (Qk,3
h )∗, t+ ci∆t),

Uk
i = Uk

i−1 + bihi

end

end

Qk
h(t+ ∆t) = Uk

5.

The coefficients ai, bi, ci can be found in Tab.(1). The advantage of using such scheme

is the low memory usage, since only one additional storage is required. One more

stage is present in this fourth-order scheme and seems to add cost. However, this

scheme allows to use a larger time step ∆t and thus reduce the overall computation

cost.

For numerical stability, the time step ∆t should not be taken too large. As proved,

the high-order accurate RK DG methods require ∆t ∼ O(∆x). To be specific, the

time step I use here has a bound like,

∆t ≤ C
min
k
hk

(N + 2)(N + 1)
, (24)
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where hk indicates the radius of the inscribed circle in the element Tk.

Table 1: Coefficients for the low-storage five-stage fourth-order explicit RK method

i ai bi ci

1 0
1432997174477

9575080441755
0

2 − 567301805773

1357537059087

5161836677717

13612068292357

1432997174477

9575080441755

3 −2404267990393

2016746695238

1720146321549

2090206949498

2526269341429

6820363962896

4 −3550918686646

2091501179385

3134564353537

4481467310338

2006345519317

3224310063776

5 −1275806237668

842570457699

2277821191437

14882151754819

2802321613138

2924317926251

Boundary Conditions

In this thesis, numerical simulation is always carried out on a bounded domain,

whose boundaries mimics either the physical sea surface, landform or the fields far

away from the domain of interest. The free surface boundary condition and absorbing

boundary condition are two types of boundary conditions exclusively used in the

seismic simulation.

Due to the high contrast discontinuities of material parameters between water and

air, soil and air, waves are almost reflected back with a neglected amount of energy

passing through when they hit the surface. The reflection boundary condition is

used to replicate this action of waves in the numerical simulation. Till now, I always

assume that Tk has three neighbor elements Tkm . But when the Tk’s edge ekm belongs

to the free surface boundary (the sea surface or landforms), Tkm does not exist in

the triangulation Th. I have to assign the initial data on the right of the interface in
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the Riemann problem Eqs.(12) so as to compute the numerical flux (F k,m
h )∗ on ekm.

Applying the free surface boundary condition to the local Riemann problem yields

the initial data of Eqs.(12) as

v2
~n = −v1

~n, p2 = p1.

This is an analogy to the free surface boundary condition in finite difference method

in which the free surface boundary condition is applied to ghost grids in order to

update the numerical solutions defined on the computational grids whose stencil is

out of the computational domain.

In the seismic simulation, the domain of interest is relatively small compared

to the distance waves can propagate. Absorbing boundary condition does not try

to mimic any physical scenarios, but is used to truncate the open domain problem

into a finite one so that the numerical method can handle. In this thesis, I use a

perfectly matched layer (PML), one kind of the absorbing boundary condition first

designed by Berenger (1994) for Maxwell’s equations. PML can be considered as

layers wrapping the original computational domain to absorb outgoing incident wave

from any incidence angle without false reflection. A PML version of acoustic wave
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equations proposed by Abarbanel and Gottlieb (1998) can be stated as

∂vx
∂t

+ 2ηxvx +
1

ρ(x, z)

∂p

∂x
= ηxPx,

∂vz
∂t

+ 2ηzvz +
1

ρ(x, z)

∂p

∂z
= ηzPz,

∂p

∂t
+ κ(x, z)∇ · v + ηxpQx + ηzpQz = κ(x, z)w(t)δ(x− xs), (25)

∂Px
∂t

+ ηxvx = 0,

∂Py
∂t

+ ηyvz = 0,

∂Qx

∂t
+ ηxQx = κ(x, z)vx,

∂Qz

∂t
+ ηzQz = κ(x, z)vz,

where (Px, Pz, Qx, Qz) are four auxiliary variables, and

ηα =


ηαmax

(Lα/2 + α

d

)2

α ∈ [−d− Lα/2,−Lα/2],

0 α ∈ (−Lα/2, Lα/2],

ηαmax

(Lα/2− α
d

)2

α ∈ (Lα/2, Lα/2 + d],

ηαp =
dηα
dα

,

where α ∈ {x, z}, and {Lx, Lz} is the domain size, and d is the PML thickness.

One can see that Eq.(25) inside the domain is exactly the original acoustic wave

equations and in the PML the auxiliary variables work as damping sources to absorb

the acoustic pressure as well as the velocity. Further more, the auxiliary variables are

governed by ordinary differential equations, which can be computed with very little

cost.

Finite Difference Time Domain Method for Acoustics

In this section, I present the widely used 2-4 (second-order in time and fourth-

order in space) staggered-grid finite difference method for Eqs.(13). This method
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later is used to compare with DGTD methods described before.

Two-dimensional staggered grids for Eqs.(13) employ three different sets of grids

on which the field variables p, vx and vz are computed as shown in Fig.(5). The 2-4

hz

hx

Figure 5: 2D staggered grid for the pressure-velocity formulation of acoustic wave
equations. hx and hz denote spatial steps along x-axis and z-axis. Pressure grids
are represented by circles. Horizontal and vertical velocity grids are represented by
squares and triangles respectively.

staggered-grid finite different method for Eqs.(13) is given as follows,
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where ∆t is the time step, pni,j for example denotes the value of the pressure variable at

(ihx, jhz) and time n∆t, and is, js are the indices such that xs = ishx and zs = jshz.

In this thesis, I use an open source software IWAVE by Terentyev (2008) as the

FD solver. IWAVE provides a general FD framework for solving time domain PDE

on both distributed and shared memory computer architectures. In IWAVE, one

can design FD schemes by providing the associated stencil information. The 2-4

staggered-grid finite difference method I use for comparison has been implemented in

IWAVE. This saves me a lot of time to implement my own version of this FD scheme

so that I can focus myself on the DG implementation and the comparison.

RESULTS CHAPTER

Introduction

In this section, I present numerical examples regarding the convergence tests of DG

methods and the numerical comparison between DGTDmethods and FDTDmethods.

First, I make convergence tests of DGTD methods for two cases: point source wave in

the homogeneous medium and the plane wave propagating in two-layer medium. Since

I have the analytic solutions for both cases, I can estimate the error and convergence

rate precisely, and compare these results with the ones in theory. The purpose of these

tests is to make sure that my DGTD implementation is valid. As mentioned before,

interface error can downgrade the convergence rate of staggered-grid FD methods to

1st order. This error also appears in DGTD methods. In my DGTD implementation,

each element in the triangulation is considered as a homogeneous media. If the

mesh misaligns with the material interface, the approximate model on this mesh

would falsely represent the real model and then produce the interface error. Through

numerical examples, I display the interface error in DGTD methods. Examples of
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two-layer media on the interface conforming mesh and the local refined mesh exhibit

two ways to reduce this error in some cases. At last, the comparison of DGTD and

FDTD is carried out on two examples. Since analytic solutions are inaccessible in

both examples, I first discuss the error estimate via Richardson extrapolation. Then

I compare the computing cost measured in GFLOP (approximately 109 float point

operations) for the two solutions by DGTD and FDTD to have the roughly the same

accuracy (5%).

Convergence tests of DGTD

I make convergence tests of DGTD methods through point source wave and the

plane wave. In the point source wave case, I measure the error of a trace at a given

point on a series of globally refined meshes. In the plane wave case, the L2 error of

the pressure at a given time is computed to estimate the convergence rate. In both

cases, DGTD methods behave the way as theories predict.

Point Source Wave

The analytic solution for a point source wave has been given as a spherical ex-

panding wave in Eq.(4). The computation domain [−0.5, 0.5] × [−0.5, 0.5] is a unit

square centered at the origin. The mirror reflection boundary condition is applied.

The material is homogeneous with ρ = 1.0, c = 1.0. A point source is located at

xs = (0, 1/4) with the source pulse as,

w(t) = (t− t0)e−(πf0(t−t0))2 , (26)

where f0 = 10, t0 = 1.2/f0. A trace is recorded at xr = (0,−1/4). The basis functions

used are of degree 5. This example is carried out on a series of globally refined meshes
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with grid size 1/10, 1/20, 1/40, 1/80, respectively. As shown in Fig.(6), the trace error

decreases 102 times (≈ 26, approximately) till the single floating point precision, when

the grid size decreases by half.
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Figure 6: Trace error for the point source wave example.

Plane Wave

In this example, a plane wave propagates in a two-layer media with 90o incident

angle at the material interface. Though essentially this is a 1D problem, it provides

a good example in 2D to test my DGTD implementation. The material interface is

assumed to be a vertical line at x = 0. I use (ρl, cl) and (ρr, cr) to denote the density

and the wave speed for the materials at the two sides of the interface,

ρl = 2100 kg/m3, cl = 2.3 m/ms

ρr = 2300 kg/m3, cr = 3.0 m/ms
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If the initial particle velocity at y direction vy is 0 and other initial field variables

(vx, p) are smooth, then Eqs.(7) give me the analytic solutions for this case. Here I

pick g as a Ricker’s wavelet with central frequency f0 = 10 Hz,

g(t) = (1− 2(πf0(t− t0))2)e−(πf0(t−t0))2 .

The computation domain Ω is [0, 1800 m] × [−15 m, 15 m] and the simulation time

is 600 ms. I do the convergence test on a series of globally refined interface-fitting

meshes as indicated in Fig.(7) and basis functions with different order. The estimated

convergence rate shown in Tab.(2) agree to the optimal convergence rate proven in

Lesaint and Raviart (1974); Johnson and Pitkaranta (1986).

-3 3

Figure 7: Illustration of the interface-fitting mesh. Blue and green stand for two
material.

Table 2: Convergence test for the plane wave case on the interface conforming meshes.
N indicates the degree of basis functions in the DGTD method. The L2 errors at
T = 600 ms are measured for field variables. R denotes the estimated convergence
rate based on the L2 error of the pressure.

h N ‖ph(·, T )− p(·, T )‖L2 ‖uh(·, T )− u(·, T )‖L2 ‖vh(·, T )− v(·, T )‖L2 R
10 1 0.7649 0.7762 0.1194 2.86
5 1 0.1053 0.1102 0.0307 2.74
2.5 1 0.0157 0.0177 0.0077 -
10 2 0.0084 0.0098 0.0044 3
5 2 0.0010 0.0012 5.54e-4 2.95
2.5 2 1.29e-4 1.50e-5 6.90e-5 -
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Interface Error

In this section, I illustrate the interface error in DGTD method by the plane wave

example when the triangular mesh misaligns with the material interface. One can

see that the interface error is associated with the false representation of the model

and therefore can not be eliminated by higher order schemes. Without modifying the

DGTD method, I propose two mesh techniques: interface conforming mesh and local

mesh refinement.

I use the same model and parameters as the plane wave example. The trace

recorded at [500 m, 0] as shown in Fig.(10) has two spikes corresponding to the direct

wave and the reflected wave. The error in the direct wave is associated with the

truncation error of the scheme and therefore can be reduced by higher order schemes,

while the error in the reflected wave is associated with the interface error. I use three

sets of triangular meshes to test this example: the interface conforming mesh, the

mesh misaligned with the interface and the local refined mesh near the interface as

shown in Fig.(7), Fig.(8) and Fig.(9), respectively. Fig.(10) shows the traces of the

-3 3

Figure 8: Illustration of the mesh misaligned with the interface.

analytic and numerical solution recorded at [500 m, 0] computed by DGTD with basis

functions of degree 1 and 2 on the interface conforming mesh. Both the direct wave

and the reflected wave are resolved better by a high order scheme (basis functions

of degree 2). Fig.(11) shows the trace of the analytic and numerical solution at the

same receiver computed by DGTD with basis functions of degree 1, 2 and 4 on the
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-0.05 0.05

Figure 9: Illustration of the local refined mesh near the interface.

misaligned mesh. The direct wave is resolved accurately by high order scheme. But

the first-order error caused by the mesh misalignment dominates the error in the

reflected wave. Fig.(12) illustrates the same simulation but on the local refined mesh.

The time-shift effect in the reflected wave is much smaller than on the misaligned

mesh.

Comparison of DGTD and FDTD

In the seismic community, people more care about the trace (seismogram) error at

the near surface receivers (geophones) rather than the error measured over the entire

computation domain. Hence the trace error for each receiver is measured for the

following numerical experiments for the purpose of comparison involving DGTD and

FDTD. Due to lack of analytic solutions for most of realistic models, the numerical

error is estimated by Richardson extrapolation as usual, that is, if assuming the

numerical solution D(h) differs from the analytic solution D̄ by E(h) = ChR +

O(hR+1), then

E(h) ' D(2h)−D(h)

2R − 1
, (27)
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Figure 10: Traces of the analytic and numerical solutions recorded at [500 m, 0] on
the interface conforming mesh as shown in Fig.(7). Basis functions of degree 1 and 2
are used to compute the trace plotted on the left and on the right, respectively. The
top plots are the entire traces from 0 ms to 600 ms. The middle plots show the direct
wave corresponding to the first spike of the entire trace. The bottom plots show the
reflected wave corresponding to the second spike of the entire trace.
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Figure 11: Traces of the analytic and numerical solutions recorded at [500 m, 0] on
the misaligned mesh as shown in Fig.(8). Basis functions of degree 2 and 4 are used
to compute the traces plotted on the left and right, respectively. The plots at the top
show the direct wave, while the ones at the bottom show the reflected wave.
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Figure 12: Traces of the analytic and numerical solutions recorded at [500 m, 0] on
the local refined mesh as shown in Fig.(9) . Basis functions of degree 1 and 2 are
used to compute the traces plotted on the left and right, respectively. The plots at
the top show the direct wave, while the ones at the bottom show the reflected wave.

where R can be estimated by having E(2h),

R ' log2

E(2h)

E(h)
. (28)

The programs for FDTD and DGTD methods are written in the ISO C language and

use MPI and domain decomposition for parallelization. The numerical experiments

were performed in single precision on a 2.66GHz Intel Core2 Quad Q9450 CPU. The

operating system is Linux (2.6.18 kernel) and the compiler is GNU C compiler (version

4.1.2). For both examples, the numerical cost is mearsured by the total number of

floating point operations (GFLOP) and wall clock time.

Square-circle model

In this example, the computation domain is a [−500 m, 500 m]× [−500 m, 500 m]]

square with two different media separated by a circle of radius 125 m at the center.

As shown in Fig.(13), the parameters for the simulation are defined as,
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• inside the circle: ρ = 1000 kg/m3, c = 1000 m/s;

• outside the circle: ρ = 1500 kg/m3, c = 2000 m/s;

• a point source “5” at (0, 250 m) with source pulse w(t) defined in Eq.(26). The

central frequency is 10 Hz;

• 41 geophones (receivers) “4” are put at the depth −250 m, from −400 m to

400 m at spatial interval of 20 m. The time span of the simulation is [0, 2s],

and all the traces are sampled at temporal interval of 5 ms.

−500 0 500
−500

0

500

Figure 13: Geometrical diagram for the square-circle model.

The grid size in FDTD is known because uniform grids are used. When it comes

to DGTD, the grid sizes vary element by element. Therefore, as far as DGTD is

concerned, I give the grid size range of the triangular mesh. I use 2-4 staggered-grid

FDTD on 10 m, 5 m and 2.5 m grid and estimate the RMS error and convergence rate.

As shown in Fig.(14), the estimated convergence rate of 2-4 staggered-grid FDTD is
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as low as order 1.4 at certain receivers beneath the circular region. 2-4 staggered-grid

FDTD on 2.5 m grid achieves 3% RMS error and takes 33.2 GFLOP. The wall clock

time is 19 sec on a single core. Fig.(15) illustrates the RMS error and estimated
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Figure 14: RMS errors and estimated convergence rate by Richardson extrapolation
for 2-4 staggered-grid FDTD on the square-circle model. All the traces are sampled
at temporal interval of 5 ms.

convergence rate using DGTD method with basis functions of degree 4. The DGTD

method achieves 2% RMS error on a relative coarse mesh with grid size range 6 ∼ 14

m and overall 2nd convergence rate. But the computation cost of DGTD method

is 2465 GFLOP and the wall clock time is 760 sec on a single core. The first-order

interface error in FDTD method is well resolved on the finer grids (2.5 m) in this

case due to the simplicity of the model structure. However, it’ll be seen in the next

example that the interface error in FDTD method ultimately meddles the RMS error

as time goes by and one has to spend more computation cost achieving the same

accuracy when the model becomes complex.
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Figure 15: RMS errors and estimated convergence rate by Richardson extrapolation
for DGTD with basis functions of degree 4 on the square-circle model. All the traces
are sampled at temporal interval of 5 ms.
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2D Dome Model

In this experiment, the 2D dome model as found in Symes and Vdovina (2009)

is set up for the comparison of DGTD and FDTD. Fig.(16) shows the material wave
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Figure 16: The material wave speed of 2D dome model. Different colors represent
different materials.

speed of this model, which is composed of 7 materials. The upper horizontal layer is

the sea water. The computation domain is [0, 7800 m] × [0, 1800 m], and the dome

interface is located at the center of the model. The wave propagation is forced by

a point source located at xs = (3300 m, 40 m). The source pulse w(t) is defined in

Eq.(26) with central frequency = 15 Hz. This wavelet has significant energy at 30

Hz or a wavelength of 50 m. The time span of the simulation is [0, 3000 ms]. PML

layers are allocated on the left, right and at the bottom of the computation domain to

absorb the outgoing waves, and the free surface boundary condition is applied at the

top of the domain. For DGTD, I use 4th order Runge-Kutta scheme in time, nodal

DG with basis functions of degree 2. For FDTD, I use 2-4 staggered-grid Taylor series

stencil. According to Alford et al. (1974), 5 grid points per wavelength is marginal

for the 4th order scheme in FDTD. I carry out the numerical simulation on 5 m, 2.5

m, 1.25 m and 0.625 m grid For DGTD, I use three sets of interface-fitting meshes

generated by global refinement processes. The grid size range are 10.66 ∼ 29.26 m
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5.34 ∼ 14.62 m and 2.66 ∼ 7.32 m respectively. Fig.(17) shows the pressure trace
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Figure 17: Pressure traces of 2-4 staggered-grid FDTD on the 2D dome model at
different time windows: h = 2.5 m (red dots) and h = 1.25 m (black line). Upper-
left: 0.7-1.1 s; Upper-right: 1.1-1.3 s; Lower-left: 1.5-1.7 s; Lower-right: 1.9-2.1 s.

of the 2-4 staggered-grid FDTD method at different time windows. As time goes by,

the time shift effect caused by the interface error becomes more and more strong.

Tab.(3) lists the RMS error, computation cost (# GFLOP) of FDTD and DGTD

at the receiver (2300 m, 20 m) at different time windows as well as the timing for

each simulation. Both traces of DGTD and FDTD methods are sampled at temporal

interval of 2 ms. According to the Richardson extrapolation, it is easily inferred

that FDTD acts as a first order method while DGTD on interface-fitting meshes

converges at second order convergence rate.
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Table 3: RMS errors at different time windows, computation cost (# of GFLOP)
and wall clock time (second) on a single core. FDTD refers to 2-4 staggered-grid
FDTD and DGTD refers to regular DGTD with basis function of degree 2. Row 3-6
indicate the relative RMS errors at time window 0.7-1.1 s, 1.1-1.3 s, 1.5-1.7 s 1.9-2.1
s, respectively. Both traces of DGTD and FDTD methods are sampled at the same
temporal interval of 2 ms.

FDTD DGTD
grid size 2.5 m 1.25 m 0.625 m 0.3125 m 5 ∼ 15 m 2.7 ∼ 7.3 m
0.7-1.1 s 6.61% 4.64% 1.65% 0.82% 6.11% 0.31%
1.1-1.3 s 22.35% 12.30% 5.54% 2.76% 5.31% 0.60%
1.5-1.7 s 37.75% 20.06% 9.45% 4.70% 6.72% 0.79%
1.9-2.1 s 52.35% 28.64% 13.92% 6.91% 7.23% 1.15%

# of GFLOP 1286.3 1.03e+4 8.22e+4 6.57e+5 1.29e+4 1.03e+5
time 542 s 4125 s 32778 s 261991 s 6457 s 52401 s

CURVILINEAR DG METHOD

Introduction

As seen in the previous chapter, DGTD methods achieve a 2nd order convergence

rate when curved material interfaces are present though higher degree of polynomials

basis functions are used. The incomplete representation to the model by simplices

(triangles in 2D) brings in errors dominating the numerical results. In this chapter, I

discuss DG method on curvilinear elements. The curvilinear elements fit accurately

with the material interface through high order polynomials or boundaries and are

hence able to complement the accuracy of the DG solver.

This chapter is organized as follows. First I talk about the procedure of forming

curvilinear elements according to the interface geometry. Then the low-storage curvi-

linear DGTD method is formulated for the pressure-velocity formulation of AWE. At

last, the numerical results on square-circle model and 2D dome model are provided

to demonstrate the advantage of using curvilinear elements.
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Curvilinear element

By using the straight sided triangular mesh, we can not expect the edges in such

mesh conform exactly with the curved material interfaces or boundaries. A mesh

generator may place the vertices on the material interfaces such that no edges situate

across two materials. However such mesh fits the interfaces with piecewise linear

polynomials. For example any point x in Tk with vertices xk,1,xk,2,xk,3 is the image

of a point (r, s) in D̂ = {(r, s)| − 1 ≤ r, s; r + s ≤ 0} under the following linear affine

transform,

x = −(r + s)

2
xk,1 +

(1 + r)

2
xk,2 +

(1 + s)

2
xk,3. (29)

Instead of the above linear coordinate transform, we may use an isoparametric trans-

form x =

Np∑
j=1

xkj lj(r, s) ({lj}j are interpolating Lagrange polynomials on D̂) mapping

the reference triangle D̂ to a curvilinear element Dk such that Dk fits more precisely

with the interfaces or boundaries.

To form such curvilinear elements, I follow the steps in Hesthaven and Warburton

(2008),

• identify element edges that need to be curved,

• reallocate the vertices and facial interpolating points on the curved material

interfaces or boundaries,

• blend the face deformation of each curved face into the interior interpolating

points through Gordon-Hall blending of face node deformation in Gordon and

Hall (1973).

After identifying element edges that need to be curved, various approaches can be

used to push the vertices and facial interpolating points onto the curved interfaces or
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boundaries. For example, in the square-circle model the curved interface is circular. A

linear distribution of polar angles according to the circle center and radius is created

for the nodes that need to be moved. In the 2D dome model, the curved interface is

a dome-shape. The nodes are reallocated at the intersection of the dome curve and

the line starting at the original node location and along the normal direction of the

corresponding edge. Then I use Gordon-Hall blending of face node deformation to

blend the edge deformation into the interior nodes. Fig.(18) illustrates the process of

forming two curvilinear elements conforming with a circular interface. The vertices

(1, 0) and (1/2,
√

3/2) of the original triangle is on the interface but the facial inter-

polating points between them are not. Then I move those facial interpolating points

onto the circular interface according to the distribution of their polar angles. Finally,

the deformation is blended into the interior interpolating points.
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Figure 18: Left: original straight sided triangular elements. Middle: the facial inter-
polating points between (1, 0) and (1/2,

√
3/2) are moved to the circular interface.

Right: the facial deformation is blended into the interior interpolating points.

Curvilinear DG formulation

The semi-discrete symmetric DG variational equations for the pressure-velocity

formulation of AWE in 2D demand to find (v, p) ∈ (Vh)
3 such that in the k’th
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curvilinear element Dk (Dk = Tk if the element is straight sided),

ρk

(
φ,
∂v

∂t

)
Dk

−
(
∇φ, p

)
Dk

= −
(
φ,np∗

)
∂Dk

,

1

κk

(
ψ,
∂p

∂t

)
Dk

+
(
ψ,∇ · v

)
Dk

= −
(
ψ,n · (v∗ − v−)

)
∂Dk

, (30)

for all φ, ψ ∈ Vh. The ‘-’ indicates the boundary trace of the solution within the

k’th element. v∗, p∗ are the numerical flux terms. The reason for starting with the

symmetric variational equations is to guarantee numerical stability in the following

curvilinear DG formulation. Instead of expressing the solution as a linear combination

of basis functions on Dk as in Eq.(15), I use the basis functions {lj(r, s)}Np

j=1 on the

reference element D̂ to do so,

v(x(r, s), t)|Dk
=

Np∑
j=1

vkj (t)lj(r, s),

p(x(r, s), t)|Dk
=

Np∑
j=1

pkj (t)lj(r, s). (31)

Then substituting these into the volume inner-product terms in the variational for-

mulation Eqs.(30) and using the Einstein notation yields,

ρk(li, lj)Dk

∂vkj
∂t

= (∇x,zli, lj)Dk
pkj − (li,np

∗)∂Dk
,

1

κk
(li, lj)Dk

∂pkj
∂t

= −(li,∇x,zlj)Dk
· vkj − (li,n · (v∗ − v−))∂Dk

, (32)

The mass matrix Mk for the k’th element is given by,

Mk
ij =

∫
Dk

li(r, s)lj(r, s)dxdz =

∫
D̂
li(r, s)lj(r, s)J

k(r, s)drds, (33)
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and the Jacobian Jk(r, s) for the k’th element Dk by

Jk(r, s) =
∣∣∣∂x
∂r
× ∂x

∂s

∣∣∣ (34)

As mentioned before when Dk is a straight sided triangular element Eq.(29) shows

that the Jacobian Jk will be a constant within Dk, independent of (r, s). In this case

the mass matrix for Dk can be expressed as a scalar Jk multiple of the mass matrix

on the reference element D̂. Because only the mass matrix on the reference element

need to be store the computational storage of DGTD scale as CNpK for a constant

independent of N or K.

Now a mesh is assumed to contains a subset of Kc ≤ K curvilinear elements

that are deformed to conform with the curved interfaces or boundaries. Now an

isoparametric transform x(r, s) =

Np∑
j=1

xkj lj(r, s) is used to map D̂ to Dk. Since the

transform is an N’th order polynomial, the Jacobian Jk is no longer a constant on Dk.

Given that computing the mass matrix for each element on the fly during simulations

is prohibitively expensive, it is common to precompute them before time stepping

commences. This additional storage requirement scales as KcN
2
p . If Kc is even a

modest fraction of the total number of elements K then this can be the dominant

storage cost. In the following the strategy to reduce or remove this storage overhead

are discussed.

Weighting the variational spaces

One strategy for templating curvilinear elements is to modify test and trial spaces

by the weighting approximation space,

V J
h =

K⊕
k=1

span
{ lj(r, s)|Dk√

Jk(r, s)

}
j
. (35)
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The Jacobian matrix from the mass matrix can be eliminated by making the substi-

tution,

v(x(r, s), t)|Dk
=

Np∑
j=1

vkj (t)
lj(r, s)√
Jk(r, s)

,

p(x(r, s), t)|Dk
=

Np∑
j=1

pkj (t)
lj(r, s)√
Jk(r, s)

. (36)

In words the variational space is replaced with a polynomials weighted by the recipro-

cal of the square root of the transform Jacobian specific to each element. Equivalently
√
Jv and

√
Jp are approximated instead of v and p in the regular DGTD formulation.

The mass matrix on a curvilinear element then becomes,

Mk
ij =

∫
D̂

li(r, s)√
Jk

lj(r, s)√
Jk

Jk(r, s)drds =

∫
D̂
li(r, s)lj(r, s)drds = Mij (37)

With this choice of test and trial spaces the DGTD variational formulation for AWE

is,

ρkMij

∂vkj
∂t

=
(
∇x,z

li√
Jk
,
lj√
Jk

)
Dk

pkj −
( li√

Jk
,np∗

)
∂Dk

,

1

κk
Mij

∂pkj
∂t

= −
( li√

Jk
,∇x,z

lj√
Jk

)
Dk

· vkj −
( li√

Jk
,n · (v∗ − v−)

)
∂Dk

. (38)

The storage requirement for the mass matrix is removed with a modified approxima-

tion space. Consequently the right hand side residuals are more difficult to evaluate.

In the original variational equation all the integrands are polynomial, but now in the

new form the integrands are rational functions. The form can be slightly simplified
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to,

ρkMij

∂vkj
∂t

= (∇x,zli, lj)D̂ p
k
j −

(
li,
lj
2
∇x,z log(Jk)

)
D̂
pkj −

( li√
Jk
,np∗

)
∂Dk

1

κk
Mij

∂pkj
∂t

=− (li,∇x,zlj)D̂ · v
k
j +

(
li,
lj
2
∇x,z log(Jk)

)
D̂
· vkj (39)

−
( li√

Jk
,n · (v∗ − v−)

)
∂Dk

,

which is derived from Eq.(38) by expanding
( li√

Jk
,∇x,z

lj√
Jk

)
Dk

as

( li√
Jk
,∇x,z

lj√
Jk

)
Dk

=

∫
D̂

li(r, s)√
Jk
∇x,z

lj(r, s)√
Jk

Jk(r, s)drds

= (li,∇x,zlj)D̂ −
(
li,
lj
2
∇x,z log(Jk)

)
D̂

(40)

Notice that

∇x,zlj =


∂r

∂x

∂lj
∂r

+
∂s

∂x

∂lj
∂s

∂r

∂z

∂lj
∂r

+
∂s

∂z

∂lj
∂s

 ,

and (
∂r

∂x
,
∂s

∂x
,
∂r

∂z
,
∂s

∂z
) have different value for each element when using curvilinear

elements. Hence though (∇x,zli, lj)D̂ and (li,∇x,zlj)D̂ are integrations on the reference

element, unlike the regular DG method we have to compute these integrations with

cubature rule. The cubature rule is also applied to the additional low order correction

term, for example,

(
li,
lj
2
∇x,z log(Jk)

)
D̂

=
Nc∑
n=1

ωci li(r
c
n, s

c
n)lj(r

c
n, s

c
n)∇x,z log(Jk)(x(rcn, s

c
n)), (41)

where {(rcn, scn)}Nc
n=1, {ωcn}Nc

n=1 are the cubature nodes and weights on D̂. For the

weighted boundary integration, we may first transform the edges to the reference
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interval I = {r| − 1 ≤ r ≤ 1} and then apply the quadrature rule on I.

Numerical results

I apply the curvilinear DG method to the same square-circle model and compute

the numerical results and RMS error on three meshes with grid size range 56 ∼ 114

m, 25 ∼ 56 m and 12 ∼ 28 m respectively. The basis functions are polynomials of

degree 8. Fig.(19) displays the nodal distribution of the curvilinear element of degree

8 for the square-circle model near the circular region. Fig.(20) shows the RMS error
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Figure 19: Illustration of the nodal distribution of the curvilinear element of degree
8 for the square-circle model near the circular region

and estimated convergence rate. The curvilinear DG method achieves the optimal

convergence rate for this example.

I also test this method on the 2D dome model. This time I use 301 geophones

(receivers) at the depth 20 m with offset from 100 m to 6100 m at interval 20 m. Three

meshes for the 2D dome model are used with grid size range 21 ∼ 58 m, 10.66 ∼ 29.26

m 5.34 ∼ 14.62 m, respectively. The basis functions are polynomials of degree 5.
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Figure 20: RMS error and estimated convergence rate for each trace when using the
curvilinear DG method with basis functions of degree 8 on the square-circle model.
All the traces are sampled at temporal interval of 5 ms.
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Fig.(21) shows the RMS errors and estimated convergence rates of each trace when

the curvilinear DG method is applied to the 2D dome model. The RMS errors on the

mesh with grid size range 21 ∼ 58 m are relatively large at the far left receivers and

the receivers near the source location. PML might be responsible for the large errors

at the far left receivers. When using the mesh with grid size range 21 ∼ 58 m, it’s

very possible that some receivers near (3300 m, 40 m) are in the same triangle with

the source. The approximation error of the direct Dirac function at the beginning of

the simulation may affect the numerical accuracy of the trace at these receivers.
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Figure 21: RMS error and estimated convergence rate for each trace when using the
curvilinear DG with basis functions of degree 5 method on the 2D dome model. All
the traces are sampled at temporal interval of 2 ms.

CONCLUSIONS

Due to the very important applications, various methods have been developed to

simulate the seismic wave propagation numerically. Because of the relatively easy
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implementation and the desirable balance between the computation cost and the

numerical accuracy, FDTD methods on uniform Cartesian grids have become an

industry standard in seismic community. DGTD methods have been applied to a

wide range of hyperbolic problems. Their successes in these problems encourage me

to apply DGTD methods to seismic wave simulation.

The interface error due to the heterogeneity of the model is inevitable in the

staggered-grid FDTD methods, because several grids are employed. As shown in

numerical examples, this error as a time shift effect eventually reduce the convergence

rate of FDTD methods to 1st order. DGTD methods somehow remedy the interface

error by using the interface-fitting mesh and achieve 2nd order convergence rate when

the curved material interfaces are presented. Based on the results of 2D dome model

in Tab.3, by extrapolation DGTD method with basis functions of degree 2 on a

piecewise linear interface-fitting mesh pays 2.24e+4 GFLOP for 5% RMS error, while

2-4 staggered-grid FDTD method has to use 0.23 m grid and pay 1.65e+6 GFLOP

to obtain the same accuracy. As the simulation time increases, unbearable small grid

size in FDTD methods is required to achieve the specified accuracy.

More excitingly, if the precise geometry information is provided, the curvilinear

elements can be formed to fit the material interfaces and/or the boundaries with

high order approximation error and complement the accuracy of the high order DG

solver. The curvilinear DGTD method hence converges at the optimal convergence

rate in the numerical experiments with a modest increasing storage according to our

low-storage derivation.

The interface-fitting mesh generation is nontrivial, especially when the structure of

the model is complicated and many scales of the materials coexist. Unfortunately, the

geological models usually have complex structures. So I propose local mesh refinement

technique as an alternative for DGTD methods to reduce the interface error as shown
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in the numerical example. This technique handles different models under the same

procedure described as,

1. start with an initial triangulation {Tk}k, Ω =
⋃
k Tk

2. compute material contrast indicator Ik on Tk

3. if Ik > threshold and the grid size of Tk > ht, refine Tk

4. assemble the new mesh {T̃k̃}k̃ that satisfies Ω =
⋃
k̃ T̃k̃

A very coarse mesh is generated first. Then the mesh is locally refined according to

the material contrast indicator so as to decrease the element size near the interface.

Since the spatial step is determined by the slowest velocity, different element size

should be applied to the different materials. This can be done by adding the sound

velocity as a weight when computing the indicators. In this way an optimal mesh

for a given model can be generated through local mesh refinement process. The only

problem is that the small elements can lead to small time step, which can increase

the overall computation cost.

In summary, this thesis formulates and implements the regular and curvilinear

DGTD method for acoustics wave equations (pressure-velocity formulation) in het-

erogeneous media. The regular DGTD method achieves as much as 2nd order con-

vergence rate in both square-circle model and 2D dome model while the curvilinear

DGTD method performs the optimal convergence rate. The interface error in the

square-circle model is well resolved by FDTD on the finer grids with less computa-

tion cost. But when the model becomes more complex like the 2D dome model and

the simulation time becomes longer, the regular DGTD method on piecewise linear

interface-fitting meshes is more efficient.
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