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Abstract

Approximate Multi-Parameter Inverse Scattering

Using Pseudodifferential Scaling

by

Rami Nammour

I propose a computationally efficient method to approximate the inverse of the nor-

mal operator arising in the multi-parameter linearized inverse problem in reflection

seismology.

Solving the inverse problem using direct matrix methods like Gaussian elimina-

tion is computationally infeasible. In fact, the application of the normal operator

requires solving large scale PDE problems. However, under certain conditions, the

normal operator is a matrix of pseudodifferential operators. This proposal shows how

to generalize Cramer’s rule for matrices to approximate the inverse of a matrix of

pseudodifferential operators. The cost of approximating the inverse is a few applica-

tions of the normal operator ( one for one parameter, two for two parameters, six for

three parameters).

I validate the method on the Marmousi model for constant density acoustics for
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the one-parameter problem. For the two parameter problem, the inversion of a vari-

able density acoustics layered model: details the various steps of the method, and

corroborates its success.
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Chapter 1

Introduction

In this manuscript, I review a method to approximately solve the linearized inverse

problem of constant density acoustics, work I have accomplished as part of my masters

thesis. I propose a generalization for variable density acoustics and other multi-

parameter inverse problems. Finally, I propose how the method to solve the linearized

inverse problem accelerates the convergence of iterative methods aimed at solving

the full nonlinear inverse problem (referred to as full waveform inversion methods).

Previous work was limited to 2D (two spatial dimensions); however, I also propose

extensions to 3D and discuss the similarities between the two approaches and the

challenges specific to 3D.

The model problem for this work is the variable density acoustic wave equation, the

simplest model describing the reaction of the earth to acoustic excitation (explosions,

1
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air gun . . . ).

1

ρ(x)c2(x)

∂2p

∂t2
(x, t)−∇ · 1

ρ(x)
∇p(x, t) = f(x, t), (1.1)

where ρ(x) is the density field, c(x) the velocity field, and p(x, t) the pressure field

varying as a function of time; f(x, t) represents the source of acoustic energy. Note

that the formulation is the same in 2D and 3D.

Assume the earth was at equilibrium before the forcing is put to effect (causal

source), the pressure field satisfies:

p(x, t) ≡ 0, t� 0

f(x, t) ≡ 0, t� 0.

(1.2)

The physical setting of the experiment will invariably involve some boundary condi-

tions, at the sea surface for example in the case of a marine geophysical experiment.

It is advantageous to think of equation (1.1) as defining a map that associations

the earth properties (density and velocity fields), to the measurements of the pressure

at the surface. Group density and velocity parameters together to form the parameter

m = [ρ, c]. The map I have in mind is:

S[m] = p|surface . (1.3)

I refer to S as the nonlinear forward map, it maps the model to the measurement of

the pressure at the surface p|surface . The pressure at the surface is measured using a

recording device, like geophones.

The advantage of this abstraction is that it describes any model of the earth in the

same way. The generalization to elasticity, for example. falls under the same rubric,
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with m standing for the elastic coefficients and density. The methods proposed in this

thesis often extend to models of seismic wave propagation other than variable density

acoustics (1.1). The behavior of these methods depends not so much on the specific

equations chosen to model seismic waves, but rather on properties of the forward map

shared by various models.

The inverse problem aims at solving for the model parameters, given the measure-

ments of the pressure at the surface: Given d, solve for m such that S[m] = d. Note

that though the wave equation itself is linear, the dependence of the solution on the

model parameters is nonlinear. The inverse problem is therefore nonlinear.

The linearization of the inverse problem assumes a natural splitting of the model

parameters into a background m0 and a perturbation δm,

m = m0 + δm. (1.4)

The background is given and it is required to solve for the the perturbation δm. The

formal derivative of the nonlinear forward map at m0 maps the perturbation δm to

δp:

F [m0]δm = δp. (1.5)

The linearized forward map F is referred to as Born Modeling. The linearized forward

problem is: given δd, find δm such that Fδm = δd. I discuss the details of the

linearized inverse problem in the chapter devoted to linearization.

The acoustic wave equation models the dependence of the response of the earth

on two parameters (density and velocity). One simplification assumes a constant
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density field, constant density acoustics. The constant density approximation is valid

when the acoustic waves are reflected from a region that exhibits negligible density

contrast relative to velocity contrasts. Allowing for multi-parameter descriptions of

the earth models allows for a better description of the underlying physics. However,

it comes at the expense of introducing ill-conditioning in the inverse problem thus

making it more difficult to solve accurately. This manuscript begins by describing

one parameter inversions and then multi-parameter extensions.

Finally, an approximate solver for the linearized inverse problem may yield one way

to accelerate the convergence of iterative methods for the nonlinear inverse problem

(referred to as full waveform inversion methods or FWI in short). I explain this in

the chapter on full waveform inversion.

I summarize the structure of this proposal in the following diagram:

Inverse Problem

2D

Linear

One param Multi-params

Nonlinear

FWI

3D

Nonlinear

FWI

Linear

One param Multi-params



Chapter 2

Theory and Literature Review

2.1 Introduction

This chapter describes the linearization of the inverse problem in the abstract setting,

with emphasis on the case of variable density acoustics. Solving the linearized inverse

problem requires solving the normal equations. The efficient approximation of the

inverse of the normal operator relies on its pseudodifferential nature. For one param-

eter inversion, the application of the normal operator on one input vector suffices to

infer its action and represent its approximate inverse from a class of pseudodifferen-

tial operators. The extension to p-parameters generalizes this result and requires p

applications of the normal operator.

5
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2.2 Linearization of the Inverse Problem

The linearization of the inverse problem splits the model parameters into a smooth

part m0 and a rough perturbation δm,

m = m0 + δm. (2.1)

we assume that the background reference model m0 is given and inverse problem is

to recover δm.

The nonlinear Forward map is thus approximated by,

S[m] = S[m0 + δm] ≈ S[m0] + F [m0]δm. (2.2)

The linear operator F is known as born modeling. Formally F is the derivative of

the nonlinear at m0, it measure the sensitivity of S to small variations in the model.

The conditions under which the right hand side of equation (2.2) provides an good

approximation to its left hand side, are discussed in Stolk (2000). The fact that the

background velocity is smooth (and some suitable conditions on m0) implies that

F is generically asymptotically invertible (Stolk, 2000), in 2D (an invertible Fourier

integral operator). The same result is conjectured for 3D. The smooth part of the

velocity field models the kinematics in the problem, it controls the large scale behavior

of the propagation of the wave: travel times, positioning of reflectors . . . . The rough

part describes the nature of the reflection decided by the the amplitude and nature

of the discontinuities in the earth parameters.
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The linearized inverse subproblem: Given d, m0 find δm so that,

F [m0]δm ≈ d− S[m0] := δd. (2.3)

The linearized subproblem is an approximation due to the linearization process,

and equation (2.3) is interpreted in a least squares sense to the arrive the the normal

equations:

F ∗[m0]F [m0]δm = F ∗[m0]δd. (2.4)

The operator F ∗ is adjoint to F , and is known as the migration operator. The

operator F ∗F is called the normal operator or the Hessian. The right hand side of

(2.4) is the migrated image mmig = F ∗δd.

An explicit linearization of the acoustic wave equation for example yields:

1

ρ0c2
0

∂2δp

∂t2
−∇ · 1

ρ0

∇δp =
2δc

ρ0c3
0

∂2p

∂t2
− 1

ρ0

∇δρ
ρ0

· ∇p0

δp ≡ 0, t� 0,

(2.5)

where ρ0 and c0 are the background density and velocity fields, respectively. The first

order perturbations to ρ0 and c0 are δρ and δc, respectively.

The linear forward map is therefore,

Fδm = F

(
δc

c
,
δρ

ρ

)T
= δp, (2.6)

where δp is obtained by solving (2.5). Note that the solution δp is linear in the model

perturbation δm.

Solution of the linearized inverse problem requires solving the normal equations

(2.4), equivalently inverting the normal operator. In reality, the application of the
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normal operator as seen from equation (2.5) and its adjoint requires the solution of

large scale PDE problems. The process of applying the normal operator amounts to

modeling followed by a migration. These processes typically require computations

that can take days or weeks on computer clusters. Also the problem is large scale:

in 2D the fields are length ≈ 106, making the normal operator a 106 × 106 in matrix

representation. These numbers prohibit explicitly storing the normal operator to

invert it using direct matrix methods like Gaussian elimination. Krylov subspace

methods are used to solve (2.4), but the expensive application of the F ∗F limits the

number of affordable iterations since these methods require at least one application

of the normal operator per iteration.

The properties of the normal operator have been studied in the literature on

the subject (Beylkin, 1985; Rakesh, 1988). For one parameter inversion (constant

density acoustics), the normal operator is a pseudodifferential operator under specific

conditions when the background velocity field is smooth. Stolk (2000) proves that the

normal operator is the sum of a pseudodifferential operator and a non-microlocal part.

He discusses the conditions under which the non-microlocal part is a Fourier integral

operator and can be analyzed as such. Stolk (2000) concludes by proving that the

normal operator is generically a pseudodifferential operator plus a smoother Fourier

integral operator correction in 2D. The smoother error is of lower frequency order

in high frequency asymptotics. In the more general case, the normal operator is a

p×p matrix of pseudodifferential operators for p-parameter inversion, when scattering
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preserves polarization as in P to P or S to S scattering (Beylkin and Burridge, 1990).

The limitation to polarization preserving scattering is necessary, otherwise the normal

operator maps one reflector to multiple reflectors in different places (one for each

polarization). The normal operator would not preserve singularities in such case, and

is therefore not a pseudodifferential operator. Symes (1998) provides an explicit proof

that the normal operator is a two by two matrix of pseudodifferential operators for

the variable density acoutics case.

Pseudodifferential operators provide a generalization of differential operators, they

are defined by their action on a function u(x):

Qmu(x) =

∫
qm(x, ξ)û(ξ)eix.ξ dξ, (2.7)

where qm(x, ξ) is the symbol of the pseudodifferential operator, and û = F [u] is the

Fourier transform of u.

Pseudodifferential operators are defined in terms of their symbols qm(x, ξ),

qm(x, ξ) : Ω× Rn\{0} → R,

where Ω ⊂ Rn is an open set and n = 2 or 3 (the dimension of the space).

The symbols of interest qm(x, ξ) are smooth and homogeneous of order m, and for

any compact set K ⊂ Rn, and real α,β, there exists constants CK,α,β, such that

|Dα
xD

β
ξ qm(x, ξ)| ≤ CK,α,β(1 + |ξ|)m−|β|, (2.8)

for all x ∈ K and ξ ∈ Rn. Homogeneity means that, given r ∈ R,

qm(x, rξ) = rmqm(x, ξ). (2.9)
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Homogeneous symbols satisfy (2.8); however, it should be noted that (2.8) is satisfied

by a more general class of symbols not treated in this thesis. By allowing such general

classes of symbols pseudodifferential operators generalize differential operators.

In fact, we can allow for more general symbols that admit a polyhomogeneous

expansion of the form:

q ∼
∑
j≥0

qm−j , in the sense, q −
N−1∑
j=0

qm−j is a symbol of order m−N (2.10)

Pseudodifferential operators of order m, generalize a differential operator of order m

as operators between Sobolev spaces:

Qm : Hs
loc(Ω)→ Hs−m

loc (Ω).

The first term in the polyhomogeneous expansion qm is called the principal symbol

of q, and the remainder of the expansion maps Hs to a smoother space Hs−m+1.

Properties of pseudodifferential operators are thus defined up to smoother error, which

in the frequency domain corresponds to a lower order in frequency, at high frequency.

In this thesis, pseudodifferential operators are represented by their principal sym-

bol to capture the most singular part.

For a complete account on pseudodifferential operators and their applications in

solutions of PDEs, please consult (Taylor, 1981).

Pseudodifferential operators act in phase-space, they are determined by their prin-

cipal symbol qm(x, ξ) depending on both the spatial variable x and the momentum or

Fourier variable ξ. The action of pseudodifferential operators is even more specific,



11

the singularities in u are preserved in Qm, however the amplitude of these singularities

will be modified depending on:

• Spatial position of the singularity,

• Orientation of the singularity (referred to as dip),

• The order m of the pseudodifferential operator.

We say that pseudodifferential operators act by scaling the input vector. To un-

derstand this behavior it is enough to compare δm and F ∗d from equation (2.4)

(Figures 2.1 and 2.2), for a specific model called the Marmousi model. Note that the

inverse and the migrated image are related by the normal operator. It is obvious that

the positions of the reflectors or discontinuities is preserved, the normal operators

acts by scaling the amplitudes of δm.
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The sense in which the normal operator acts by locally scaling the amplitudes of

the discontinuities while preserving their position, is made precise using the asymp-

totic expansion lemma for pseudodifferential operators (Taylor, 1981). Let χ(x) be a

smooth function compactly supported inside a ball, and Ψ(x) a smooth function with

non-vanishing gradient inside the same ball. I call a function of the form χ(x)eiωΨ(x)

a localized monochromatic pulse. Then

F ∗Fχ(x)eiωΨ(x) = qm(x, ω∇Ψ(x))χ(x)eiωΨ(x) +O(ωm−β), (2.11)

where β > 0, ω is the frequency and qm(x, ω∇Ψ(x)) is the principal symbol of the

normal operator positively homogeneous of order m:

qm(x, ωξ) = ωmqm(x, ξ), ω > 0 (2.12)

We can even see how the scaling is related to the symbol of the pseudodifferential

operator from (2.11).

In seismic images, reflectors are interfaces between two regions of space that ex-

hibit discontinuities or high contrasts in physical parameters, these discontinuity ac-

count for the high frequency components (rapid changes). The relevant functions are

of the form a(x)f(Ψ(x)), an amplitude modulated function of the phase. The high

frequency components of these functions correspond to the discontinuities/reflectors.

The vector ∇Ψ(x) is normal to the level sets of the phase function and represents

dip as it points to a direction normal to the reflector identified with the level set of

the phase function. This normal vector fails to be well defined in multiple dip events

(fault, point reflector . . . ).
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2.3 Scaling Methods

The realization that the normal operator acts by scaling the amplitudes of the right

hand side of equation called the migrated image (2.4), lead to the idea that the

action of the normal operator may be approximated from its application to a single

input vector. In the same way diagonal matrices scale all vectors in the same way,

the normal operator is approximately diagonal in a basis of localized monochromatic

pulses (justified by equation (2.11)). I call methods that rely on one application of

the normal operator to approximate it or to approximate its inverse scaling methods,

and I refer to the approximations they yield as scaling factors. The choice of the

migrated image as the input vector was suggested by Symes to Claerbout and Nichols

as they developed an early scaling method in 1994. The choice of this input vector

is motivated by the fact that the migrated image contains all relevant directions or

reflectors.

Claerbout and Nichols (1994) propose approximating the normal operator and its

inverse as a multiplication by a smooth function, using the migrated image as input

vector. The method was then refined by Rickett (2003).

Guitton (2004) proposes a more general near diagonal approximation of the nor-

mal operator: near diagonal integral operators that are not completely specified by

Guitton.

Symes (2008) proposes a correction to the Claerbout and Nichols method, he

proves that the normal operator is approximated by multiplication by a smooth func-
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tion after application of a Laplacian filter of a specific power, the power is predicted

by the underlying theory and the filter is completely specified in contrast to Guitton’s

method. However, the method cannot approximate the inverse of the normal operator

in places of the image that admit multiple dip events (faults, point reflectors . . . ).

The method requires dip to be well defined in all parts of the image thus limiting

its applicability. This method therefore fails locally in places that admit a fault or a

point reflector for example.

Herrmann et al. (2008b) approximately diagonalize the normal operator in a frame

of approximate localized monochromatic pulses, namely curvelets. They rely on the

asymptotic expansion lemma (2.11), to justify their method. This method is capable

of resolving multiple dip events.

I propose a generalization to the method introduced by Symes, a scaling method

that resolves multiple dip events and skips the explicit diagonalization of the nor-

mal operator and the use of curvelets altogether. The method relies on a truncated

spherical harmonics expansion of the symbol to approximate its action. The method

reduces to the method proposed by Symes, when the expansion of the symbol consists

of the first term. I present this method in more detail in the next chapter.

2.4 Amplitude Versus Offset (AVO)

The Zoeppritz equations specify how waves are transmitted and reflected at an inter-

face. The study is conducted for the elastic wave equation, and the results specify the
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reflection and transmission coefficients in terms of the offset angle (Aki and Richards,

1980). These equations are nonlinear in the physical parameter of the earth. Nonethe-

less, they can be solved if one is willing to invest the computational cost.

The complexity of the Zoeppritz equations led to attempts to simplify these equa-

tions while preserving the qualitative predictions of the full Zoeppritz equations. Usu-

ally these simplifications are linearizations in the relative differences of the physical

parameters from the two sides of the interface. Aki and Richards (1980) present one

of these linearizations (p. 153). Another simplification widely used in the AVO study

is that presented by Shuey (1985). Shuey presents a formulation that demarcates the

behavior for normal incidence, from intermediate angles (about 30 degrees), to wide

angles (approach to critical angle) (Shuey, 1985).

While zero-offset reflection contains information about the acoustic impedance

only, the variation of the reflection coefficients with offset angle contain information

about all the elastic parameters (Lörtzer and Berkhout, 1989). In AVO, the Zoepritz

equations and their various simplifications are used in an inverse problem sense to

infer information about the elastic parameters from the variation of the amplitudes

of the reflection coefficients as a function of offset (or offset angle).

Rutherford and Williams (1989) classifies different reflectors according to the qual-

itative variation of the reflection coefficient as a function of offset angles. This classi-

fication consists of three classes of reflectors that exhibit qualitatively different AVO

behavior. Rutherford and Williams (1989) deals with gas sands encountered in ex-
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ploration and splits them into:

1. Class 1: High impedance sands,

2. Class 2: Near zero impedance contrast sands, and

3. Class 3: Low impedance sands.

The use of AVO data to approximate the material parameters abounds in the liter-

ature. Lörtzer and Berkhout (1989) presents a statistically Baysesian based approach

to predict a combination of physical parameters that predicts the AVO variation. The

paper stresses the need for multi-component data to alleviate the ill-conditioning of

the problem and pin down certain parameter combinations that are difficult to re-

solve (Lörtzer and Berkhout, 1989). It also quantifies how the resolution of different

parameters varies as a function of the angle range, and how sensitive the recovery of

parameters is to calibration parameters used in the statistical approach.

The method presented in this manuscript is an alternative to AVO analysis in

that the inverse contains all the info that an AVO study can possibly yield about

the different parameters. In fact, after approximating the Zoeppritz equations and

taking into account the uncertainty in the data, AVO analysis yields information

about anomalies in the physical parameters (usually the Poisson ratio) rather than

quantitative measures of these parameters. Linearized inversion aims at recovering

the physical parameters quantitatively.
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2.5 Linearized Multi-Parameter Inversion

The attempts for multi-parameter inversion are limited in the literature. Bourgeois

et al. (1989) study the linearized multi-parameter inversion and conclude that the

success of this procedure relies on an accurate background velocity model. With an

accurate background model, Bourgeois et al. (1989) conclude that the recovery of

the impedance is possible in that it inversion yields significant corrections to seismic

images produced by migration. The results of this paper confirm the well known fact

that the recovery of the acoustic impedance is a the a well conditioned problem for

variable density acoustics. The recovery of the other parameters remains challenging,

an aspect of this inverse problem that is alluded to in the subsequent chapters.

Santosa and Symes (1988) present a study of the inverse problem for a layered

acoustic fluid, they parametrize the problem in terms of the density and the incom-

pressibility. They conclude that the problem is well conditioned away from critical

angles of reflection and with enough aperture, in the absence of low velocity zones. In

the presence of low velocity zones, the degradation of the conditioning of the inverse

problem is unavoidable (Santosa and Symes, 1988). The study of the conditioning in

this paper resembles the conditioning study I present on the normal operator in this

manuscript. The inverse problem studied in this paper is effectively one dimensional

(layered), the method presented here is not limited to 1D in fact the formulation is

independent of dimension. The conditioning study, in both works, is restricted to

layered models; these models allow for an analytical study of the conditioning of the
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inverse problem.

Multi-parameter linearized inversion constitutes part of Minkoff (1995). In fact,

she shows that the success of linearized multi-parameter inversion relies on pinning

down other aspects of the inverse problem accurately: source estimation, background

field approximation, modeling the physics accurately (including elasticity, attenuation

. . . ). Minkoff (1995) tries, and succeeds, in fitting the data by including all the

parameters mentioned above. Linearized inversion constitutes one of these steps but

relies heavily on all the others. In this thesis, I assumed the source known, the

background model given and the data was generated using the model used to fit

it. These steps ensure that linearized multi-parameter inversion has the potential of

succeeding.

Charara et al. (1996) invert for P-velocity, S-velocity and density in the linear

elasticity inverse problem. Though the inversion is nonlinear, the estimation of these

parameters is done in the linear regime (when the background fields are accurate

enough). Charara et al. (1996) incorporates constraints on both the data space and

the model space and uses a least squares inversion approach by formulating these

constraints through covariance matrices as advocated in (Tarantola, 1987). Some

of these covariance matrices rely on a priori knowledge like well data. The inversion

relies on starting at a good initial model, stressing the role of the accurate background

model in successful inversion.

The works presented above are all known as wave equation methods, they rely
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on a numerical solution of the wave equation to obtain seismic images and data, and

inversion is formulated in terms of these quantities. Another approach derives explicit

formulas for the inverse of the linearized forward map, which involves calculating

geometric optics quantities derived under an asymptotic regime. This work follows

the approach of Beylkin (1985). These computations usually involve conditions on

the medium of propagation for the geometric optics quantities to be well defined, and

this reflects as an instability in computing these quantities in complex media. The

method proposed in this manuscript is closer to wave equation methods, in that it

does not require any computation of geometric optics quantities.

Foss et al. (2005) go through the necessary computations to derive the asymptotic

inverse to the linearized map for anisotropic elastic media. The authors present

a numerical example on the recovery of a linear combination of the density and

two other elastic parameters, they claim that their “framework applies with decent

accuracy” (Foss et al., 2005). The paper does not show synthetic examples so it is

difficult to judge the accuracy of the framework.

Virieux et al. (1992) take a mixed approach to invert for the P and S impedance

in linear elasticity. They use geometric optics computations to calculate the forward

map and an approximation of the Hessian, and a Gauss-Newton iterative method for

the inversion. The approximation of the Hessian accelerates the convergence of the

inversion. Virieux et al. (1992) also study the conditioning of the inverse problem, and

conclude that it is ill conditioned for single component data, multi-component data
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is necessary for a successful inversion. The authors note that this is in accordance

with the study of Santosa and Symes (1988) in the special case of a layered fluid.

The inversion for P and S impedances is successful in the linear regime, the authors

stress the importance of an accurate background model (Virieux et al., 1992).

The attempts for linear multi-parameter inversion in the literature, that use wave

equation methods, rely on an iterative approach to minimize the least square misfit

between the measured data and the data predicted by linearized modeling. The

method proposed here, to use a few applications of the normal operator to produce

an approximate inverse, is novel.



Chapter 3

Methods

3.1 Introduction

This chapter presents the scaling method to approximate the inverse of the nor-

mal operator efficiently for one parameter inversion, and its generalization to multi-

parameter inversion. The inverse of the normal operator is represented from a class

pseudodifferential operators defined by a truncated Fourier expansion of their symbol.

The efficient approximation relies on an algorithm derived by Bao and Symes (1996)

to approximate the action pseudodifferential operators, I refer to this algorithm as

the PsiDO algorithm. This algorithm was derived in 2D but extends to 3D. The

presentation of the method is independent of the space dimensions, the availability of

the PsiDO code in 2D limits the applications to 2D only. I discuss the generalization

to 3D briefly.

21
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3.2 One Parameter Inversion: Pseudodifferential

Scaling

Recall that the aim of this manuscript is to solve,

Nδm = b, (3.1)

where N = F ∗F is the normal operator and b = F ∗δd ∈ Range(N) is the migrated

image.

Given b and Nb (we refer to Nb as the remigrated image). We seek a scaling

factor c that minimizes the following objective function:

c = argmin
c∈ΨDO

‖b− cNb‖2 (3.2)

The advantage of obtaining c lies in the ability to derive an approximate inverse

δminv given c:

δm = N †b ≈ N †cNb ≈ cN †Nb = cb := δminv. (3.3)

The first equation expresses the solution of equation (3.1), where N † is the pseudoin-

verse (regularized inverse) of N. The second approximation relies on the quality of the

fit in equation (3.2). The third uses the property that pseudodifferential operators

approximately commute. The successive approximations thus yield an approximate

inverse δminv = cb.

The sense in which the scaling factor c approximates the inverse of the normal

operator is specifically in the sense of (3.3): c scales the amplitudes of the migrated
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image b in the same way the inverse of the normal operator N † does. The scaling

factor approximates the action of the inverse of the normal operator on one right

hand side of the normal equations, namely the migrated image.

3.3 Multi-Parameter Inversion: Cramer’s Rule for

Pseudodifferential Operators

The generalization to p-parameters formally tries to solve the same problem:

Nδm = b. (3.4)

The model m is a collection of p-parameters, and the normal operator is therefore

a p × p matrix of pseudodifferential operators in polarization preserving scattering.

The p migrated images are contained in b.

The theory of pseudodifferential operators introduces a powerful concept: The

algebraic relationships between symbols and matrices of symbols can be mapped to

asymptotic properties for pseudodifferential operators. This concept is powerful since

matrices of symbols are matrices of scalar functions, with a plethora of identities and

theorems from linear algebra to choose from. This work uses a version of Cramer’s

rule to devise an inversion scheme for multi-parameter inversion.

For this end, we recall the definition of the adjugate of a matrix A, denoted by

Adj(A). Defined as the transpose of the matrix of cofactors of A. In our case, the

transpose may be ignored, as the matrix A and thus its adjugate, are symmetric
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positive definite (since N is too). When the matrix A is invertible the adjugate may

be defined as

Adj(A) := det(A) ∗ A−1, (3.5)

where A−1 is the inverse of the matrix A and det(A) is the determinant of the matrix

A. More generally, the adjugate is defined to be the matrix which satisfies:

Adj(A) ∗ A = A ∗ Adj(A) = det(A) ∗ I, (3.6)

where I is the identity matrix. If we define the adjugate of N to be Ajd(N) =

op(Adj(A)), with slight abuse of notation. We can map the property (3.6) on matrices

to a property on matrices of pseudodifferential operators:

Adj(N) ∗N ≈ N ∗ Adj(N) ≈ det(N) ∗ I. (3.7)

The equation above features another abuse of notation, with det(N) := op(det(A)).

The power of (3.6) is revealed when applied to (3.1).

Adj(N) b = Adj(N) ∗N δm ≈ det(N) ∗ δm. (3.8)

Equation (3.8) recovers the inverse up to the pseudodifferential operator det(N),

after the application of the adjugate. The restriction of this approach to 1-parameter

inversion and 2-parameter inversion is particularly simple and elegant. The extension

to general p-parameters is more involved as shown by the case p=3, which we discuss

in the following section.

The problem of recovering δm, is not solved yet. While δm is recovered up to the

pseudodifferential operator det(N), the inverse of this factor needs to be approximated
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to complete the inversion scheme. For this end, we resort to a method similar to the

one we previously developed for p=1.

First apply the normal operator again, to form:

N det(N) ∗ δm ≈ det(N) ∗N ∗ δm = det(N) ∗ b. (3.9)

Where we have used the fact that scalar pseudodifferential operators approximately

commute with matrices of pseudodifferential operators, to commute N and det(N).

Now, given b and det(N) ∗ b, approximate the scaling factor c:

c = argmin
c∈ΨDO

‖b− c ∗ det(N) ∗ b‖2. (3.10)

And approximate the solution of normal equations by:

δm = N−1b ≈ N−1 c ∗ det(N) ∗ b ≈ c ∗ det(N) ∗N−1b

≈ c ∗ det(N) ∗ δm := δminv

(3.11)

Thus the scaling factor c is an approximation of the inverse of det(N) in that it is

applied to det(N) ∗ δm (obtained previously), to approximate δm.

It is also straightforward to see that the one-parameter case is a restriction of this

general approach to p = 1.

The efficiency of this approach relies on the efficiency of the optimization in (3.10).

Any optimization scheme will require the application of the pseudodifferential scaling

factors at each iteration. It is therefore pivotal to utilize an algorithm that applies

pseudodifferential operators efficiently. Bao and Symes (1996) develop an algorithm

to efficiently approximate the action of pseudodifferential operators, which relies on
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a spherical harmonics expansion of their symbols. We refer to this algorithm as the

PsiDO algorithm.

The advantage of using the PsiDO algorithm is twofold: first its efficiency, and sec-

ond the ability to represent pseudodifferential operators that act by spacial, frequency

and dip dependent scaling capable of resolving multiple dip events.

3.4 The PsiDO Algorithm

I present the PsiDO algorithm that allows the efficient representation and approxi-

mation of the scaling factors. As developed by Bao and Symes (1996), the algorithm

is presented explicitly in 2D. The extension of the PsiDO code to 3D constitutes part

of my future work.

This discussion is restricted to 2D, so we may write x = (x, z). Recall that a

pseudodifferential operator is characterized by its symbol and defined by

Qmu(x, z) =

∫ ∫
qm(x, z, ξ, η)û(ξ, η)ei(xξ+zη) dξ dη, (3.12)

where qm(x, z, ξ, η) is the principal symbol, homogeneous of degree m, and û = F [u]

is the Fourier transform of u.

Thus writing ξ = ω cos θ, η = ω sin θ, and using the homogeneity of qm, we have

qm(x, z, ξ, η) = ωmq̃m(x, z, θ). (3.13)

Notice that q̃m(x, z, θ) = qm(x, z, cos θ, sin θ) is periodic and smooth in θ, and

hence it admits a rapidly converging Fourier expansion. We thus truncate the Fourier
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series, approximating the symbol by its first K + 1 Fourier modes:

q̃m(x, z, θ) ≈
l=K/2∑
l=−K/2

cl(x, z)e
ilθ =

l=K/2∑
l=−K/2

ω−lcl(x, z)(ξ + iη)l. (3.14)

Plugging (3.14) into (3.12) we obtain

Qmu(x, z) ≈
l=K/2∑
l=−K/2

cl(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)]. (3.15)

Fourier transform theory identifies ωm−l as the symbol of (−∇)
m−l

2 , and ξ and η

are respectively the symbols of Dx = −i∂x and Dz = −i∂z.

Sampling the field u(x, z) and the symbol q̃m(x, z, θ),

Uij = u(x0 + (i− 1)∆x, z0 + (j − 1)∆z),

Qijk = q̃m(x0 + (i− 1)∆x, z0 + (j − 1)∆z, k∆θ),

i = 1, · · · ,M, j = 1, · · · , N, k = −K/2, · · · , K/2.

Choosing ∆ξ = 1
(M−1)∆x

and ∆η = 1
(N−1)∆z

yields the unaliased discretizations of

the symbols of the square root of the negative Laplacian, Dx and Dz

Ωpr = 2π
√

(p∆ξ)2 + (r∆η)2

Ξpr = 2πp∆ξ

Zpr = 2πr∆η

p = −M/2, · · · ,M/2, r = −N/2, · · · , N/2

Equation (3.15) suggests the following algorithm to estimateQmu (Bao and Symes,

1996). All Fourier transforms refer to a discrete Fourier transform.
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1. Compute Ûpr = F [Uij].

2. For each i ∈ [1,M ] and j ∈ [1, N ],

compute Q̂ij = {Q̂ijl}K/2l=−K/2 the discrete Fourier transform ofQij = {Qijk}K/2k=−K/2.

3. Initialize (QU)ij = 0, for i ∈ [1,M ] , j ∈ [1, N ],

For l = −K/2 : K/2

(a) compute {Rl
ij}

M,N
i=1,j=1 = F−1[Ωm−l

pr (Ξpr + iZpr)
lÛpr]

for p = −M/2, · · · ,M/2 and r = −N/2, · · · , N/2

(b) accumulate

(QU)ij = (QU)ij + Q̂ijlR
l
ij

End

A straightforward discretization of (3.12) has a computational complexity of

O(N4 log(N)). The algorithm described above uses FFT (Fast Fourier Transform),

and thus exhibits a complexity of O(KN2(log(N) + log(K))). The appeal of this

approach is that K is independent of N . In fact, applications to reflection seismology

require that the symbol be smooth and slowly varying in θ, thus may be captured

accurately by a modest number of Fourier modes or, more explicitly, a small K.

The dependence on dip is captured in the angle variable θ and the method allows

us to capture multiple dip events by increasing K > 1.

The extension of this algorithm to 3D requires the replacing the Fourier expansions

of the symbol with spherical harmonics expansion to split the spacial and Fourier
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dependence of the symbol.

3.5 Summary

I summarize the procedure that constitutes the scaling method.

To solve Nδm = b,

• Apply Adj(N) on b to form: Adj(N) ∗ b ≈ det(N) ∗ x

• Apply N to the result to get: N ∗ det(N) ∗ x ≈ det(N) ∗ b

• Represent the scaling factors using the PsiDO algorithm : ci = Qm[qi]

• Compute the scaling factor c:

c = argmin
c∈ΨDO

‖b− c ∗ det(N) ∗ b‖2.

• Approximate the inverse: xinv := c ∗ det(N) ∗ x ≈ x

The method applies in 2D and 3D, the explicit representation of the scaling factors

is limited to 2D by the PsiDO algorithm. Extension of the PsiDo algorithm to 3D

constitutes a part of my future work and is presented in the proposal chapter.



Chapter 4

Results

4.1 Introduction

In this chapter I summarize the results of the masters thesis concerning constant

density acoustics inversion. I validate the scaling method for one parameter inversion

on the Marmousi benchmark model. I then discuss the challenges of multi-parameter

inversion: the ill conditioning of the recovery problem for the impedance and density

for variable density acoustics. Preconditioning the inverse problem alleviates the ill

conditioning and permits the simultaneous recovery of impedance and density.

30



31

4.2 One parameter inversion: Constant density acous-

tics

In this case the adjugate is particularly easy, Adj(N) = I, and det(N) ≡ N . And

this approach boils down to approximating c s.t.

c = argmin
c∈ΨDO

‖b− c ∗N ∗ b‖2. (4.1)

I validate one parameter inversion on the 2D Marmousi synthetic benchmark model

(Versteeg and Grau, 1991). The model is smoothed to construct the perturbation

mtrue (Figure 4.1). The images are windowed and tapered to the window of interest.

The true model is born modeled and then migrated to obtain the migrated image

and the process is repeated to obtain the remigrated image (Figures 4.2 and 4.3).

These images show the amplitude distortion resulting from the application of the

normal operator. It is obvious that the amplitudes in the deeper part of the image

are attenuated, making these regions invisible without amplitude correction. The

pseudodifferential scaling method with K = 1 and K = 5 yields scaling factors that

I apply to the migrated image to obtain the approximate inverses (Figures 4.4 and

4.5). The amplitudes are recovered to the right order of magnitude. Moreover, the

amplitudes are uniform in depth and compare better to those of the real image. Both

these results are successful approximate inversions.

The scaling method with K = 1 cannot resolve multiple dip events, in contrast

with K = 5. I plot the difference between the two inversion results in figure 4.6 to
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study this feature. It is apparent that the amplitude difference is greatest at the

locations of multiple dip events, where two reflectors intersect (faults). The high

amplitude difference appears as brighter or dimmer spots in figure 4.6.

Please consult my masters thesis, where I present a better test of the ability of

the scaling method to resolve multiple dip events.
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Figure 4.1: mtrue

4.3 Two-parameter case: p=2

The restriction two two-parameters is appealing because it is the first instance of

multi-parameter inversion. It turns out that it is also particularly simple and elegant.
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Figure 4.2: mmig = F ∗d
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Figure 4.3: mremig = F ∗Fmmig

In this case, denoting,

N =

 N11 N12

N12 N22

 .

Its Adjugate is then given by,

Adj(N) =

 N22 −N12

−N12 N11

 .

And

Adj(N) ∗ b =

 N22b1 −N12b2

−N12b1 +N11b2

 . (4.2)

The aim is to express (4.2) as a combination of permutations of indices of b and

applications of N . We will here introduce a notation that allows the manipulation

of expressions like (4.2), while it seems too involved for p = 2, it will simplify the

manipulation for p ≥ 3, it is mostly an exercise in representation theory.
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Figure 4.5: Scaling with K = 5
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Denote,

Nijbkel = eTl eiNe
T
j ekb := lijk. (4.3)

Note that the symmetry of N allows us to commute i and j if needed.

The power of this representation becomes apparent in the following manipulation:

Adj(N) ∗ b := 1221− 1122− 2121 + 2112

= 1221− 1212− 2121 + 2112

= (12− 21)(21) + (21− 12)(12)

= (12− 21)(21− 12)

(4.4)

In the first step we use commute indices, and the afterwards we are using matrix

factorization. The end result is interpreted as:

Adj(N) ∗ b := (12− 21)(21− 12)

= (eT1 e2 − eT2 e1)N(eT2 e1 − eT1 e2)b

= −JNJ = JTNJ b.

(4.5)

Where,

J =

 0 −1

1 0

 .

Equation (4.5), implies that the application of the adjugate on the migrated image

requires one application of N and another to approximate the scaling factor. Which

brings the cost of approximating the inverse for p = 2 to two applications of the

normal operator.



38

4.3.1 Application: Layered variable density acoustics

As a first application to the two parameter inversion, we construct a variable density

acoustics model perturbation consisting of velocity layer, and a density layer in a

different place (See Figures 4.7 and 4.8). The background model is homogeneous,

with vp = 2 km/s and dn = 2000 kg/m3.
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Figure 4.7: vp
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Figure 4.8: dn

Migrating the model perturbation shows how migration mixes the effects of the

two models in the two components of the migrated images (Figures 4.10 and 4.9. We

shall refer to the migrated images as b1 and b2, to remain consistent with our notation

where the vector of migrated images is b. This example, albeit simple, stresses a new

challenge of multi-parameter inversion: For one parameter inversion, the events in

the migrated image corresponded to events in the true model. In multi-parameter
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inversion, events in the migrated images may correspond to an event in one or more

of the components of the model. It is virtually impossible to tell that these migrated

images correspond to a model with separate events for velocity and density without

successful inversion. Applying the scheme outlined above, we form
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Figure 4.9: b1
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Figure 4.10: b2

JTNJ b ≈ det(N) ∗ x.

The result is shown in Figures 4.11 and 4.12, and shows how one application of the

normal operator effectively separated the contributions of the velocity and density

events. It remains to effect an amplitude correction, by approximating an inverse to

det(N). For this end, we are required to form N ∗ det(N) ∗ x ≈ det(N) ∗ b, shown in

Figure 4.13 and 4.14.
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Figure 4.11: (JTNJ b)1 ≈ det(N) ∗ x1
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Figure 4.12: (JTNJ b)2 ≈ det(N) ∗ x2

The final step corrects the amplitudes of det(N) ∗ x by applying undoing the

effect of det(N), which yields an approximate inverse. This final step complements

the separation we obtained earlier with an amplitude correction, Figure 4.15 and

4.16 shows that the approximate inverse compares favorably with true model. An

interesting observation on this result is the fact that the velocity model is better

recovered than the density model: traces of the velocity event in the density model

are more apparent than that the density event in the velocity model. This observation

is in accordance with the theoretical fact that the recovery of velocity in variable

density acoustics is better conditioned than the recovery of density. The following

section explains this fact in more detail.
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Figure 4.13: det(N) ∗ b1
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Figure 4.14: det(N) ∗ b2

4.4 Conditioning of the normal operator

While the results of the previous section prove to be successful in one instance and

for a particular geometry, a successful inversion method requires more general pre-

conditioners. We thus turn to the general form of the symbol of the normal operator

for variable density acoustics in 2D derived in (Symes, 1998).

A = f(θ)

 1 sin2( θ
2
)

sin2( θ
2
) sin4( θ

2
)

 |ξ| (4.6)

The opening angle θ depends on source position xs, receiver position xr and spatial

position x. ξ is the Fourier variable. I suppress the explicit form of the function f(θ)

as the ill-conditioning of the matrix is due to the matrix part of equation (4.6).
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Figure 4.15: invvp
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Figure 4.16: invdn

In what follows, we will search for the weight function f(θ) that minimizes the

condition number of the normal operator. This approach yields an optimal weight

f(θ) that renders the normal operator better conditioned.

To be explicit, the study of the conditioning of matrices of the form:

N =

∫ θmax

0

dθ f(θ)

 1 sin2( θ
2
)

sin2( θ
2
) sin4( θ

2
)

 .

Denote the eigenvalues of N by 0 < λmin ≤ λmax (since the matrix is positive

definite). Minimize the condition number:

κ =
λmax
λmin

, s.t. f ≥ 0,

∫ θmax

0

f(θ) dθ = 1.

If the condition number is parametrized in terms of S = λmax + λmin = trace(N)
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Figure 4.17: Condition number as a function of θmax

and P = λmaxλmin = det(N), then

κ =
S +
√
S2 − 4P

S −
√
S2 − 4P

(4.7)

As a reference, we study the condition number κr as a function of θmax for f(θ) =

1
θmax

(correct normalization). Figure 4.17 is a logarithmic plot of the condition

number of N as a function of θmax, it shows how the condition number increases

as the maximum offset angle decreases. The main source of ill-conditioning in this

problem is the maximum offset angle.

A candidate weighting to ameliorate the condition number of N is one that

amounts to a low offset/large offset stack:

f(θ) = (1− α)δ(θ) + αδ(θ − θmax), 0 ≤ α ≤ 1. (4.8)

This type of stack that puts emphasis on large offset and small offset separately has
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Figure 4.18: Ratio of optimal condition number to reference

been used since it is known that the different offset ranges give different information

about the underlying physical parameters.

Minimizing κ with the weight given in (4.8), gives

α =
1

2 + β
,

κmin =
β + 1 +

√
1 + β

β + 1−
√

1 + β
,

where β = sin4( θmax
2

).

It is interesting to note that that the result depicted above predicts that for large

offset (θmax → π), small offsets are weighted double.

To compare the condition number obtained with this weight to the reference case,

I plot the ratio κmin
κr

as a function of θmax in Figure 4.18. The reduction in condition

number is about 33% of its reference value for low offsets, and 45% for large offsets.
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The reduction in the condition number is not dramatic which warrants a closer

look at the asymptotics of the condition number. For small θmax:

• Reference case:

– λmax = 1 +O(θ4
max)

– λmin = θ4max
180

+O(θ6
max)

– κr = 180
θ4max

+O(θ−2
max)

• Optimal stacks:

– λmax = 1 +O(θ4
max)

– λmin = θ4max
64

+O(θ8
max)

– κmin = 64
θ4max

+O(1)

The two cases exhibit the same asymptotics, which explains why the reduction in

the condition number is not in orders of magnitude. Interestingly, the result above

also predicts that an adequately weighed small offset/large offset stack, is better

conditioned than using the entirety of the offset range!

The first order conditions for this problem turn out to emphasize an interesting

property of this optimization problem. The first order conditions are,

δκ = 0⇒ 2
δS

S
=
δJ

J
.

The solution to this equation yields. a different parametrization of the optimization
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Figure 4.19: Condition number as a function of L = S2

P

problem in terms of L, with L ≥ 4:

S2 = LP ⇒ S2

P
= L.

Which we can note also algebraically,

κ =
S +
√
S2 − 4P

S −
√
S2 − 4P

=
1 +

√
1− 4

L

1−
√

1− 4
L

.

Minimizing the condition number amounts to minimizing L = S2

P
, to move along the

curve that describes the condition number as a function of L, see Figure 4.19.

Another important piece of information that we can obtain from the reference case

is the eigenvector with the largest eigenvalue, which we can calculate analytically.

The result is not shown here, and the calculations are done using MAPLE. However,

this calculation reveals the conditioning of the recovery of the interesting physical

parameters: velocity, density and impedance. The angle that the vector representing
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each of these parameters makes with the eigenvector corresponding to the the largest

eigenvalue, describes the conditioning of the recovery of the parameter at hand. The

results are shown in Figures ( 4.20), ( 4.21) and ( 4.22). In fact these figures explain

the assertion made earlier about the recovery of the density being more ill conditioned

compared to the recovery of the velocity. Figure ( 4.21) shows that, for small offset

angle, the density is almost perpendicular to the optimal eigendirection, and therefore

is aligned with the eigenvector with the smallest eigenvalue. The impedance is the

best conditioned physical parameter for recovery, as it is aligned with the optimal

eigendirection for small coverage angle. The velocity is in between, starting off with

an angle of 45 degrees, and remaining in the mid-range. It is in this sense that the

recovery of the density is the most ill conditioned of the three physical parameters

chosen ususally.

4.5 Multi-component data

Another way to ameliorate the conditioning of the normal operator is measuring

multi-component data. The data considered classically is the measurement of the

pressure field at the surface. When additional data is available, it may be used to

better pinpoint the material parameters sought in the inverse problem and accordingly

improve the condition number of the normal operator.

We consider the case where the linearized forward map F mas the relative per-

turbations perturbations in the impedance and density to pressure perturbations and
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Figure 4.20: Angle in degrees that the velocity vector makes with the eigenvector

corresponding to the largest eigenvalue as a function of maximum offset angle

averaged vertical derivatives of such perturbations. The second set of measurement

is available and is known as over under cable data, a practical method to measure

the vertical gradient of the pressure field at the surface.

F :

 δσ
σ

(x)

δρ
ρ

(x)

→
 δp(xs, xr, tr)

c0

∫ tr
0

∂p
∂zr

(xs, xr, t
′
r) dt

′
r

 . (4.9)

As usual xs, xr, x are respectively the source, receiver, and spatial positions. tr is time

sampled at the receiver location. zr is the vertical component of xr. A procedure

similar to the one used in (Symes, 1998) yields an expression for the symbol of the

normal operator for this specific case of multicomponent data. Surprisingly, it takes
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Figure 4.21: Angle in degrees that the density vector makes with the eigenvector

corresponding to the largest eigenvalue as a function of maximum offset angle

the form:

A′ = f(θ)

 a(θ)2 −a(θ)2 sin2( θ
2
)

−a(θ)2 sin2( θ
2
) a(θ)2 sin4( θ

2
)

 . (4.10)

We can write out a(θ) > 0 explicitly. However, it is more interesting to note that the

effect of the multi-component data improves the condition number by changing the

weight in front of the matrix studied in the previous section (the trace is scaled by a2

and the determinant is scaled by a4 , hence the eigenvalues are scaled by a2 and the

condition number remains unchanged). In the case of variable density acoustics, and

for this type of multicomponent data, we can improve the conditioning by optimally

weighting the matrix as discussed in the previous section. In fact, adequately weight-

ing the matrix emulates multi-component data with single-component data! And the
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study in this section turns out to lead to the previous section again.



Chapter 5

The Proposal

5.1 Introduction

This chapter presents the parts that constitute my future work and relates them to

the parts of the thesis previously done.

5.2 Extension to 3D

The only part that restricts the application of the method to 2D is the PsiDO algo-

rithm written explicitly for 2D. An extension of the PsiDO algorithm to 3D effectively

opens up the possibility of applying the approximate inversion method to 3D models.

The 3D extension proceeds in the same fashion as Bao and Symes (1996), first

write the symbol as:

qm(x, y, z, ξ, η) = ωmq̃m(x, y, z, θ, φ). (5.1)

51
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The truncated spherical harmonics expansion of q̃ is then given by:

q̃(x, y, z, θ, φ) =
K∑
l=0

l∑
n=−l

cln(x, y, z)Y n
l (θ, φ), (5.2)

where Y n
l are the spherical harmonics basis function. The coefficients can be calcu-

lated as,

cln(x, y, z) =

∫
Ω

q̃(x, y, z, θ, φ)Y n
l
∗ dΩ =

∫ 2π

0

dφ

∫ π

0

dθsin(θ)q̃(x, y, z, θ, φ)Y n
l
∗. (5.3)

The relationship between ω, φ and θ to ξ, ζ, and η is given my the spherical

coordinates transformation:

ξ = ωcos(φ)sin(θ)

ζ = ωsin(φ)sin(θ)

η = ωcos(θ)

(5.4)

In order to evaluate the action of the PsiDO algorithm, we need to express Y n
l (θ, φ) =

Y n
l (ξ, ζ, η). In fact,

Y n
l (θ, φ) =

√
(2l + 1)(l − n)!

4π(l + n)!
P n
l (cos(θ))einφ. (5.5)

@here P n
l are the associated Legendre polynomials, they may be calculated by recur-

sion formulas or using an identity known as the Rodrigues’ formula. Thus,

ω =
√
ξ2 + ζ2 + η2

cos(θ) =
η

ω

einφ = ein tan−1( ζξ )

(5.6)
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Plugging into the action of a pseudodifferential operator,

Qm u(x, y, z) =
K∑
l=0

l∑
n=−l

cl(x, y, z)F−1 {ωmY n
l (ξ, ζ, η)û(ξ, ζ, η)} (5.7)

The cost of this algorithm is (K + 1)2 applications of the inverse Fourier transform,

if we use FFT, the cost would be (K + 1)2N3 log(N).

If we only use this algorithm to approximate scaling factors as discussed in the

methods section, then we only need to represent the associated Legendre polynomials

explicitly. The symbol is then parametrized by cl(x, y, z). In fact we do not require

any spherical harmonics transforms, such transforms are needed if we are given a

symbol and asked to apply its action, which is not the problem at hand since we

never have access to the symbol of the normal operator.

5.3 Full Waveform Inversion

This section shows how the scaling method I developed in the setting of the linearized

inverse problem might be used to accelerate the convergence of iterative schemes for

the nonlinear problem. These methods are known as full waveform inversion methods.

The iterative schemes require solutions of large scale PDE problems at each iteration,

accelerating the convergence of these methods cuts down their time/resources con-

sumption.

In this section we take a step back to the original nonlinear inverse problem.

I point out how the pseudodifferential scaling method developed for the linearized
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inverse problem accelerates the convergence of the optimization for the model m.

I present the method in the case of one parameter inversion, the generalization to

multi-parameters follows suit.

I developed this work with the help of Dr Fuchun Gao in the setting of his FWI

code.

One way to recover the model m without linearizing around an a-priori known

background model is trying to optimize for m by trying to fit the data through the

nonlinear forward map. The objective function is given by

J =
1

2
‖S[m]− d‖2 . (5.8)

The gradient of the objective function is,

g = F ∗(S[m]− d). (5.9)

And the Hessian is,

H = F ∗F +
∂F ∗

∂m
(S[m]− d). (5.10)

Newton’s method to minimize the objective function in an effort to recover m will

have the following updates:

mk+1 = mk −H−1g. (5.11)

Gauss-Newton’s method neglects the second term in equation (5.10), H ≈ F ∗F

under assumptions of small residual or mild nonlinearity. Even after this approxi-

mation, it is too expensive to invert the Hessian. The approximation to the inverse

of the normal operator obtained by the pseudodifferential scaling method serves as
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a substitute for H−1. The inverse of the Hessian is usually replaced by a constant

and the Gauss-Newton method reduces to steepest descent with line search, the scal-

ing factor preconditions the problem and introduces curvature information about the

objective function and is expected to accelerate the convergence of the optimization.

Full waveform inversion does not split the model into a smooth and rough com-

ponent. The approximation of good scaling factor however relies on the fact that the

velocity field is split into these two parts. We therefore proceed at each step with

splitting the velocity,

mk = mk0 + δmk.

Apply the normal operator on the rough part to obtain a scaling factor c,

c = argmin
c∈ΨDO

‖δmk − c F ∗[mk0]F [mk0]δmk‖2. (5.12)

And use the scaling factor thus derived to approximate the inverse of the Hessian,

H−1 ≈ c:

mk+1 = mk − αkc g. (5.13)

where αk is a line search parameter to ensure decrease in the objective function.

This development is independent of the space dimension.

The justification for using the scaling factor as an approximation to the inverse

Hessian is somewhat a posteriori. The approximation of the scaling factor requires

the application of the normal operator and is thus comparable to the expense of

one iteration of the FWI. The use of the scaling factor is justified if the overall
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number of applications of the modeling and migration operators is decreased when

using the scaling factor as opposed to simple steepest descent. Also, the scaling

factor is dependent on the smooth part of the model, and we may be able to skip

its approximation at each step if the smooth part remains constant. This last point

constitutes part of the experiments that we need to conduct as part of the future

work.

Also, the scaling factor is an approximation of the inverse only in the part of the

data that is explained by the linearized theory (no multiples, . . . ). It remains to be

seen how well of an approximation it is on the data that cannot be explained by the

linearized part exclusively.

Herrmann et al. (2008a) applies part of this program on the linearized least squares

problem with satisfactory results on the acceleration of the inversion process. Jang

et al. (2009) also use the scaling factor they derive from the method of virtual sources

to precondition full waveform inversion and accelerate the conversion of the nonlinear

optimization problem.

5.4 Variable density acoustics: p = 2

I presented preliminary results on variable density acoustics for a layered model. The

method presented in this manuscript succeeds at separating the effects of different

physical parameters from the migrated images, and corrects for the amplitudes after-

wards: a successful approximate inversion. The simple model was chosen to gauge the
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success of the different steps of the method and an easier interpretation of the results.

I propose to apply the method to more complex models, exhibiting multi-dips events.

One possible application would be a variable density acoustics Marmousi model.

Dealing with large models requires parallelization of the finite difference code that

is used to apply the normal operator (modeling, migration). This endeavor constitutes

part of my future work.

I also propose to extend the conditioning study of presented for this case, to derive

approximate indicators about the local condition number of normal operator. Alter-

natively, approximate projectors of seismic images onto the eigenvector of the normal

operator with the largest eigenvalue provide an index to which physical parameters

are better conditioned for recovery. I will also attempt to formulate such projectors.

5.5 Three-parameter case: p = 3

When formulating the method explicitly for more than two parameters, the algebra

becomes a bit more involved, this is why we only show the case p = 3. However the

procedure is generalizable to any p, albeit tediously.

N =


N11 N12 N13

N12 N22 N23

N13 N23 N33

 .
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Its adjugate is,

Adj(N) =


(N22N33 −N2

23) −(N12N33 −N13N23) (N12N23 −N13N22)

−(N12N33 −N23N13) (N11N33 −N2
13) −(N11N23 −N13N12)

(N12N23 −N22N13) −(N11N23 −N13N12) (N11N22 −N2
12)

 .

We will again introduce special notation that will facilitate subsequent manipu-

lations so we can write Adj(N) ∗ b as a series of swap operations on the entries of b

followed by applications of N . The entries of Adj(N) ∗ b are of the form:

NijNi
′j′bkel = eTl eiNe

T
j ei′Ne

T
j′ekb := liji′j′k. (5.14)

Where again the adopted notation only shows the indices. Symmetry of N and

approximate commutativity of its entries, allows us to deduce identities like liji′j′k =

ljii′j′k = lijj′i′k = li′j′ijk. Using this notation and the previous identities we can

write:
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Adj(N) ∗ b = 122331− 123231 + 123132− 121332 + 121233− 122133

+ 231231− 233121 + 233112− 231132 + 231123− 232113

+ 312231− 313221 + 313122− 311232 + 311223− 312123

= (12)[2331− 3231 + 3132− 1332 + 1233− 2133]

+ (21)[3231− 2331 + 1332− 3132 + 2133− 1233]

+ (31)[2231− 3221 + 3122− 1232 + 1223− 2123]

= (−12 + 21)[33(21− 12) + 23(13− 31) + 13(32− 23)]

+ (31)[22(31− 13) + 32(12− 21) + 12(23− 32)]

(5.15)

Equation (5.15) is interpreted as follows:

1. Form N(eT2 e1 − eT1 e2)b, N(eT1 e3 − eT3 e1)b and N(eT3 e2 − eT2 e3)b

2. Form (eT2 e1−eT1 e2)N [eT3 e3N(eT2 e1−eT1 e2)+eT2 e3N(eT1 e3−eT3 e1)+eT1 e3N(eT3 e2−

eT2 e3)]b

3. Form −(eT3 e1)N [eT3 e2N(eT2 e1−eT1 e2)+eT2 e2N(eT1 e3−eT3 e1)+eT1 e2N(eT3 e2−eT2 e3)]b

4. Sum the last two images to obtain Adj(N) ∗ b ≈ det(N) ∗ x

The above procedure amounts to 5 applications of the normal operator N , fol-

lowed by one extra application to approximate det(N). Bringing the total cost to 6

applications of N for p = 3.

I will implement the three parameter case to form the factors enumerated above.

Also, I will investigate the possibility of reducing the number of required applications
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of the normal operator, possibly in the setting of a particular problem like linear

elasticity.
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