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Simulation-Driven Optimization Problems

We are interested in solving optimization problems constrained by
differential equations,

mcin J(c) = G(ulc,-))

s.t. H<du,u,c) =0,
dt

given that we have an application package capable of solving the state
equation.

Other Examples:
» History Matching

» Seismic Inversion (Dong)
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Motivating Problem

Suppose the following:

1. We use derivative-based methods to solve [SD], relying on the
adjoint-state method to obtain derivatives of J

2. The solution of the state equation changes rapidly in certain time
intervals, motivating use of adaptive time-stepping

How will this affect the numerical approach we use to solve [SD]?
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Motivating Example: Optimal Well Rate Allocation

[OWRA]: Given a reservoir model, along with location of injection and
production wells, find the optimal well rates to maximize revenue

Llmages courtesy of www.amerexco.com/recovery
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Motivating Example: Optimal Well Rate Allocation

T
, max J(q)=/0 dt <Za(1_5a)%’(t)_z 55ad; (8) = >yt )

i€eP ieP el

where «, 0 and ~ are scalar variables and the aqueous pressure p and
aqueous saturation s, solve:

=V - (K (@) Aot (sa(@, 1)) Vp(a, 1)) = Y (1 = sa)ai()(z — ;)

ieP
+ Z Saq; x 71‘1)
i€ PUI
(b(x)%sa(x,t) =V (K(z)\(salz,t))Vp(,t)) = Z 8aqi(t)0(x — x;)
i€ PUI

IProblem formulation from Wiegand et al., Adjoint calculations for a reservoir
management problem
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Motivating Example: Optimal Well Rate Allocation

Rapid changes in the wellrates (¢q) lead to rapid variation in the solution
of the Black-Oil Equations

Sa Adqueous Saturation Profile (For 1 Grid Cell)
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Motivating Example: Optimal Well Rate Allocation

Rapid changes in the wellrates (¢q) lead to rapid variation in the solution
of the Black-Oil Equations

Sa w Adqueous Saturation Profile (For 1 Grid Cell)
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Motivating Example: Optimal Well Rate Allocation

Rapid changes in the wellrates (¢q) lead to rapid variation in the solution
of the Black-Oil Equations

» Adaptive time-stepping is common feature in industrial reservoir
simulators

Sa Aqueous Saturation Profile (For 1 Grid Cell)
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Adaptive Time Stepping

Adaptive time stepping is the preferred method for solving differential
equations with rapidly changing solutions

» Requires an input: error tolerance 7

» Steplengths expand or contract, to maintain solution error of O(T)
How to use adaptive time stepping with the adjoint state method?

> In order to use adaptive time stepping to solve [SD], we apply the
optimality conditions to [SD], before discretizing
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The Continuous Adjoint-State Method

Applying the optimality conditions to [SD], for t € [0, T7:
Continuous State Equation:

d
di: = H(u(t),e) u(0)=0
Continuous Adjoint Equation:

W — DL Hu(t), 0 w(t) + Juult) ) w(T) =0

Gradient:

Vf(c):/o DoH(u(t), &) w(t) + Ju(ult), c)dt
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Adaptive Time Stepping and the Adjoint State Equations

Solve the state and adjoint equations above via adaptive time-stepping

[F] ¢———0———()-¢

l

[A] | fe—

Problem: Mismatched time grids
» Interpolation is needed to complete the adjoint evolution
» Interpolation Error — Adjoint Error — Gradient Error

» Claim: Despite interpolation error, we can still guarantee local
convergence to [SD]
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The Adaptive Tolerance Method

Claim: Suppose we solve [SD] with the Newton method and use
adaptive time-stepping to resolve the DE constraints.

Using the following time-stepping tolerance update:

The1 = min(m, [lgel[),  p e (1,2]

is enough to guarantee local convergence to a stationary point
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Algorithm: Adaptive Tolerance Method

a. Set initial time-stepper tolerance 7y and initial control ¢y. Set k = 0.
b. while (optimization error < tolopt)

1. With 7% and ¢y, solve reference and adjoint equations.

2. Take Newton Step: solve Hy sy = gi, then cx11 = ¢ + Sk.
3. Tg+1 = min(7, k(optimization error)?) for p € (1,2].

4. Set k=k+ 1.
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Adaptivity

The Adaptive Tolerance Method

Tolerance Values

A

/(o)

le (Cl)

Optimization Iteration

M. Enriquez
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TSOpt (“Time Stepping For Optimization™)

TSOpt is “middle-ware” written in C++, designed to aid solution of
simulation-driven optimization problems

TSOpt:
» abstracts commonalities among time-stepping methods

> provides a way for a simulation package to inter-operate with
optimization algorithms

> supports use of the adjoint-state method

Motivating observation: for every simulation driven optimization
problem, the solution process is (mostly) the same:

> reference, linearized and adjoint simulation execution order

» constructing needed data structures for optimization
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Computations

TSOpt (“Time Stepping For Optimization™)

m'n
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Computations

TSOpt (“Time Stepping For Optimization™)

u" = u+ AtH(u,c,t)
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Computations

TSOpt (“Time Stepping For Optimization™)
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Computations

TSOpt (“Time Stepping For Optimization™)
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Computations

TSOpt (“Time Stepping For Optimization™)

o ——

|
|  Optimizer

N — =

Simulator

N oo o o=

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 13



TSOpt's Components

In TSOpt, we use Jet objects to perform various simulations. Hence, a
Jet object “holds” information on how to take forward, derivative and
adjoint evolution steps.

1-Jet

Sim I
Fwd. TStep Lin. Tstep Adj. Tstep
Lin. Term Adj. Term
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TSOpt's Components

In TSOpt, we use Jet objects to perform various simulations. Hence, a
Jet object “holds” information on how to take forward, derivative and
adjoint evolution steps.

1-Jet

? State
Sim I ?

R

State Data

Fwd. TStep Lin. Tstep
H Time
Lin. Term Adj. Term

All of these classes are templated on a State class, which itself holds
state data and a time object
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Computations

Inversion Software Construction

A consequence of TSOpt's modular structure is that it minimizes the
amount of code needed to perform an inversion

User:
> provides TSOpt with a forward, linearized, and adjoint “step”

> provide a “State” class

TSOpt:
> arranges proper execution forward, linearized and adjoint simulation

» implements the Adjoint-State method to form gradients

Output can be passed to optimization software
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TSOpt and the Adjoint-State (AS) Method

The AS method requires access to the reference simulation state history.

TSOpt implements the following strategies, for both fixed-step and
adaptive time-stepping:
» save all: save states as you forward simulate, access as needed
» Cost: A typical 3D RTM, O(TB)

» checkpointing: rely on forward simulations, and use stored
simulation states as a starting point for evolution

» Cost: O(log(N)) recomputation, given a special distribution of the
states and a small amount of buffers

> specialized strategies for specific problems
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A Checkpointing Example

Consider a 15 day simulation, with dt = 1 day. Checkpoint with 3 buffers.

Checkpointing Initial Steps:
1. Figure out which states to save.
2. Run forward simulation.
3. Store states at times ¢t = 0,6, 11 into the 3 buffers.

The first adjoint step: solve for the adjoint variable at t = 14
» Requires access to simulation state at t = 14

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 17



Computations

2: From the Last CP, Timestep to Generate w4

12 9 13 | 14
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Computations

3: From the Last CP, Timestep to Generate u13

12 9 13
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Computations

4: From the Last CP, Timestep to Generate u19

12
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Computations

5: Since We Stored It, Access u1;
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Computations

6: From ug , Generate New CP
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Computations

7: Overwrite Useless Buffer with New CP

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 17



Computations

8: From Updated Last CP, Timestep to Generate uqg
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Computations

9: From Updated Last CP, Timestep to Generate uq
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Computations

10: Since We Stored It, Access ug
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Computations

11: From Second Stored CP, Timestep to Generate uy;
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Computations

12: Since We Stored It, Access wug
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Computations

13: From First CP, Timestep to Generate us;, Gen. 2 CPs
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Computations

14: Overwrite Buffers with 2 New CPs
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Computations

15: From Last CP, Timestep to Generate uy
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Computations

16: Since We Stored It, Access us

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 17



Computations

17: From Second CP, Timestep to Generate us
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Computations

18: Since We Stored It, Access uy
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Computations

19: Since We Stored It, Access wy
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Computations

Recomputation Cost of Checkpointing
Consider the following case, where N = 10000

30 v :
=8= recomputationratio
— log(10000)
251 4
20+

recomputation ratio
o

=)
T

I I L L I
0 10 20 30 40 50 60
number of buffers

buffers| 3 5 |10]15({20|25|30 35|40 |60
ratio |27.9|11.3]5.8|145(3.8|3.6/3.4|3.1(2.9|2.8
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Computations

Simulation Verification

In order to obtain meaningful results from inversion, one must guarantee
that the gradient is accurate

Gradient quality depends on the adjoint states, which depends on:
> linearization of the reference equations

» adjoint of the linearization

TSOpt is capable of the following simulation verification (unit) tests:

» derivative test: compare linearized simulation to finite difference
approximation (using reference simulation)

» dot product test: give the linearized simulation operator A, adjoint
simulation operator A* and random control x and random state v,
check (Ax,y) — (x, A*y) (Fixed timestep only)
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The Optimal Well Rate Allocation Problem

Recall the optimal well rate allocation problem:
T
O /0 dt Za(l = 5a)qi(t) — Z Ssadi(t) = Y _vai(t) ]
i€P i€P el

where «, 8 and ~y are scalar variables and the aqueous pressure p and
aqueous saturation s, solve:

=V - (K (@) Ao (sa(@, 1)) V(a, 1) = D (1 = sa)ai(t)d(x — a;)

i€P
+ Z $aqi(t)o(x — ;)
i€PUIT
¢(93)%5a($7t) — V- (K(@)Xa(5a(@,1)Vp(@,8) = Y saqi(t)d(z — 2:)
i€ PUI
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Fully Discretized Problem

After using a Finite Volume method in space and a 1-2 scheme in time
(Bwd. Euler + Trapezoid Rule):

min th st ) q)
s.t. elg=0
qmin S qi é dmazx

where s{ ) and P solve:
el [ gl apth T
g g | T DTN (pla) () — Ap(tee )] s

where the matrices A(9) and D are defined as:

Dii = ¢i- |
A = T, Al = Zng)\e”
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The Adjoint Equations

k k
Simultaneously solve for the adjoint variables wgt ) and w]g,t ) in the

following equation:

wgtk+1) _ w(tk)

s k k k k k
—————— = DS )T = Dyg( )Tl = V()
k k k k
0 = —Dpf(...0 N Twl") + Dpg(.. . )Tl

The directional derivative can then be obtained from the following
expression:

N
VJ(q) = Aqg > Vl(-02D) = Dy f(.. BADN (89 4 Dyg(.. FAD) Ty (180
i=1
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Simulation Information
» SPE10 data for porosity and permeability (left)

> Location of Injecting/Producing Wells (right)
» Grid Cell Size: 10 x 20 feet
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Numerical Results

Reference Simulation Results
Saturation plot for t = 25 days
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Numerical Results

Reference Simulation Results
Saturation plot for t = 50 days
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Numerical Results

Reference Simulation Results
Saturation plot for t = 75 days
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Numerical Results

Reference Simulation Results
Saturation plot for ¢ = 100 days
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Numerical Results

Reference Simulation Results
Saturation plot for ¢ = 125 days
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Numerical Results

Reference Simulation Results
Saturation plot for ¢ = 150 days
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Numerical Results

Reference Simulation Results
Saturation plot for ¢ = 175 days
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Numerical Results

Reference Simulation Results
Saturation plot for ¢ = 200 days
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Numerical Results

Inversion Information

Computational Software:
» Simulation: Black0il simulator
» TSOpt to handle simulation execution, gradient construction
» Optimization: IPOpt, “Interior-Point Optimizer”

Inversion:

v

Find optimal well-rate configuration over 200-day timespan
Stopping tol.: 5e-2 NLP error
LBFGS Hessian approximation

Wellrate bounds: [0,20] bbl/day

>
>

» Globalization: Linesearch

>

» Initial guess: 10 bbl/day for all wells
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Num I Results

Objective Function

Adaptive and Fixed Grid Objective Function
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Numerical Results

NLP Error vs. Tolerance Values

Tol and NLP Error vs. Iteration Number

0.1

0.01
tol —e—
NLP Error =—¢—
y=0.05 =«
0.001 . . . . .
0 1 2 3 4 5 6 7 8
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Numerical Results

Error vs. Compute-Time Comparison

To reach 11% NLP error:
» Fixed: 97 hrs., At =0.25
» Adaptive: 3 hrs.

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 27



Numerical Results

Conclusions

Fixed-step approach to solving optimal control problems with DE
constraints with rapidly-varying solutions

» Requires fine time grid for accuracy (Expensive)

Adaptive Approach:
» Requires OtD approach
» Higher sim. accuracy — accurate derivatives — better optim. results

» Adaptive tolerance method: solves DE as accurately as needed
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Numerical Results

Conclusions

TSOpt:
» Modular C++ framework aiding inversion software construction
» Easily switch between strategies for inversion and gradient formation

» Supports checkpointing for fixed and adaptive simulations

Using the Adaptive Tolerance Method for OWRA:
» Solved via Black0il + TSOpt + IPOpt
» Increase in projected revenue (3%)
» Reached NLP error of 5%
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Questions?
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Numerical Results

Gradient and Hessian Error

Theorem: Let g and H be the computed gradient and Hessian,
respectively. If the reference and adjoint equations are solved adaptively
with tolerance 7, then:

lg =Vl < Cy7
I(H = V2f(e)pl < Curt

for constants Cy, C'y > 0 and a search direction p.
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Numerical Results

Inexact Optimization Algorithms

How will the derivative error affect solution of the optimal control
problem?

Inexact Optimization Algorithms:
> Theoretically guarantees convergence, despite derivative error
» Focus: Inexact Newton Methods

» Idea: Couple derivative error to inexact Newton theory

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 32



The Inexact Newton Method

Consider the following problem:

min f(¢), f:R"—=R

Standard Newton:
Solve: V2f(c)s =V f(c)
Update: ¢t =c+s

Inexact Newton Algorithm
Solve V2f(c)s = Vf(c) 4+ r(c)
Update: ¢t =c+s
» Local convergence if ||[r(c)|| < K - [|[Vf(c)|[P for p € (1,2]
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The Adaptive Tolerance Method

Insight: If the derivative discretization error at the kth iteration,
7]l = C 7
then the inexact Newton criterion
[rell < K-V f(en)ll”, pe(1,2]

yields an update scheme for the tolerance

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 34



The Adaptive Tolerance Method

Claim: Suppose we solve [SD] with the Newton method and use
adaptive time-stepping to resolve the DE constraints.

Using the following time-stepping tolerance update:

The1 = min(m, [lgel[),  p e (1,2]

is enough to guarantee local convergence to a stationary point
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Adaptive Checkpointing

This algorithm stems from Walter's ARevolve:

» Good: Recomputation cost close to optimal (log(NN)), plus small
penalty due to adaptivity

> Bad: Assumes reference time grid and adjoint time grid align

Goal: Keep the near-optimal recomputation ratio, without the restriction
on the time grids

Solution:
» Add interpolation buffer that moves with the adjoint evolution

» Manage calls are made to ARevolve
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Numerical Results

Adaptive Checkpointing

F1 ¢—H— 1

(Al | —+
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Numerical Results

Adaptive Checkpointing

F1 —H— 1

[A) —+

M. Enriquez Adaptive Time Stepping for Optimal Control Problems - 36



Numerical Results

Adaptive Checkpointing
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Numerical Results

Adaptive Checkpointing
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Numerical Results

Adaptive Checkpointing

[F]

a1 | oot
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Numerical Results

Adaptive Checkpointing
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