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Simulation-Driven Optimization Problems

We are interested in solving optimization problems constrained by
differential equations,

min
c

J(c) = G(u(c, ·))

s.t. H̄

(
du

dt
, u, c

)
= 0 ,

given that we have an application package capable of solving the state
equation.

Other Examples:

I History Matching

I Seismic Inversion (Dong)
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Motivating Problem

Suppose the following:

1. We use derivative-based methods to solve [SD], relying on the
adjoint-state method to obtain derivatives of J

2. The solution of the state equation changes rapidly in certain time
intervals, motivating use of adaptive time-stepping

How will this affect the numerical approach we use to solve [SD]?
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Motivating Example: Optimal Well Rate Allocation

[OWRA]: Given a reservoir model, along with location of injection and
production wells, find the optimal well rates to maximize revenue

1Images courtesy of www.amerexco.com/recovery
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Motivating Example: Optimal Well Rate Allocation

max
qi i∈I∪P

J(q) =
∫ T

0

dt

(∑
i∈P

α(1− sa)qi(t)−
∑
i∈P

β

2
saq

2
i (t)−

∑
i∈I

γqi(t)

)
,

where α, β and γ are scalar variables and the aqueous pressure p and
aqueous saturation sa solve:

−∇ · (K(x)λtot(sa(x, t))∇p(x, t)) =
∑
i∈P

(1− sa)qi(t)δ(x− xi)

+
∑
i∈P∪I

saqi(t)δ(x− xi)

φ(x)
∂

∂t
sa(x, t)−∇ · (K(x)λa(sa(x, t))∇p(x, t)) =

∑
i∈P∪I

saqi(t)δ(x− xi)

1Problem formulation from Wiegand et al., Adjoint calculations for a reservoir
management problem
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Motivating Example: Optimal Well Rate Allocation
Rapid changes in the wellrates (q) lead to rapid variation in the solution
of the Black-Oil Equations

Adaptive time-stepping is common feature in industrial reservoir
simulators
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Adaptive Time Stepping

Adaptive time stepping is the preferred method for solving differential
equations with rapidly changing solutions

I Requires an input: error tolerance τ

I Steplengths expand or contract, to maintain solution error of O(τ)

How to use adaptive time stepping with the adjoint state method?

I In order to use adaptive time stepping to solve [SD], we apply the
optimality conditions to [SD], before discretizing

M. Enriquez Adaptive Time Stepping for Optimal Control Problems – 7



Problem Adaptivity Computations Numerical Results

The Continuous Adjoint-State Method

Applying the optimality conditions to [SD], for t ∈ [0, T ]:

Continuous State Equation:

du

dt
= H(u(t), c) u(0) ≡ 0

Continuous Adjoint Equation:

dw

dt
= −DuH(u(t), c)∗w(t) + Ju(u(t), c) w(T ) ≡ 0

Gradient:

∇f(c) =
∫ T

0

DcH(u(t), c)∗w(t) + Jc(u(t), c)dt
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Adaptive Time Stepping and the Adjoint State Equations

Solve the state and adjoint equations above via adaptive time-stepping

Problem: Mismatched time grids

I Interpolation is needed to complete the adjoint evolution

I Interpolation Error → Adjoint Error → Gradient Error

I Claim: Despite interpolation error, we can still guarantee local
convergence to [SD]
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The Adaptive Tolerance Method

Claim: Suppose we solve [SD] with the Newton method and use
adaptive time-stepping to resolve the DE constraints.

Using the following time-stepping tolerance update:

τk+1 = min(τk, ‖gk‖p), p ∈ (1, 2]

is enough to guarantee local convergence to a stationary point
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Algorithm: Adaptive Tolerance Method

a. Set initial time-stepper tolerance τ0 and initial control c0. Set k = 0.

b. while (optimization error < tolopt)
1. With τk and ck, solve reference and adjoint equations.
2. Take Newton Step: solve Hksk = gk, then ck+1 = ck + sk.
3. τk+1 = min(τk, κ(optimization error)p) for p ∈ (1, 2].
4. Set k = k + 1.
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The Adaptive Tolerance Method
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TSOpt (“Time Stepping For Optimization”)

TSOpt is “middle-ware” written in C++, designed to aid solution of
simulation-driven optimization problems

TSOpt:

I abstracts commonalities among time-stepping methods

I provides a way for a simulation package to inter-operate with
optimization algorithms

I supports use of the adjoint-state method

Motivating observation: for every simulation driven optimization
problem, the solution process is (mostly) the same:

I reference, linearized and adjoint simulation execution order

I constructing needed data structures for optimization
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TSOpt’s Components

In TSOpt, we use Jet objects to perform various simulations. Hence, a
Jet object “holds” information on how to take forward, derivative and
adjoint evolution steps.

All of these classes are templated on a State class, which itself holds
state data and a Time object
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Inversion Software Construction

A consequence of TSOpt’s modular structure is that it minimizes the
amount of code needed to perform an inversion

User:

I provides TSOpt with a forward, linearized, and adjoint “step”

I provide a “State” class

TSOpt:

I arranges proper execution forward, linearized and adjoint simulation

I implements the Adjoint-State method to form gradients

Output can be passed to optimization software
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TSOpt and the Adjoint-State (AS) Method

The AS method requires access to the reference simulation state history.

TSOpt implements the following strategies, for both fixed-step and
adaptive time-stepping:

I save all: save states as you forward simulate, access as needed
I Cost: A typical 3D RTM, O(TB)

I checkpointing: rely on forward simulations, and use stored
simulation states as a starting point for evolution

I Cost: O(log(N)) recomputation, given a special distribution of the
states and a small amount of buffers

I specialized strategies for specific problems
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A Checkpointing Example

Consider a 15 day simulation, with dt = 1 day. Checkpoint with 3 buffers.

Checkpointing Initial Steps:

1. Figure out which states to save.

2. Run forward simulation.

3. Store states at times t = 0, 6, 11 into the 3 buffers.

The first adjoint step: solve for the adjoint variable at t = 14
I Requires access to simulation state at t = 14
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2: From the Last CP, Timestep to Generate u14
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3: From the Last CP, Timestep to Generate u13
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4: From the Last CP, Timestep to Generate u12
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5: Since We Stored It, Access u11
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6: From u6 , Generate New CP
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7: Overwrite Useless Buffer with New CP
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8: From Updated Last CP, Timestep to Generate u10
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9: From Updated Last CP, Timestep to Generate u9
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10: Since We Stored It, Access u8
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11: From Second Stored CP, Timestep to Generate u7
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12: Since We Stored It, Access u6
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13: From First CP, Timestep to Generate u5, Gen. 2 CPs
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14: Overwrite Buffers with 2 New CPs
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15: From Last CP, Timestep to Generate u4
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16: Since We Stored It, Access u3
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17: From Second CP, Timestep to Generate u2
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18: Since We Stored It, Access u1
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19: Since We Stored It, Access u0
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Recomputation Cost of Checkpointing
Consider the following case, where N = 10000
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Simulation Verification

In order to obtain meaningful results from inversion, one must guarantee
that the gradient is accurate

Gradient quality depends on the adjoint states, which depends on:

I linearization of the reference equations

I adjoint of the linearization

TSOpt is capable of the following simulation verification (unit) tests:

I derivative test: compare linearized simulation to finite difference
approximation (using reference simulation)

I dot product test: give the linearized simulation operator A, adjoint
simulation operator A∗ and random control x and random state y,
check 〈Ax, y〉 − 〈x,A∗y〉 (Fixed timestep only)
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The Optimal Well Rate Allocation Problem

Recall the optimal well rate allocation problem:

min
qi i∈I∪P

J(q) =
∫ T

0

dt

(∑
i∈P

α(1− sa)qi(t)−
∑
i∈P

β

2
saq

2
i (t)−

∑
i∈I

γqi(t)

)
,

where α, β and γ are scalar variables and the aqueous pressure p and
aqueous saturation sa solve:

−∇ · (K(x)λtot(sa(x, t))∇p(x, t)) =
∑
i∈P

(1− sa)qi(t)δ(x− xi)

+
∑
i∈P∪I

saqi(t)δ(x− xi)

φ(x)
∂

∂t
sa(x, t)−∇ · (K(x)λa(sa(x, t))∇p(x, t)) =

∑
i∈P∪I

saqi(t)δ(x− xi)
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Fully Discretized Problem
After using a Finite Volume method in space and a 1-2 scheme in time
(Bwd. Euler + Trapezoid Rule):

min J̄(q) =
N∑
k=1

hk l(tk, s(tk)
a , q)

s.t. eT q = 0
qmin ≤ qi ≤ qmax

where s
(tk+1)
a and p(tk+1) solve:[

f(. . .(t
k+1) , q)

g(. . .(t
k+1) , q)

]
:=
[

ϕ[q](tk+1)−Ap(tk+1)

D−1(ϕ[q](tk+1)− Ãp(tk+1))

]
=

[
0

s(tk+1)
a −s(tk)

a

hk

]
where the matrices A(θ) and D are defined as:

Di,i = φi · |Ωi|

A
(θ)
i,j = −Ti,jλθi,j A

(θ)
i,i =

∑
j

Ti,jλθi,j
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The Adjoint Equations

Simultaneously solve for the adjoint variables w
(tk)
s and w

(tk)
p in the

following equation:

−w
(tk+1)
s − w(tk)

s

hk
= Dsf(. . .(t

k))Tw(tk)
s −Dsg(. . .(t

k))Tw(tk)
p −∇sl(. . .(t

k))

0 = −Dpf(. . .(t
k))Tw(tk)

s +Dpg(. . .(t
k))Tw(tk)

p

The directional derivative can then be obtained from the following
expression:

∇J(q) = ∆q
N∑
i=1

∇ql(·(i∆q))−Dqf(. . .(i∆q))Tw(i∆q)
s +Dqg(. . .(i∆q))Tw(i∆q)

p

M. Enriquez Adaptive Time Stepping for Optimal Control Problems – 22



Problem Adaptivity Computations Numerical Results

Simulation Information

I SPE10 data for porosity and permeability (left)

I Location of Injecting/Producing Wells (right)

I Grid Cell Size: 10× 20 feet
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Reference Simulation Results
Saturation plot for t = 25 days
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Reference Simulation Results
Saturation plot for t = 50 days
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Reference Simulation Results
Saturation plot for t = 75 days
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Reference Simulation Results
Saturation plot for t = 100 days
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Reference Simulation Results
Saturation plot for t = 125 days
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Reference Simulation Results
Saturation plot for t = 150 days
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Reference Simulation Results
Saturation plot for t = 175 days
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Reference Simulation Results
Saturation plot for t = 200 days
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Inversion Information

Computational Software:

I Simulation: BlackOil simulator

I TSOpt to handle simulation execution, gradient construction

I Optimization: IPOpt, “Interior-Point Optimizer”

Inversion:

I Find optimal well-rate configuration over 200-day timespan

I Stopping tol.: 5e-2 NLP error

I LBFGS Hessian approximation

I Globalization: Linesearch

I Wellrate bounds: [0, 20] bbl/day

I Initial guess: 10 bbl/day for all wells
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Objective Function
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NLP Error vs. Tolerance Values

M. Enriquez Adaptive Time Stepping for Optimal Control Problems – 26



Problem Adaptivity Computations Numerical Results

Error vs. Compute-Time Comparison

To reach 11% NLP error:

I Fixed: 9+ hrs., ∆t = 0.25
I Adaptive: 3 hrs.
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Conclusions

Fixed-step approach to solving optimal control problems with DE
constraints with rapidly-varying solutions

I Requires fine time grid for accuracy (Expensive)

Adaptive Approach:

I Requires OtD approach

I Higher sim. accuracy→ accurate derivatives→ better optim. results

I Adaptive tolerance method: solves DE as accurately as needed
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Conclusions

TSOpt:

I Modular C++ framework aiding inversion software construction

I Easily switch between strategies for inversion and gradient formation

I Supports checkpointing for fixed and adaptive simulations

Using the Adaptive Tolerance Method for OWRA:

I Solved via BlackOil + TSOpt + IPOpt

I Increase in projected revenue (3%)

I Reached NLP error of 5%
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Questions?
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Gradient and Hessian Error

Theorem: Let g and H be the computed gradient and Hessian,
respectively. If the reference and adjoint equations are solved adaptively
with tolerance τ , then:

‖g −∇f(c)‖ ≤ Cg τ

‖(H −∇2f(c)) p‖ ≤ CH τ

for constants Cg, CH > 0 and a search direction p.
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Inexact Optimization Algorithms

How will the derivative error affect solution of the optimal control
problem?

Inexact Optimization Algorithms:

I Theoretically guarantees convergence, despite derivative error

I Focus: Inexact Newton Methods

I Idea: Couple derivative error to inexact Newton theory
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The Inexact Newton Method

Consider the following problem:

min
c
f(c) , f : Rn → R

Standard Newton:

Solve: ∇2f(c) s = ∇f(c)
Update: c+ = c+ s

Inexact Newton Algorithm

Solve ∇2f(c) s = ∇f(c) + r(c)
Update: c+ = c+ s

I Local convergence if ‖r(c)‖ ≤ K · ‖∇f(c)‖p for p ∈ (1, 2]
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The Adaptive Tolerance Method

Insight: If the derivative discretization error at the kth iteration,

‖rk‖ ≈ C τk ,

then the inexact Newton criterion

‖rk‖ ≤ K · ‖∇f(ck)‖p , p ∈ (1, 2]

yields an update scheme for the tolerance
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The Adaptive Tolerance Method

Claim: Suppose we solve [SD] with the Newton method and use
adaptive time-stepping to resolve the DE constraints.

Using the following time-stepping tolerance update:

τk+1 = min(τk, ‖gk‖p), p ∈ (1, 2]

is enough to guarantee local convergence to a stationary point
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Adaptive Checkpointing

This algorithm stems from Walter’s ARevolve:

I Good: Recomputation cost close to optimal (log(N)), plus small
penalty due to adaptivity

I Bad: Assumes reference time grid and adjoint time grid align

Goal: Keep the near-optimal recomputation ratio, without the restriction
on the time grids

Solution:

I Add interpolation buffer that moves with the adjoint evolution

I Manage calls are made to ARevolve
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