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Outline

Linearization of the inverse problem
Properties of the normal operator
Proposed method

Preliminary results:

e Constant density acoustics
o Layered variable density acoustics (2-parameters)

Work in progress, future work
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Let:

e m(x): model (consists of p-parameters: impedance,
velocity, density,. . .)

e p(x,1): state (the solution of the system: pressure,...)

Then, if S is the Forward Map:
e The Forward Problem:

S[m] = plsurtace
e The Inverse Problem:
S[m] ~ §°Ps
Given 5%, get m(x)

Nonlinear and Large Scale ! @ RICE



Linearization

Solution depends nonlinearly on coefficients; if we have an
approximation mg to the model, Linearization is advantageous:

e Write m = mgy + om
my: Given reference model
om: First order perturbation about m

¢ Define Linearized Forward Map F|[my] (Born Modeling):
Flmolém = dp
e Linear inverse problem:
Flmo|ém = §S — S[mo] := d
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Normal Equations

Interpret as least squares problem: need to solve normal
equations

N[mo|dm := F*[mgo|F[mo)dm = F*[mg|d

N := F*[mg|F[my] : Normal Operator (Modeling + Migration),
b := F*d : migrated image
e Large Scale: millions of equations/unknowns, also
om — N ém expensive

e Cannot use Gaussian elimination = need rapidly
convergent iteration = good preconditioner

e Not narrow band (like Laplace in 2D/3D) =- matrix
preconditioners ineffective
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WUDOs and their symbols

¢ Pseudodifferential (¥ DO) operators defined by symbols

a(x,§)
9= [ [atv.utme e dgay

e a(x,&): Scalar function of position x and wavenumber ¢

la(x,§)] = O(E]"), as [§] — oo

m = ord(a) := ord(Op(a))
e Calculus of scalar symbols:

1. Op(aqa; + anaz) = a1 0p(ay) + a20p(az), oy, ap scalars
2. Op(aiaz) ~ Op(a1)Op(az) ~ Op(a2)Op(ai)
3. ord(ayaz) < ord(ay) + ord(az)
( ~: difference is lower order ¥DO) @RICE

6/42



Properties of Normal Operator

e Normal operator is a matrix of pseudodifferential operators:

e Smooth background model m, (Beylkin 1985)
e Scalar wave fields

o Polarized vector fields (P-P, P-S, S-S). (Beylkin and
Burridge, 1989; De Hoop, 2003)

e N =0p(A), A =p x p matrix of scalar symbols

0= [ [AGouwe 9 ag ay,
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Cramer’s Rule for Y DOs

A is a matrix of symbols
Adjugate of A defined by:

Adj(A)A = AAdj(A) = det(A) 1,
Symbol calculus =
Adj(N) N =~ N Adj(N) ~ det(N) 1.

Notation: Adj(N) = Op(Adj(A)), det(N) = Op(det(A)).



Cramer’s Rule for Y DOs

Want to solve: Nom = b
Only given ability to apply N
Apply Adjugate, in terms of N (later):

Adj(N) b = Adj(N) N 6m = det(N) bm

Have det(N) dm, want ém
det(N) om ~ amplitude scaling of om
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Dividing by the determinant

e To undo det(N), apply N to form:
N det(N) dm =~ det(N) N dm = det(N) b (4)
e given b and det(N) b, approximate scaling factor c:

c = argmin||b — c det(N) b||? (5)
ceYDO

e Approximate solution:

dm=N"'b~N"'cdet(N) b~ cdet(N)N~'b

6
~ cdet(N) om := dmjy, (©)
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Approximation of ¥DO

How to represent ¢?
The action of the ¥DO in 2D (Bao and Symes, 1996)

u(x, 2) // (v, 2, &, (€, )T de d, it =

Flul

Direct Algorithm O(N*log(N)) complexity (N = O(10°))!

Finite Fourier series of length K:

I=K/2

a(x,z,&,m) ~ Z a(x, Z)eﬂe, f = arctan <Z>

I=—K/2

e Use FFT = O(KN?[log(N) + log(K)])
¢ K independent of N, depends on smoothness of a
o O captures dip-dependence
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Recap

To solve Nom = b,
e Apply Adj(N) on b : Adj(N) b ~ det(N) ém
e Apply N : Ndet(N) ém =~ det(N) b
e Represent scaling factor : ¢ = 0,,[q]
e Compute c:
¢ = argmin||b — c det(N) b|*.
ceVDO
e Approximate the inverse: omj,, := cdet(N) dm ~ dm

Pseudodifferential scaling method that resolves multiple dip
events
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One-Parameter Case: p =1

e Inthis case: det(N) = N, Adj(N) =1
e Only need c:

¢ = argmin||b — ¢ N b||*.
c€WDO

¢ Method reduces to usual scaling methods (Masters thesis)
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Scaling Methods

Hessian ~ multiplication by a smooth function (Claerbout
and Nichols, 1994; Rickett, 2003)

Near Diagonal Approximation of Hessian (Guitton, 2004)

Special case (well defined dip): normal operator ~
multiplication by smooth function after composition with
power of Laplacian (correction to Claerbout-Nichols -
Symes, 2008)

Herrmann et al. (2007) derive a scaling method using
curvelets to approximate eigenvectors
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Amplitude Versus Offset (AVO)

AVO variation contains info about anomaly in physical
parameters

Uses simplification of nonlinear Zoeppritz equations (Aki
Richards; Shuey, 85)

Rutherford and Williams (1989): 3 classes of AVO
behaviors

Lortzer and Berkhout (1989): Statistical Bayesian
approach to approximate anomaly
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Linearized Multi-Parameter Inversion

Santosa and Symes (1988): layered acoustic fluid, with
conditioning study

Bourgeois et al. (1989): impedance and velocity in variable
density acoustics

Virieux et al. (1992): P and S impedances in linear
elasticity (geometric optics computations)

Foss et al. (2005): anisotropic elasticity, asymptotic inverse

Minkoff (1995): linear inversion successful if you take care
of everything: source estimation, attenuation . ..

Charara et al. (1996): P and S velocities and density in the
linear elasticity
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Proposed method:

Not iterative

Uses wave equation migration (Reverse Time Migration)
No geometric optics computations

Relies only on application of normal operator

Novel for p > 1: Few applications of N — approximate
inverse
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Constant Density Acoustics: p = 1
On Marmousi 2D data:

500 1000 1500 2000

Figure: dmyp,. @RICE
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Migration Vs Inversion
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Figure: dmpmig = F*d Figure: dmyye = (F*F)'F*d
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Lessons Learned

Discontinuities preserved
Amplitudes distorted
Similar relationship between det(N) ém and om

Multi-parameter problem reduced to one parameter
problem

Solution: amplitude correction
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Migration - Remigration
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Figure: dmpyg = F*d Figure: dmmemig = F*Fommjg

% RICE

21/42



Scaling K =1

05
04
04 03
02
02 01
0
° -0.1
-02
-02
-03
-0.4 4
-05

600 800 1000 1200 1400

800 1000 1200 1400

Figure: dmj,, with K =1 Figure: dmyrye
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Scaling K =5
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Figure: émjn, with K =5 Figure: dmyrye
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Difference between K =1and K =5
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Figure: Difference between K =1and K =5
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Two-Parameter Case: p =2

In this case:
N1t Niz )
N = .
( Nz Ny

Adjugate given by:

. Ny —Ni2
Adj(N) = ( —Ni2 Ni ) .

Adj(N)b = J'NJ b

(1)

Where,
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Explicitly,
—b _
N < b12 > — (N“sz _NIZZ) ( x)fz > (8)

e Normal operator on specific combination of migrated
images — amplitude scaling of inverse

e Advantage: Only apply N to permutations of entries of b.
e Cost of method: 1+1=2 applications of N
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Application: Layered Variable Density Acoustics
e Two parameter inverse problem: density and velocity
¢ Homogeneous background fields
e True model:
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Migration: Mix

Migration mixes effects of reflectors

Figure: b, Figure: b,
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Adjugate: Un-Mix
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Figure: (JTNJ b); = det(N) x, Figure: (JTNJ b); = det(N) x,




Apply N again

Figure: det(N) b,

Figure: det(N) b,

2 RICE
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Approximate Inverse
Compute ¢ and approximate the inverse:

Figure: inv,, Figure: invg,
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Work In Progress, Future Work

e In progress:

o Apply to complex models: variable density acoustics
Marmousi
e Extendto 3D

e Future work

e Precondition the nonlinear problem: Full Waveform
Inversion (FWI)
o Three-parameter case: Linear elasticity
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Extension to 3D

Only need to extend PsiDO algorithm
Truncated spherical harmonics expansion of g:

K !
4(x,,2,0,¢) = ZZ n(%,,2)Y7(0, ), (9)

I=0n
Y} spherical harmonics, expressed in terms of associated
Legendre Polynomials
214+ 1)(I —n)!
4r(l+ n)!

Express Y}'(0, ¢) = Y]'(€, ¢, n), using spherical coordinates
transformation
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Extension to 3D

¢ Plug into the action of a PsiDO

K l
u(x,y,z chlxy, )F WY} (& ¢, ¢m)}

=0 n=—
(11)
e Cost: Use FFT = (K + 1)2N?log(N)
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Dip Filtering With PsiDOs

Figure: Marmousi model
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Dip Filtering With PsiDOs: Pick Your Symbol

Figure: Vertical dips filtered out of Marmousi
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Summary

e One-parameter case: Pseudodifferential Scaling
o Fast and reliable solution if my is a good reference model
o Preconditioning iterative methods when mj is not a good
reference model
¢ Extensionto 3D
e Multi-parameter case: Cramer’s Rule
¢ Reduced to one-parameter case
o Applied to layered variable density acoustics (p = 2)
o Testing on more complex models
e Formulated forp =3
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Full Waveform Inversion

Back to the nonlinear forward model:
S[m] =d.

Least squares objective function:

7 = 3 ISlm] — I
Gradient (migrated image):
g = F*(S[m] — d).
Hessian:
OF*

H=F'F
+ om

(S[m] — d) = F*F.
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Gauss Newton step:
My =my — Hlg.

H' is too expensive, need approximation.
Split:
my = myg + omy,
Compute:
c = argmin ||6my — ¢ F*[myo] F[myo] 6my |

ce VDO
Approximate: Hf ~ ¢
The scaling factor ¢ preconditions FWI:

Mgy = my —C§.

Similar work: Herrmann et al. (2008), Jang et al. (200%
(different approximations of H') RICE
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Three-Parameter Case

Nyt Nio Ni3
N=1 N2 Nxn Ny
Niz Nz N33
Its adjugate is,
(N»aN33 — N33) —(Ni2N33 — Ni3Np3) (N12Np3 — Ni3N2)
Adj(N) = [ —(N1aN33 — N3Ni3) (N11N33 — N33) —(N11Na3 — Ni3Nia) | -
(N12N23 — NppNi3) = (NiiNas — Ni3Npp) (N1iN2 — Nj)
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Applying the Adjugate

1. Form N(ege1 — elTez)b, N(elTe3 — egel)b and N(egez — 6563)]9

2. Form (ele; —eler)N[elesN(ele; — eler) + elesN(eles —
ele)) + elesN(ebe, — eles)|b

3. Form —(ele;)NjelexN(eley — eler) + eleaN(eles — ele)) +
ele;N(ehey — eles))b

4. Sum the last two images to obtain Adj(N) b ~ det(N) x

e Cost: 5+1 = 6 applications of N
e Reduce the cost? (special cases: linear elasticity)
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