# Deterministic Source Synthesis for Waveform Inversion

William Symes

The Rice Inversion Project

Annual Review, 2010





Deterministic source synthesis

Numerical Exploration

Conclusions and Prospects



Main motivation for this work: More efficient inversion - use fewer sources (ideally, one for entire data set) in each iterative inversion step

- length-1 encoding (weighted zero-lag data stacks Krebs et al. 2009)
- inversion using source blending, simultaneous shooting (Ayeni et al. 2009, Verschuur & Berkhout 2009)
- random filtering, incoherency

Explicit recovery of individual shots not primary goal - synthetic sources chosen to drive model towards optimal inversion solution

= model which best fits *any* data (so shots are *implicitly* recovered...)



This talk explores deterministic source synthesis via optimality principle:

 $best \ source \Leftrightarrow worst \ residual$ 

- origin in other inversion/imaging technologies
- simple source selection algorithm for acoustic modeling
- ► a few examples suggest pitfalls, remedies
- many unanswered questions notably, does it really work? (in FWI)





#### Deterministic source synthesis

Numerical Exploration

Conclusions and Prospects



Introduced into biomedical Electrical Impedance Tomography (EIT) by Isaacson (1986) - similar ideas: array ultrasonics (Fink & Prada 2004), ocean acoustics (Roux & Kuperman 2005), SAR (Borcea & Papanicolaou 2007),...



## David Isaacson

EIT: image anomalies interior to body by measuring voltage response to applied current on boundary.



Acoustic Model: state u= acoustic potential in model domain R (subsurface), model m = (velocity v, density  $\rho$ ),

$$\frac{1}{\rho v^2} \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \frac{1}{\rho} \nabla u = f(x, y, t) \delta(z - z_s).$$

Synthetic source f = divergence of force density, confined to source depth plane  $z_s$  - must be post-synthesized digitally.

Measured response: pressure at fixed spread receiver locations  $\Lambda^d f = \{\partial u / \partial t(\mathbf{x}_r, t)\}$  - linear in f - synthesized from field (point) source data traces.

Predicted response for model  $m (= (v, \rho))$ :  $\Lambda[m]f$ , computed by FE or FD or...



Isaacson's Distinguishability Principle: seek normalized f so that RMS difference is largest: given estimated model m,

maximize  $(\Lambda^d f - \Lambda[m]f)^T (\Lambda^d f - \Lambda[m]f)$  subject to  $f^T f = 1$ 

max value  $\lambda[m] =$ largest eigenvalue (operator norm) of distinguishability operator

$$A[m] = (\Lambda^d - \Lambda[m])^T (\Lambda^d - \Lambda[m])$$

= *largest discrepancy* in response for *any* (normalized) source (applied current pattern).



Isaacson's algorithm:

- ▶ initialize *m*, *f*
- while (not satisfied),
  - ► fixed *m*, update *f*: perform several power method steps:  $f \leftarrow A[m]f, f \leftarrow (1/\sqrt{f^t f})f$
  - fixed f, update m: perform several quasi-Newton steps with objective function f<sup>t</sup>A[m]f (standard output least squares)



A few practical points:

1. assuming field data wavelet *w* known (!), achievable synthetic sources are filters:

$$f(x, y, t) = \sum_{x_s, y_s} \int d\tau g(x_s, y_s, t - \tau) w(\tau) \delta(x - x_s) \delta(y - y_s)$$

Possibilities for g (1) arbitrary length filters (random choice -Romero et al. 00); (2) length-1 filters (amplitude factor) -Krebs et al. 09.

- 2. transpose operator  $\Lambda[m]^T = R\Lambda[m]R$ , R = time-reversal op
- 3. Isaacson's alternating algorithm: Each step of both types involves 2 or 3 simulations (forward and/or reverse time loops), for single (array) source





Deterministic source synthesis

Numerical Exploration

Conclusions and Prospects



# Setup

2D numerical experiments, using FD modeling/inversion package (IWAVE++).

Two models per experiment:

- ► Target model  $m^*$  "measured" data  $\Lambda^d f = \Lambda[m^*]f$
- Reference model m "predicted" data  $\Lambda[m]f$ .

Measure progress in terms of Rayleigh quotient ("RQ"):

$$RQ = \frac{f^T A[m^*, m]f}{f^T f}$$

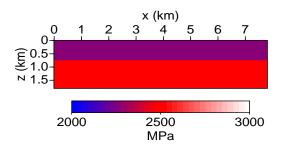
involves computing distinguishability operator  $A[m^*, m] = (\Lambda[m^*] - \Lambda[m])^T (\Lambda[m^*] - \Lambda[m]).$ 



# Setup

- staggered grid scheme for pressure, particle velocity
- source represented as constitutive law defect = RHS in pressure equation
- Models sampled at  $\Delta x = \Delta z = 20$  m
- Absorbing BC on all sides of simulation domain
- ▶ Source, receiver depth 20 m source = receiver locations
- ► 6 km fixed spread sampled at  $\Delta x_s = 20$  m, 3 s recording interval
- 25 Hz high-cut imposed uniformly by filtering all sources, sources windowed to 0.0-0.4 s,





Bulk modulus - 2.25 GPa to 0.75 km, 2.5 GPa below

Density is homogeneous = 1 gm/cc



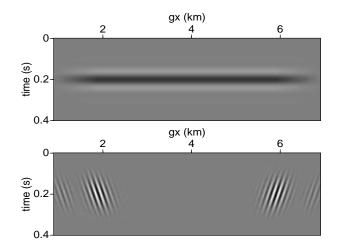
Initial source = truncated normal incidence plane wave

10 iterations of power method:

- initial Rayleigh quotient = 1.27
- ▶ final Raleigh quotient = 56.3

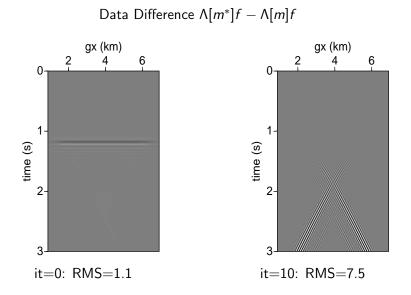
Looks great - however...





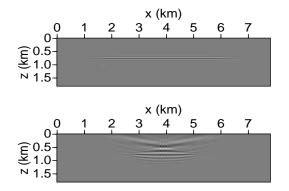
Initial (top), "optimal" (bottom) sources







 $\mathsf{RTM}\ \mathsf{Image} = \mathsf{Least}\ \mathsf{Squares}\ \mathsf{gradient}$ 



Amplitude of top (it=0)  $10^{-2}$  × amplitude of bottom (it=10).



Wave packed data:

$$f(x, y, t) = A(x, y, t)e^{i(k_x x + k_y y + \omega t)}$$

Guess: solution of wave equation

$$\frac{1}{\rho v^2} \frac{\partial^2 u}{\partial t^2} - \nabla \cdot \frac{1}{\rho} \nabla u = f(x, y, t) \delta(z - z_s)$$

takes form for  $\pm z > 0$ 

$$u\simeq B_{\pm}e^{i(k_xx+k_yy\pm k_zz+\omega t)},$$

where  $k_z = \pm \left(\frac{\omega^2}{v^2} - k_x^2 - k_y^2\right)^{\frac{1}{2}}$  and  $B_{\pm}$  solves transport equation.



Causality:  $\pm k_z > 0$  if  $\pm z > 0$ . Choose test function  $\phi(x, y, z, t)$ , then integration by parts gives

$$\int \int \int \int dx dy dz dt \, p(x, y, z, t) \left( \frac{1}{\rho v^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla \cdot \frac{1}{\rho} \nabla \phi \right)$$
$$= \int \int \int dx dy dt \, f(x, y, t) \phi(x, y, t)$$

Since both p and  $\partial p/\partial z$  are continuous (normal stress, displacement), can split first integral into z < 0 and z > 0 pieces and integrate by parts again. Because of wave equation for p, only boundary terms left:

$$= \int \int \int dx dy dt \left\{ [p] \frac{\partial \phi}{\partial z} - \left[ \frac{\partial p}{\partial z} \right] \phi \right\}$$



This identity must hold for any test function (smooth, vanishing for large  $\mathbf{x}, t$ ) - in particular, can choose  $\phi$  to be = 0 on z = 0 whilst  $\partial \phi / \partial z$  takes on arbitrary values. Hence [p]=0. Since  $\phi$  can also take arbitrary values, follows that

$$f(x, y, t) = -\left[\frac{\partial p}{\partial z}\right](x, y, t)$$

First condition implies that  $B_- = B_+$  on z = 0; second, that

$$f(x, y, t) = -2ik_z B_{\pm} e^{i(k_x x + k_y y + \omega t)},$$

Thus

$$u\simeq \frac{\tilde{A}}{k_z}e^{i(k_xx+k_yy+k_zz+\omega t)},$$

where  $\tilde{A}|_{z=0} = rac{i}{2}A$ , and  $\tilde{A}$  solves transport eqns.



Upshot:  $k_z$  small  $\Rightarrow$  energy transfer to acoustic field *extremely efficient* per RMS unit *f*.

 $k_z$  small  $\Rightarrow$  most energy propagates near-horizontally - limits imaging aperture, vertical resolution.

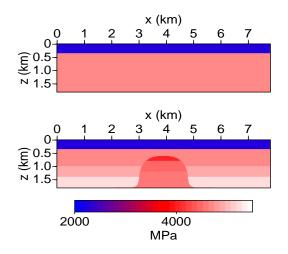
Solution: depress part of spectrum of A[m] corresponding to small  $k_z$  by composing  $\Lambda^d - \Lambda[m]$  with dip filter.

For water layer near surface:  $k_z$  small when  $|k_x| \simeq 0.67$  s/km.

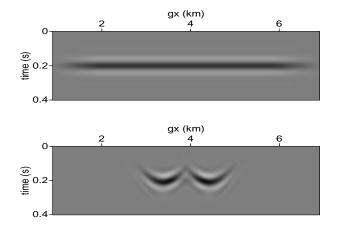
Example: for LOHS example, choose dip filter with corner slope of 0.3 s/km, cut slope of 0.5 s/km - then optimal source is small modification of plane wave source.



Bulk moduli - reference (top), target (bottom)



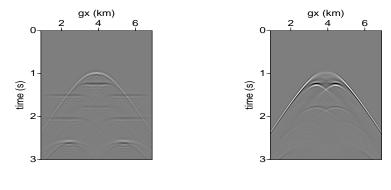




Initial (top), "optimal" (bottom) sources



Data Difference  $\Lambda[m^*]f - \Lambda[m]f$ 

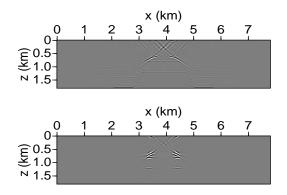


it=0: RMS=2.0, RQ=5.8

it=10: RMS=3.3, RQ=11.2



 $\mathsf{RTM}\ \mathsf{Image} = \mathsf{Least}\ \mathsf{Squares}\ \mathsf{gradient}$ 



Top (it=0) and bottom (it=10,  $10 \times \text{clip}$ )





Deterministic source synthesis

Numerical Exploration

Conclusions and Prospects



Many numerical experiments suggest

- "optimal" source emphasizes largest features in residual data, as intended
- dip filtering effectively controls tendency to produce horizontally traveling energy
- selective illuminates features in gradient (RTM residual image)



# Conclusions and Prospects

If anything, illumination is too selective - a single source is likely not sufficient

Gao et al. 2010: find all eigenpairs of distinguishability operator above a threshhold, use these collectivley - still much smaller than number of source positions in typical survey (?)

Natural method: Lanczos algorithm - finds segment of spectrum, rather than merely largest eigenvalue.

Next step: use Lanczos implementation in RVL to explore time-domain version of Gao et al. proposal.



#### Thanks to...

Dong Sun, Igor Terentyev, Tanya Vdovina, Rami Nammour, Marco Enriquez, Xin Wang

Joakim Blanch and John E. Anderson for dome model

SEAM Project - development of IWAVE

Fuchun Gao and Paul Williamson for sharing their work

Sponsors of The Rice Inversion Project

