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Wave Equations

scalar variable density acoustic wave equation
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κ

∂2p

∂t2
−∇ · 1

ρ
∇p = f p ≡ 0, t � 0

Lions, 1972: solution is continuous even when ρ, κ piecewise const

or worse

careless data sampling on discrete grid can cause artifacts in FD,

FEM method because of interface
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Mass Lumping

I for constant density case, Symes and Terentyev, 2009 used

mass lumping in FE method to preserve sub-grid information

even worse in elasticity (elastic tensor as density in AWE)

I for non-const case, direct averaging doesn’t work: jumps in

density (salt boundaries, sea floor) mean jumps in first order

derivative of p. but P1,Q1 elements don’t have such sub-grid

feature
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Wave Equation

I conventional numerical methods work well for smooth 1/ρ

∇ · 1

ρ
∇p =

1

ρ
∇2p +∇1

ρ
· ∇p

low order terms not important in convg analysis ⇒ ∇ · 1/ρ∇
like ∇2 ⇒ formally 2nd order scheme are actually 2nd order -

RMS error=O(∆x2)
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Wave Equation

I BUT with small scale oscillation or jumps in 1/ρ, ∇(1/ρ) can

go to ∞, u has no continuous 1st order derivative. then no

rate of convg for conventional methods
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Current Upscaling Approaches

upscaling tries to use a coarse grid to resolve subgrid structure,

such as jumps, small scale oscillation

I harmonic coordinates

I effective tensor for periodic media

I immersed interface method (IIM)

I other multiscale methods

same difficulty in steady-state problem:

−∇ · a(x)∇u = f
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Harmonic Coordinates

observation: oscillatory a ⇒ oscillatory u

Figure: a(x) Figure: sol u(x) for elliptic problem
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Harmonic Coordinates

strategy: pull out a(x) by the change of variable so as to transfer

the orig prob to a non-divergence form (Kozlov et al. 97, TRIP

annual meeting 09, 10)

global a-harmonic coordinates F solves: j = 1, · · · , n

∇ · a(x)∇Fj = 0 in Ω

Fj(x) = xj on ∂Ω

F : identity operator on boundaries
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Harmonic Coordinates

suppose F invertible, u(x) = ũ(F (x)) = ũ ◦ F (x). then

∂u

∂xi
=
∑
j

∂Fj
∂xi

∂

∂Fj
ũ ◦ F

∇ · a∇u =
∑
j

[∇ · a∇Fj ]
∂

∂Fj
ũ ◦ F +

∑
j ,k

[a∇Fj · ∇Fk ]
∂2

∂Fj∂Fk
ũ ◦ F

now let Ajk = [a∇Fj · ∇Fk ] ◦ F−1 defined on new coordinates F .

then

−
∑
j ,k

Ajk
∂2ũ

∂Fj∂Fk
= f ◦ F−1
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Harmonic Coordinates

I 1D harmonic coordinate: F (x) =
∫ x

0 1/a(z) dz/
∫ 1

0 1/a(z)dz

− d2ũ

dF 2
=
(∫ 1

0
1/a(z)dz

)2
(fa) ◦ F−1

in 1D smoothness recovered automatically

I smoothness of ũ in higher-D assured by Bernstein theorem,

1906 requiring the stability of matrix A

to use this strategy F must be invertible; this is guaranteed in

2D (see Alessandrini 2001), but not always hold in 3D (see

Owhadi and Zhang 2006)
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Harmonic Coordinates

I Babus̆ka, Caloz and Osborn 1994 used the harmonic

coordinate change to build base functions for special

(unidirectional varied) coefficient functions: apply to curved

interface without implementation

I Muir, Dellinger, Etgen and Nichols 1992 applied

Schoenberg-Muir averaging to gridding problem

we claim that Muir et al. actually implement equivalent upscaling

rule as in Babus̆ka et al.
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Effective Tensor for Periodic Media

by Bensoussan et al. 1978, consider a family of problems

−∇ · aε(x)∇uε = f

where aε(x) = a(x/ε), a(y) a Y-periodic function (Y = (0, 1)n)

want to identify the effective coefficient a∗ such that as ε→ 0,

uε → u∗:

−∇ · a∗∇u∗ = f
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Two-scale Asymptotic Expansion

I sol uε in the form of a power series expansion in ε

uε = u0 + εu1 + ε2u2 + · · ·

I {ui} depend explicitly on x and y = x/ε and 1-periodic w.r.t.

y (idea of multiple scales)

⇒ uε(x) = u0

(
x ,

x

ε

)
+ εu1

(
x ,

x

ε

)
+ ε2u2

(
x ,

x

ε

)
+ · · ·
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Effective Tensor for Periodic Media

I u0(x , x/ε) = u∗(x) is the sol of the homogenized prob

−∇ · a∗∇u∗ = f in Ω

u∗ = 0 on ∂Ω

where a∗ is a constant effective tensor

a∗ =

∫
Y
a(y)(I +∇χ(y)T )dy

I χi solves cell problem

−∇y · a(y)(ei +∇yχi ) = 0 in Y

y → χi (y) Y − periodic

I u1(x , x/ε) =
∑

i χi (
x

ε
)
∂u∗

∂xi
(x)
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Effective Tensor and Harmonic Coordinates

χi solves cell problem: y = x/ε, ∇yxi = εei

−∇y · a(y)∇y (xi + εχi ) = 0 in Y

y → χi (y) Y − periodic

x + εχ → harmonic coordinates F

rewrite two-scale asymptotic expansion as:

uε(x) ≈ u∗(x) + ε

n∑
i=1

χi

(x
ε

)∂u∗
∂xi

(x)≈ u∗(x + εχ) = u∗ ◦ F (x)
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Effective Tensor in 1D is Harmonic Average

the cell problem in 1D

− d

dy

(
a(y)

dχ

dy

)
=

d

dy
a(y) y ∈ [0, 1]

χ is periodic

χ(y) =

∫ y

0

1

a(y)
dy
/∫ 1

0

1

a(y)
dy − y

1D effective coefficient is harmonic average

a∗ =

∫ 1

0
(a(y) + a(y)

dχ(y)

dy
) dy =

(∫ 1

0
1/a(y) dy

)−1
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Backus Averaging

Backus 1962:

”A horizontally layered inhomogeneous medium, isotropic or

transversely isotropic, is considered, whose properties are constant

or nearly so when averaged over some vertical height l. For waves

longer than l the medium is shown to behave like a homogeneous,

or nearly homogeneous, transversely isotropic medium ...”
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2D Checkerboard Example

example in Eymard and Gallouët 04,

aε(x , y) =

{
ar , Int(x/ε) + Int(y/ε) odd

ab, Int(x/ε) + Int(y/ε) even
→ a∗(x , y) =

√
arab

note: a∗ is not harmonic average
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ar = 1.0, ab = 0.4, ε = 0.25

‖u∗ − uε‖L2 = 0.026

Figure: u∗ (left) and uε (right)
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ar = 1.0, ab = 0.4, ε = 0.125

‖u∗ − uε‖L2 = 0.0149

Figure: u∗ (left) and uε (right)
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ar = 1.0, ab = 0.4, ε = 0.0625

‖u∗ − uε‖L2 = 0.0096

Figure: u∗ (left) and uε (right)
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Immersed Interface Method

I designed for interface problem

I both FD and FEM implementations

I need to know interface location explicitly

I successfully apply to waves (acoustic and

elastic) by R. LeVeque and his student, remove

staircase diffraction ⇒ full order convergence
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Immersed Interface Method

1d elliptic interface problem

(βux)x = f 0 ≤ x ≤ 1, u(0) = u(1) = 0

f ∈ L2(0, 1), β has discontinuity at x = α

β(x) =

{
β− x < α

β+ x > α

displacement u is continuous as well as normal stress βux at α

⇒ [u]x=α = u+(α)− u−(α) = 0, and

[βux ]x=α = β+u+
x (α)− β−u−x (α) = 0

if f is continuous,

β+
x u

+
x (α) + β+u+

xx(α) = fx(α) = β−x u
−
x (α) + β−u−xx(α).

⇒ β+u+
xx(α) = β−u−xx(α)
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Immersed FD

I generate a Cartesian grid, xi = ih, i = 0, 1, · · · ,N and

xj ≤ α ≤ xj+1 for some j

I at a grid point xi , i 6= j , j + 1, IFD use the 3-point central FD

1

h2

(
βi+1/2(Ui+1 − Ui )− βi−1/2(Ui − Ui−1)

)
= fi

where βi+1/2 = β(xi+1/2) and fi = f (xi )

I at points xj and xj+1, IFD use

γ0,1Uj−1 + γ0,2Uj + γ0,3Uj+1 = fj

γ1,1Uj + γ1,2Uj+1 + γ1,3Uj+2 = fj+1

the coefficients minimize local truncation error

I solve the system to get ui , i = 0, 1, · · · ,N
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Immersed FD

I improve accuracy near interfaces

I additional memory for coefficients, conditional

branch (code inefficiency) or post process
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Immersed FEM

immersed FEM is to modify the base functions so that the jump

conditions are satisfied, that is, in 1D

φi (xk) =

{
1 if i = k

0 otherwise
[φ] = 0, [βφ′i ] = 0

⇒ (βφ′i )
′ = 0 jh ≤ x ≤ (j + 1)h, φi : local harmonic mapping,

piecewise lin on harmonic coordinate

0.6 0.65 0.70

0.2

0.4

0.6

0.8

1

the numeric error between true sol and sol by FE method on the

piecewise linear FE space with this modification is O(h2) (optimal)
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Immersed FEM in Higher-D

I partition not have to align with interfaces
I base function may not continuous because of the jump

conditions ⇒ nonconforming FE space (not always 2nd

order convergence in L∞)
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Other Multiscale Methods

I multiscale finite element method by Hou and Wu 1997: work

for general a(x), but convg analysis only for periodic media

I heterogeneous multiscale method by E and Engquist 2003,

apply to acoustic wave propagation by Engquist et al. 2009:

focus on the case when a(x)’s small scales have special

features such as scale separation, self-similarity, periodicity

I operator-based upscaling by Vdovina, Minkoff et al. 2005

I ...
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Future Plan

upscale wave equation:

I use local harmonic mapping to encode sub-grid feature into
base functions

I lots of ideas based on this approach
I with this approach, Owhadi and Zhang 2005’s upscaling

approach is the only one without requirement of media

structure, such as smoothness of interface, scale separation,

ergodicity at small scales
I locally in space and time according to finite speed propagation
I parallel
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Future Plan (Cont.)

I nonconforming approximation space (DG space)

I from immersed FEM, nonconforming FEM likely more

successful
I advantages of DG
I leading experts of DG in this building

I regular grid approach, not include geometry of interface in
method

I computational efficiency
I apply this method in inversion
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