The IWAVE Modeling Framework

W. W. Symes and Xin Wang

2010 TRIP Annual Meeting

IWAVE

created by Terentyev, Vdovina and Symes 2007, a software framework for construction of regular grid FD and FE methods for time-dependent PDEs, includes utility software for

- parameter parsing
- i/o methods, sampling operators
- date exchanging with MPI, just like PETSc
- distributed spatial arrays and groupings of arrays along with a variable density AWE solver in up to 3D
- staggered grid FD scheme of order 2 in time and $2 k$ in space
- support either reflecting or absorbing bnd cond
- output traces (seismograms) at specified sample rates and/or movie frames
- mpi parallelization via domain decomp and shots (tasks)

IWAVE

now also provides

- a working flow of new solver generation
- two more applications: iso elastic wave equations and Burgers equation

New Solver Generation

FD stencil, the starting point of generating new FD solvers

- memory allocation
- pattern of exchanging data
- ...

$\bullet u, v, w$ ○ $T_{x,}, T_{y y}, T_{z z}, T_{x y}, T_{y z}, T_{z z}$
Figure: courtesy of Moczo et al. 2007
but seems there are a lot of choices: orders, grid types

New Solver Generation

before determining stencils, let's take a look at pattern of FDTD wave solvers:

- wave equations have terms of up to 1st order spatial derivative
- FD discretization along each spatial axis has up to 2 different types of grids,
- primal grid: integer grid, index-0 grid $\Rightarrow 0$
- dual grid: half integer grid, index-0 grid $\Rightarrow 1 / 2$

e.g., pressure p on primal grids along 3 axes, v_{x} on dual grid along x-axis and primal grids along y-axis and z-axis

Define FD Stencils

FD stencils determined by

- grid type table for each variable
- variable-dependence relation
e.g., 2D isotropic elastic wave staggered grid FDTD solver

	grid type		dependence relation					
	z-axis	x-axis	$\sigma_{z z}$	$\sigma_{x x}$	$\sigma_{z x}$	u_{z}	u_{x}	
$\sigma_{z z}$	P	P	-	-	-	$\partial / \partial z$	$\partial / \partial x$	
$\sigma_{x x}$	P	P	-	-	-	$\partial / \partial z$	$\partial / \partial x$	
$\sigma_{z x}$	D	D	-	-	-	$\partial / \partial x$	$\partial / \partial z$	
u_{z}	D	P	$\partial / \partial z$	-	$\partial / \partial x$	-	-	
u_{z}	P	D	-	$\partial / \partial x$	$\partial / \partial z$	-	-	

New Solver Generation

break the process into several parts:

- set grid type and variable-dependence relation
- read grid info \rightarrow basic primal grid assuming single grid determines others
- populate in the parameter data
- assign action list \rightarrow which array updated in which order
- single time stepping function interface, use switch/case to pick right update function for arrays (variables)
- generate FD stencil (IWAVE)
- automating domain decomposition, implicit chop grid into blocks (block decomposition) according to FD stencil (IWAVE)
- modelinit function to setup parameters, assign function pointers (C mechanism to implement inheritance)

IWAVE Elastic Wave Solver

isotropic elastic wave equations in velocity-stress formulation

$$
\begin{aligned}
\frac{\partial \sigma_{z z}}{\partial t}-(\lambda+2 \mu) \frac{\partial u}{\partial z}-\lambda \frac{\partial v}{\partial x} & =0 \\
\frac{\partial \sigma_{x x}}{\partial t}-\lambda \frac{\partial u}{\partial z}-(\lambda+2 \mu) \frac{\partial v}{\partial x} & =0 \\
\frac{\partial \sigma_{z x}}{\partial t}-\mu \frac{\partial u}{\partial z}-\mu \frac{\partial v}{\partial x} & =0 \\
\rho \frac{\partial u}{\partial t}-\frac{\partial \sigma_{z z}}{\partial z}-\frac{\partial \sigma_{z x}}{\partial x} & =0 \\
\rho \frac{\partial v}{\partial t}-\frac{\partial \sigma_{z x}}{\partial z}-\frac{\partial \sigma_{x x}}{\partial x} & =0
\end{aligned}
$$

IWAVE Elastic Wave Solver

 two layer model| | top | bottom |
| :---: | :---: | :---: |
| ρ | $2100 \mathrm{~kg} / \mathrm{m}^{3}$ | $2300 \mathrm{~kg} / \mathrm{m}^{3}$ |
| v_{p} | $2.3 \mathrm{~m} / \mathrm{ms}$ | $3.0 \mathrm{~m} / \mathrm{ms}$ |
| v_{s} | $0.93897 \mathrm{~m} / \mathrm{ms}$ | $1.2247 \mathrm{~m} / \mathrm{ms}$ |
| λ | 7406 MPa | 13800 MPa |
| μ | 1851.5 MPa | 3450 MPa |

- Richer wavelet with central frequency 15 Hz , free surface band cong for all boundaries
- source at depth 40 m and offset 3300 m , receivers at depth 20 m and offset from 100 m to 6100 m with interval 20 m
- 2-4 staggered-grid FD on a grid of size 20 m , wave propagates 3 sec

IWAVE Elastic Wave Solver

Figure: $\sigma_{z z}$ (left) and $\sigma_{z x}$ (right)

IWAVE Elastic Wave Solver

dome model

- Ricker wavelet with central frequency 15 Hz , free surface bnd cond for all boundaries
- source at depth 40 m and offset 3300 m , receivers at depth 20 m and offset from 100 m to 6100 m with interval 20 m
- 2-4 staggered-grid FD on a grid of size 20 m , wave propagates 3 sec

Figure: ρ

IWAVE Elastic Wave Solver

Figure: $\sigma_{z z}$

IWAVE Burgers Equation Solver

Burgers equation:

$$
u_{t}+\left(u^{2}\right)_{x}+\left(u^{2}\right)_{y}=0
$$

finite volume discretization: take the volume integral over the total volume of the cell, v_{i}

$$
\int_{v_{i}} \frac{\partial u}{\partial t} \mathrm{~d} v+\int_{v_{i}}\left(u^{2}\right)_{x}+\left(u^{2}\right)_{y} \mathrm{~d} v=0
$$

let $\bar{u}_{i}=\int_{v_{i}} \frac{\partial u}{\partial t} \mathrm{~d} v / v_{i}$ and integration by parts

$$
\frac{\partial \bar{u}_{i}}{\partial t}+\frac{1}{v_{i}} \oint_{S_{i}} f^{*}(u) \cdot n \mathrm{~d} S=0
$$

numerical flux $f^{*}(u)=\left(u^{2}, u^{2}\right) \mid S_{i}$ defined on the cell boundary S_{i}

IWAVE Burgers Equation Solver

stencil of regular grid FV scheme \Leftrightarrow 2nd order staggered-grid stencil

IWAVE Burgers Equation Solver

- initial condition:

Figure: $u(x, y, 0)$

- periodic boundary condition
- 201×201 grid points with grid size 5 m

IWAVE Burgers Equation Solver

Figure: $t=0.0 s$

IWAVE Burgers Equation Solver

Figure: $t=0.1 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=0.2 s$

IWAVE Burgers Equation Solver

Figure: $t=0.3 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=0.4 s$

IWAVE Burgers Equation Solver

Figure: $t=0.5 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=0.6 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=0.7 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=0.8 s$

IWAVE Burgers Equation Solver

Figure: $t=0.9 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.0 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.1 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.2 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.3 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.4 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.5 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.6 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.7 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.8 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=1.9 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=2.0 s$

IWAVE Burgers Equation Solver

Figure: $t=2.1 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=2.2 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=2.3 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=2.4 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=2.5 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=2.6 s$

IWAVE Burgers Equation Solver

Figure: $t=2.7 s$

IWAVE Burgers Equation Solver

Figure: $t=2.8 s$

IWAVE Burgers Equation Solver

Figure: $t=2.9 \mathrm{~s}$

IWAVE Burgers Equation Solver

Figure: $t=3.0 \mathrm{~s}$

Future Plan

- absorbing boundary condition for elastic wave solver
- implement DG scheme on regular grid under IWAVE framework
- more applications

Thank You

Q\&A

