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1D constant density acoustic wave equation

102 Pu_
c2 Ot? 0z2 7
ou
u(z,0) = up(2), E(Z’ 0) = u1(2).

> simplest system with key features (variable wave velocity, reflected waves,

z € R depth. t € R time.
¢ = ¢(z) wave velocity , nonsmooth

u = u(z, t) the acoustic potential at (z, t).
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Up, up are initial conditions.
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Inverse problem

Assume that u solves wave equation. Define 7. = %(O7 t).
min ||7; — data||
Bamberger et al. 1979: if

» C is piecewise constant
» the layers have equal travel time

» Neumann boundary condition on z =0

The solution to the inverse problem: c is unique and depends
continuously on data.

Relation to acoustic transparency theorem

Acoustic transparency theorem is a step of the proof toward this

result: For nonsmooth ¢, ¢ depends continuously on data.
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Bounded variation function

Definition

¢ € BV[0, Z] means

n
Var(c) = mﬁxz lc(z) — c(zi—1)] < M < 400,

i=1

with P the set of ordered points in [0, Z], including 0 and Z.

Example: c is piecewise constant with ¢c(z) = ¢; if z € [zj_1, z;).

Az, =z — z_1.

Var(c Z|c,—c, 1\—ZA C' 1‘ /0

?|de

dz
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Acoustic energy

Density of the material p is constant.

> —p% is the acoustic pressure,

> % is the acoustic particle velocity,

Energy over interval [0, Z] at time t

E(t) = g/oz <(§Z>2 +% <g‘t’)2> (2, t)dz
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Acoustic transparency theorem

Theorem

Suppose ug and uy are zero outside of [0,Z], T > foz% and
c(z) = ¢(0) for z < 0. c € BV|[0, Z] gives

KE(0) < /_ TT @'Z(O? t))2 dt < KE(0)

with K = sup,c(o,71¢(2z) and k = Kexp (—#Var(logc)), where
t depends on the supremum and infimum of c.

Importance of the lower bound:

Otherwise, arbitrarily small part of the energy reaches the surface
= No possibility of stable solution for the inverse problem.
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Discussion of existing and relevant results

» Symes 1983, 1986 provided a proof by flipping the space and
time variables

» Cox and Zuazua 1995 proved energy decay for 1D medium of
bounded variation by analyzing the corresponding eigenvalue
problem which also gives acoustic transparency.

Why we need a new proof?

» Existing proofs could not be generalized to multi-dimensional
problems.

» A function space of velocity ¢ that is both necessary and
sufficient is needed.

» A proof to show the necessity and sufficiency of the given

function space is needed.
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Plan of the proof

» The upper bound is given by integration by parts.

» By a theorem due to Kahane, if ¢ € BV[0, Z], then for every
n € N there exists piecewise constant ¢, with n jumps so that
max, (o, zjlc(z) — cn(2)] < V‘"T(C) (see DeVore 1998).

» Choose piecewise constant approximations c,, then we have
up — u in energy, by Theorem 2.8.2 of Stolk PhD thesis 2000.

» The lower bound for piecewise constant c is from the analysis
of reflections and transmissions at jumps in c.
The lower bound we have now depends on the number of layers.

Uniform lower bound is the goal.
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Multi-interfaces with localized initial conditions |

Construct the solution by repeating the reflection and transmission.
Assume up and wuy are zero outside of [z;_1, z;], with velocity ¢;.

2Ck
CktChi1’

» ujy up-going wave in the j-th interval,

» Transmission coefficients T =

» Purely transmitted part of the wave

UIT O t H TkulU ))
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Multi-interfaces with localized initial conditions Il

110

sl 19

Ug(z,t) = u(z,t)—q(z,t:)

z6 2728 z9 z10

» up and uy are zero outside of [zy_1, zy]
= U(O, t) = UNT(O7 t) for t € [thl, tN]

> = Hsz_ll Ty has a possitive lower bound is necessary for
acoustic transparency theorem.
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Current result for purely transmitted wave

» If c € BV|0, Z], product of transmission coefficients

N-1
H Tk > exp (—Var(logc)>

k=1

with 7 depends on the supremum and infimum of c.

» Let the ut denote the purely transmitted part of the solution
with arbitrary initial conditions

ouTt ¢ [F dug ., P
/7T<a Ot)) dt>lzl:<HTk> /471<(E +C7,-2 dz
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Discussion

Bounded variation is not necessary for the product of transmission
coefficients to be bounded away from zero.

» ce BV[0,Z] = [[hzi Tk > k > 0. k depends on Var(logc).

» For N layers material, where N is even, let

1 — L odd layer
S
1+ N even layer,

Var(c) — 400 as N — +o0.
» TTRS! Tw > exp(—2) with ¢ € BV[0, Z].
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Discussion

What is both necessary and sufficient?

» BV-2 is both necessary and sufficient (by Demanet)

n

Vary(c) = max (Z(c(x,-) - C(Xil))2> <M < +o0,

i=1

where P is the set of all ordered points of [0, Z].

» Approximate BV-2 function ¢ with piecewise constant function
» Define the transmission coefficient Ty
» c € BV-2 <= Hsz_ll Tk > k >0, k depends on Vary(logc).
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Conclusion

» Acoustic transparency is necessary for the stable solution of
the inverse problem.

» Lower bound of the acoustic transparency thoerem depends
on Hzl_ll Tk and the number of layers N.

> f ( ) dt has a lower bound only if Hk 1 Tk hasa
p05|t|ve Iower bound.

» [IrZ! Tk has a positive lower bound <= ¢ € BV-2.
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