
RICE UNIVERSITY

Application of Harmonic Coordinates to 2D

Interface Problems on Regular Grids

by

Tommy L. Binford, Jr.

A Thesis Submitted
in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

William W. Symes, Chairman
Noah G. Harding Professor of
Computational and Applied Mathematics

Béatrice Rivière
Assistant Professor of Computational and
Applied Mathematics

Colin A. Zelt
Professor of Earth Science

Houston, Texas

November 2011

Contents

List of Figures v

List of Tables xi

1 Introduction 1

1.1 Motivation and Context . 2

1.2 Problem Statement . 7

2 Background and Literature Review 12

2.1 Solvability of the Model Problem . 13

2.2 Finite Element Method . 17

2.3 Local Basis Modifications . 21

2.4 Global Basis Modifications . 26

3 Harmonic Coordinate Finite Element Implementation 31

3.1 Weak Formulation of the Model Problem 32

3.2 Standard Finite Element Discretization 33

ii

iii

3.3 Harmonic Coordinate FEM . 40

3.3.1 Approximate Harmonic Coordinates 41

3.3.2 HCFEM Basis Functions . 46

3.3.3 Global Stiffness Matrix Assembly 57

3.3.4 Global Mass Matrix Assembly 58

3.3.5 Load Vector Assembly . 66

3.4 Error Calculations . 71

4 Software Implementation 74

4.1 Third-Party Software . 75

4.1.1 Trilinos . 75

4.1.2 Gmsh . 76

4.2 A Simple Mesh Data Structure . 77

4.3 Mesh Generator Class . 81

4.4 Problem Defintion . 83

4.5 Mesh Intersection Algorithm . 84

4.5.1 Minimum Bounding Circle . 85

4.5.2 Separating Axis Theorem . 88

4.5.3 Point Masking . 89

4.5.4 Point-In-Triangle . 91

4.5.5 Point-On-Edge . 93

4.5.6 Edge Intersection . 94

iv

4.6 Harmonic Map Class . 95

4.7 Usage Demonstration . 97

5 Results 99

5.1 Circular Inclusion . 99

5.2 Multi-layerd Medium . 112

6 Conclusions 117

6.1 Future Work . 118

Bibliography 120

List of Tables

Chapter 1

Introduction

In this thesis, I present a method for solving numerically the following elliptic partial

differential equation

−∇ · (α (x) ∇u) + β (x)u = f (x) in Ω (1.1)

where the α and β are piecewise constant functions with relation to a multitude

of interior interfaces that do not align with the nodes of a regular computational

grid. The algorithm I develop is based on a finite element method by Owhadi and

Zhang (2006) that incorporates fine scale behavior of the coeffieints into the finite

element basis functions by way of a special coordinate transformation called harmonic

coordinates. Owhadi and Zhang (2006) intentionally represent the support of the

basis functions incorrectly resulting in a non-conforming finite element basis and thus

diminishing the accuracy of the numerical solution. My implementation corrects the

1

2

non-conformity of the basis by using an accurate polygon intersection algorithm I

developed, which improves the accuracy of the method. The primary focus of this

thesis is solving Eq. (1.1) with piecewise constant coefficient functions to provide an

alternative finite element spatial discretization suitable for solving the acoustic wave

equation on regular grids.

1.1 Motivation and Context

The model problem Eq. (1.1) for this work is motivated by the acoustic wave equation

−∇ · (α (x) ∇p) + β (x)
∂2p

∂t2
= f (x, t) in Ω (1.2)

where α (x)−1 is the density, β (x)−1 is the bulk modulus, f(x, t) is some (generally

localized) acoustic source, and p(x, t) is the acoustic pressure in the medium. Accu-

rately solving Eq. (1.1) is a key component of seismic inversion where surface acoustic

measurements are used to determine the structure of the upper crust in a noninvasive

search for hydrocarbons. Thus, improving solutions to the wave equation will improve

the accuracy of seimic inversion.

The regular grid finite difference time-domain (FDTD) method is widely used

for the numerical solution of wave propagation problems of this type due to its ease

of implementation and efficiency in both memory access and storage. For materials

whose mechanical properties vary smoothly with position, FDTD yields an optimal

3

approximation in both space and time (Cohen, 2002). For the simulation of such

waves, FDTD is both efficient and accurate. However, in studying composite mate-

rials, such as the Earth’s crust, mechanical properties like density and bulk modulus

change abruptly from region to region. With detailed composite variations, mate-

rial transitions will occur inside grid cells of the regular grid spatial discretization

for FDTD. Where coefficients are discontinuous, the smoothness of the solution is

reduced, meaning fewer derivatives exist. The degree of smoothness of a function

determines the truncation error of local Taylor approximations. Therefore, wave so-

lutions in discontinuous media are poorly approximated by FDTD since the conver-

gence of FDTD is determined by how well local Taylor approximation can represent

the solution within grid cells. Formal analysis of the truncation error for FDTD solu-

tions to the second order wave equation has shown that grid-interface misalignment

for discontinuous material transitions contributes a component that is first-order in

space (Brown, 1984). Thus, the error due to grid-interface misalgnment will dominate

and reduce the overall accuracy of the method.

Errors induced by material transitions within grid cells can be corrected by align-

ing a conventional grid with the interface. Though alignment is difficult to accomplish

for conventional grid methods, the staggered grid schemes used to solve the pressure-

velocity formulation of the acoustic wave equation present an additional problem.

The staggered grid FDTD method uses one grid for the pressure and an offset grid

for the velocity field. One can imagine that aligning the interfaces with one grid will

4

introduce a misalignment with the other grid due to the offset, and this has been

quantified by Symes and Vdovina (2009). Therefore, any standard finite difference

method will exhibit reduced accuracy when applied to problems with discontinuous

coefficient functions due to grid-interface misalignment error.

The variational methods, continuous (cGTD) and discontinuous Galerkin (dGTD)

time domain, are similar to FDTD on regular grids because they exploit the same kind

of approximation properties of a polynomial basis to establish convergence, which is

akin to local Taylor approximation at the low order. The misalignment error dis-

cussed above also reduces the accuracy of cGTD (Cohen, 2002, pp. 208-209) and

dGTD (Wang, 2009), since convergence depends on how well interpolation by smooth

functions within grid cells can represent the solution. Thus, only when the solution

is smooth will the approximation error be small for a given regular spatial discretiza-

tion of a medium with complicated material changes whether that discretization is

determined by finite differences or based on finite elements.

Both cGTD and dGTD finite elements may also use irregular or unstructured

grids that can be fitted to the complex changes in the material properties. Using

fitted grids that follow changes in the material properties for the finite element family

of methods avoids some of the approximation error inherent to unfitted grids since the

polynomial approximation spaces admit jumps in the derivative of the solution at ele-

ment boundaries (Strang and Fix, 1973, pg. 14). It has been shown explicitly for the

pressure-velocity formulation of the acoustic wave equation that a fitted spatial grid

5

also recovers the expected accuracy for dGTD (Wang, 2009). However, meshes fitted

to complex interfaces found in large models, such as those encountered in exploration

geophysics, will lead to smaller elements and may require manual grid manipulation.

With smaller elements, the computational cost for each time step increases as the

number of spatial degrees of freedom grows, gaining accuracy but leaving behind the

efficiency of regular grid methods.

A benefit of finite element methods over finite difference is the ease with which

the approximation properties can be modified. By changing the basis function used

to approximate the solution, the accuracy of the method can be improved. The theo-

retical framework and construction of the finite element matrices remains essentially

the same. Therefore, I choose to focus on finite element methods for the spatial

discretization of the wave equation on regular triangular grids.

Applying the finite element method to the spatial component of the wave equation

with zero source function leads to a semidiscrete formulation

∂2

∂t2

∫
Ω

βph vj dx+

∫
Ω

∇phα∇vj dx = 0

where the functions vj reside in some suitable discrete space Vh of piecewise poly-

nomials (homogeneous Dirichlet boundary conditions). The estimate ph for the true

pressure field is then separated by using vj ∈ Vh to approximate the spatial part and

6

writing

ph (x, t) =
∑
j

p̂j (t) vj (x)

where the coefficients now vary in time. Substituting the pressure field ph into the

wave equation Eq. (1.2) leads to a system of ordinary differential equations in the

time-varying coefficients p̂j

M∂2p̂

∂t2
+ Sp̂ = 0

whereM,S are the finite element mass and stiffness matrices defined by the integrals

M =

∫
Ω

βvivj dx and S =

∫
Ω

∇viα∇vj dx. (1.3)

The semidiscrete form reveals that the spatial discretization can be considered in-

dependent of the time-stepping used to advance the solution. Since the spatial dis-

cretization of the domain creates the grid-interface alignment problem observed in

the reflection times of traveling waves, it makes sense to consider improving only the

spatial discretization terms. In the case of finite elements on regular grids, improving

the spatial approximation means using a different finite dimensional space Vh of basis

functions, which are used to construct the mass and stiffness matrices. Changing the

basis functions used for the spatial part of the pressure field modifies the entries of

7

the mass and stiffness matrices which determine how coefficients p̂ (t) will react to

discontinuities in the medium when time-stepping is implemented.

1.2 Problem Statement

Since the finite element spatial discretization for the wave equation is independent of

the time stepping, I focus on establishing an approximation scheme for the elliptic

equation

−∇ · (α (x) ∇u) + β (x)u = f (x) in Ω (1.4)

with suitable Dirichlet boundary conditions and piecewise constant coefficients. This

will provide insight into reducing the error due to grid-interface misalignment be-

cause the weak formulation of the elliptic model problem involves the same mass and

stiffness matrices as the semi-discrete form of the wave equation.

The approximate solution to Eq. (1.4) is sought on a coarse, structured mesh

T of triangular elements. However, variations on scales smaller than the element

size of T means that some form of homogenization is necessary. I focus on a finite

element homogenization method developed by Owhadi and Zhang (2006) that uses

8

the component-wise solution to the following auxiliary problem

∇ · α (x) F = 0 in Ω

F(x) = x on ∂Ω

(1.5)

to incorporate fine-scale structures into the coarse-scale basis functions. The solution

F to this auxiliary problem is called a harmonic map and qualifies as a coordinate

transformation in 2D provided the coefficient function α satisfies uniform ellipticity

and boundedness. In all cases, a numerical solution to Eq. (1.5) using standard finite

elements is computed on a fine mesh E . A fitted mesh E is used for piecewise constant

coefficient functions where well-defined interfaces exist, such as the case for domains

in problems of reflection seismology. This means there are two meshes for any given

problem: a fine mesh E for the auxiliary problem and a coarse mesh T for the solution

to the model problem.

For planar problems such as Eq. (1.4), the solution u ∈ H1(Ω) and is not smooth

enough to justify the standard finite element error estimates. Owhadi and Zhang

(2006) show that the composition u ◦ F−1 ∈ H2(Ω), which does satisfy the usual

interpolation assumptions for piecewise linear functions and results in an optimal

error estimate

‖u ◦ F−1 − wh‖H1(Ω) = O(h),

9

where wh is an approximation using piecewise linear basis functions. Instead of ap-

proximating u◦F−1, Owhadi and Zhang (2006) incorporate the harmonic map F into

the basis and prove that

‖u− uh‖H1(Ω) = O(h),

where uh ∈ Xh and

Xh = {v ◦ F : for all K ∈ T , v|K ∈ P1(K)} .

Thus, the usual piecewise linear basis functions are composed with F to form a high-

resolution approximation space that recovers optimal order accuracy.

Basis functions for Xh are defined on a fine mesh that is different from the one

where F and the coefficient functions are known. A remedy for this inconvenience

is provided by Owhadi and Zhang (2006) in the form of a localized implementation.

Instead of forming the composite basis functions using the usual piecewise linear

functions on each element K, they form the approximation space

Zh = {v : for all K ∈ T , φ ∈ P1(F(K)), v|K = φ ◦ F|K} .

The elements F(K) are triangles formed by mapping only the vertices of coarse ele-

ments K to harmonic coordinates. A consequence of this construction is the localized

10

composite basis functions are non-conforming, meaning that the basis no longer satis-

fies continuity at element edges in the coarse mesh T . This non-conformity increases

the error level and reduces the rate of convergence of the finite element method.

The true domain for each of these composite basis function in Zh is not a triangular

element. Restricting the basis to the coarse elements K inaccurately represents the

support of these functions leading to a non-conforming basis. In this thesis, I develop a

unique method for reproducing the support of these basis functions by forming mesh-

element intersections. Since the functions φ described in Zh are piecewise linear on

F(K), I form the mesh-element intersections of each mapped coarse element F(K)

with elements in the mapped mesh F(E) to accurately represent the support of these

basis functions. I show that these intersections together with the piecewise linear

approximation of F reduce the stiffness matrix assembly to a simple summation on

each element, which means no quadrature scheme is required. Further, I exploit these

intersection objects, which are each collections of simple polygons (up to hexagons),

to establish a quadrature-independent mass matrix assembly algorithm.

The initial cost of solving the harmonic map problem and computing mesh in-

tersections is expected to be amortized over a large number of calculations. In the

case of elliptic problems this means a large number of source functions for a given

geometry. The power of this method is that the coarse approximation is accurate and

needs to be computed once per simulation. Applications to the wave equation are

obvious since many time steps are needed for each calculation. Thus, the purpose of

11

this method is to compute coarse operators (mass and stiffness matrices) that produce

accurate results and use that coarse approximation to model physical phenomena.

I completely describe these new finite element assembly algorithms in Chapter

3. Additionally, I present an implementation of the original localized method using

mesh-element intersections which is distinct from the implementation of Owhadi and

Zhang (2006). In Chapters 4, I describe the mesh-element intersection algorithm and

software framework developed for and used in this thesis. This framework is exercised

in Chapter 5 to demonstrate that the new assembly algorithms result in improved

accuracy over the original non-conforming method. Finally, I discuss conclusions and

future work in Chapter 6.

Chapter 2

Background and Literature Review

Interface problems present a unique difficulty for the finite element method on regular

grids. Although solvability of these problems is established in Hilbert space H1(Ω)

by basic theory, the issue of solving elliptic problems numerically is much more com-

plicated when the coefficients are not represented by smooth functions. I introduce

the weak formulation for the model problem and briefly discuss these conditions for

solvability. I then present the standard finite element method and discuss how the

convergence rate is adversely affected on regular grids by coefficients with reduced

smoothness. This leads to an exploration of methods, all based on finite elements,

that seek to improve accuracy of the numerical solution by incorporating sub-grid

coefficient fluctuations into the finite element approximation space.

12

13

2.1 Solvability of the Model Problem

Consider a domain Ω ⊂ R2 with a closed boundary ∂Ω. The goal is to establish the

conditions under which

−∇ · (α (x) ∇u) + β (x)u = f (x) ,

u = g,

in Ω,

on ∂Ω,

(2.1)

has a unique solution when α, β are discontinuous or even α ∈ [L∞(Ω)]2×2 , β ∈ L∞(Ω)

(bounded, measurable). Interface problems, which are the focus of this thesis, have

α, β discontinuous across well-defined boundaries within the domain. However, more

general statements about the solvability of the model problem can be made without

such a restriction on the smoothness of the coefficients. Before restricting the focus

to piecewise constant coefficients, I will discuss what it means to be a solution in the

classical and weak sense and how the smoothness of the coefficients must be restricted

in each case.

Classical Solutions

One would likely seek solutions u that satisfy the differential equation Eq. (2.1) in

the classical sense: replace u with the proposed solution, and apply the differential

operator revealing an equivalence between the right- and left-hand sides along with

agreement at the domain boundary. However, with f ∈ C0(Ω) such a solution would

need to be at least twice continuously differentiable, that is, u ∈ C2(Ω). Regularity

14

assumptions on the coefficient functions are similarly strict requiring α ∈ [C1(Ω)]
2×2

,

β ∈ C0(Ω). These conditions are enough to ensure u ∈ C2(Ω) in 1D. Yet, even with

α = 1 and β = 0 in 2D, which corresponds to the simple Poisson problem, it is well-

known that a classical solution may not exist when f ∈ C0(Ω) (Haroske and Triebel,

2008). The fact is physical problems can have solutions that are not differentiable

in the classical sense motivates the definition of a generalized or weak solution, also

known as a variational solution due to variational principle used to establish it.

Weak Solution

The weak formulation arises from the application of the variational principle to the

model problem. Multiply both sides on the differential equation by smooth test

functions ϕ ∈ C∞0 (Ω) that are zero on the boundary ∂Ω and integrate over the domain

Ω

−
∫

Ω

∇ · (α (x) ∇u) ϕ+

∫
Ω

β (x)uϕ =

∫
Ω

f ϕ. (2.2)

Applying integration by parts to the second order term, the above expression takes

the form

∫
Ω

∇ϕ · (α (x) ∇u) +

∫
Ω

β (x)uϕ =

∫
Ω

f ϕ. (2.3)

15

The boundary term from integrating by parts is zero since ϕ = 0 on the boundary by

definition. Notice that the functions ϕ and u as expressed need only be once differ-

entiable. Thus, the weak formulation imposes weaker conditions on the smoothness

of the solution than the classical form. Relaxing the smoothness requirement means

that the space of acceptable solutions is expanded to include functions that do not

satisfy the equation in the classical sense.

This class of acceptable solutions is the Hilbert space H1(Ω) defined as

H1(Ω) = {u : Ω→ R : ‖u‖L2 (Ω) + ‖∇u‖L2 (Ω) <∞},

and the L2-norms are defined as

‖u‖2
L2 (Ω) =

∫
Ω

|u|2, ‖∇u‖2
L2 (Ω) =

∫
Ω

∇u · ∇u

Any solution u ∈ H1(Ω) must also satisfy the Dirichlet boundary condition g. The

class of functions in H1(Ω) that are zero on the domain boundary are denoted by

H1
0(Ω). Boundary conditions are then enforced by seeking solutions u such that

u = w + ũ, where ũ ∈ H1
0(Ω) solves the differential equation with homogeneous

boundary conditions and the trace, or restriction of w ∈ H1(Ω) in the to the boundary

is g. Essentially the solution ũ is lifted from H1
0(Ω) to satisfy the boundary condition.

Thus, the solution u ∈ H1(Ω) is sought such that u−w ∈ H1
0(Ω). Any problem with

suitably smooth boundary data can be transformed into a homogeneous boundary

16

value problem by this approach. I mention this because many results are presented

in terms of homogeneous boundary conditions without such a comment. For the

class of functions satisfying the Dirichlet boundary conditions, I adopt the notation

H1
E(Ω) = w + H1

0(Ω) with w ∈ H1(Ω) and trace (w) = g used by Strang and Fix

(1973, pg. 70)

This same relaxed smoothness also applies to the test functions ϕ since Eq. (2.3)

does not require such high regularity as C∞0 (Ω). The space of infinitely differentiable

functions C∞0 (Ω) is dense in H1
0(Ω), so relaxing the smoothness to ϕ ∈ H1

0(Ω) is a

perfectly acceptable approximation.

Thus, the weak formulation of Eq. (2.1) is: Find u ∈ H1
E(Ω) such that

−
∫

Ω

∇ϕ · (α (x) ∇u) +

∫
Ω

β (x)uϕ =

∫
Ω

f ϕ (2.4)

is true for all ϕ ∈ H1
0(Ω). This is the usual weak formulation that serves as the

starting point for the finite element method. The existence and uniqueness of weak

solutions under the conditions of the model problem Eq. (2.1) follow directly from the

Lax-Milgram theorem. For a detailed treatment and explanation of these concepts

see, e.g., Evans (1998), Brenner and Scott (2002), and Ciarlet (2002).

17

2.2 Finite Element Method

Provided the model problem is well-posed, a weak solution exists and a powerful

method for approximating that solution is the finite element method. The idea of

the finite element method is to replace the continuum function spaces H1(Ω) with

a proper subset of simple functions. This discretization starts with a mesh of the

domain.

Let Th be a mesh of triangular elements of Ω ∈ R2. Each element K ∈ T has size

hK which is the diameter of a ball enclosing the element given by

hK = max
p,q∼K

dist (p, q)

where dist (·, ·) is the Euclidean distance function, and p ∼ K means p is a vertex of

K. The element size associated with the triangulation T is the largest ball diameter

over the whole mesh

h = max
K

hK . (2.5)

Error bounds stated here use this definition of h for the mesh size.

Consider the set of piecewise continuous functions

P 1
h (Ω) =

{
v ∈ C0(Th) : ∀j, v|Kj

∈ P1(Kj)
}
, (2.6)

18

where P1 is the space of first-order polynomials. In this case, functions in P 1
h are

linear functions on each element K ∈ Th. This space of piecewise functions is H1(Ω)-

conformal, meaning that P 1
h is a subset of H1(Ω).

The discretized weak formulation for the model problem stated in terms of the

piecewise linear approximation space is: Find uh ∈ P 1
h ∩H1

E(Ω) such that

−
∫

Ω

∇ϕ · (α (x) ∇uh) +

∫
Ω

β (x)uh ϕ =

∫
Ω

f ϕ (2.7)

is true for all ϕ ∈ P 1
h ∩ H1

0(Ω). Provided that the true solution u ∈ H2(Ω), and

α ∈ C0(Ω) the difference u− uh measured in the L2(Ω)-norm behaves as

‖u− uh‖L2 (Ω) = O(h2),

where h is the mesh size in Eq. (2.5). As the mesh size h → 0, the difference

u− uh converges quadratically to zero. The true solution loses some regularity when

α is piecewise constant rather than continuous. This loss of regularity means that

u ∈ H1(Ω) and the standard error estimate giving a quadratic convergence rate no

longer applies. A direct consequence of this result is a slower rate of convergence.

To see this explicitly, consider the following simple 1D example in the context

of linear interpolation. A governing factor in the finite element error bounds is the

interpolation error of the underlying approximation space P 1
h . The piecewise linear

19

−h
2

h
2

Figure 2.1: With a discontinuity in the derivative, piecewise linear functions do not
necessarily provide an optimal approximation. In this figure, the shaded region shows
the where a piecewise linear interpolant fails to capture the behavior of this continuous
function in the interval −h

2
≤ x ≤ h

2
. This results in an O(h

3
2) error in the L2([−1, 1])-

norm.

function

v(x) =

−x −1 ≤ x ≤ 0

x 0 ≤ x ≤ 1

is continuous, and its derivative is bounded in L2([−1, 1]). However, the second

derivative of v is not in L2([−1, 1]) which means v ∈ H1([−1, 1]) but v /∈ H2([−1, 1]).

Suppose the interval [−1, 1] is subdivided in such a way that the point x = 0 is always

at the midpoint of a sub-interval, as in Fig. 2.1. A piecewise linear interpolation vh

of v on this grid will exactly match the function for x ≤ −h
2

and x ≥ h
2
, but the

interpolating polynomial in the interval −h
2
≤ x ≤ h

2
is simply vh(x) = h

2
. This

means the only error contribution arises from the difference v−vh within the interval

−h
2
≤ x ≤ h

2
. In the L2([−1,−1])-norm, this error is easily computed, and the rate

20

of convergence estimated by reducing h is

‖u− uh‖L2 ([−1,1]) = O(h
3
2)

rather than O(h2). Attempting to approximate a function in this way, by allowing

kinks within intervals, affects the accuracy of the piecewise linear interpolation and

degrades the convergence rate.

Finite elements, like the finite difference method, assume some degree of smooth-

ness within elements. The simple example above shows that when this condition is

violated the consequence is slower convergence. This is precisely how grid-interface

misalignment affects the accuracy of finite element solutions. The challenge lies in

constructing an accurate approximation to the solution u of the model problem when

interfaces do not align with the computational grid. With regular grid finite element

discretizations, improving the approximation of the solution must involve augment-

ing the basis so the interpolating function used in the finite element method can

capture such sub-grid behavior. One should note that, although v ∈ H1(Ω), a good

approximation can be obtained by aligning the finite element mesh with interfaces.

Alignment works because the piecewise linear approximation, which is also in H1(Ω),

allows jumps in the derivative provided they occur at element boundaries.

21

2.3 Local Basis Modifications

A direct approach to improving the accuracy of fine elements is to apply physical con-

straints to the approximation space at the interface. Methods for constructing such

approximations for interface problems are rooted in the finite difference immersed

boundary method (IBM) constructed to model flow around a flexible heart valve (Pe-

skin, 1972). The focus of IBM was moving interfaces, but the method inspired the

immersed interface method Leveque and Li (1994), which has been used to solve

equations such as Eq. (1.4) and the wave equation in pressure-velocity form in media

with stationary interfaces. Finite difference stencil coefficients in IIM are modified

by incorporating continuity of the solution and the flux at an interface into the local

Taylor approximations. Applying these continuity conditions has been shown to dra-

matically improve the accuracy of the finite difference method Leveque and Li (1994)

when a single interface crosses an element.

A direct extension of this methodology is to apply these same continuity condi-

tions to construct finite element basis functions. (Li, 1998) used these conditions to

establish the immersed finite element method (IFEM). A major benefit of IFEM is the

continuity conditions give usual piecewise linear basis functions when the coefficient

function is smooth. Thus, contributions to the finite element matrices are unaffected

away from interfaces. Using these these modified basis functions to construct finite

element mass and stiffness matrices improves the solution accuracy on regular grids

for Eq. (1.4) (Li, 1998), the heat equation (Li and Ito, 2006), and models for elec-

22

tromagnetic ion flow (Kafafy et al., 2005). Although IFEM does provide a means to

recover accuracy for simple interface problems, recovering accuracy by this method

requires that the computational grid be fine that each element is crossed by only a

single interface.

These immersed methods provide no simple means to construct the stencil coef-

ficients or finite element matrices for very complex regions with multiple interfaces

crossing single elements, which is often encountered in seismic modeling. With such

complex media, a more general means of including sub-grid information in the finite

element basis functions is necessary. Regardless, the general idea of incorporating

small scale information into a large scale approximation is valuable.

Using local fine scale information to develop coarse scale approximations has been

researched extensively in the field of numerical homogenization (Bensoussan et al.,

1978). Here the goal to compute effective discrete operators in the case of periodic,

randomly varying coefficient functions. Fine-scale cell problems are solved to infer

effective, coarse scale representations of the material properties. Homogenization by

this approach assumes that there is a separation of scales (Papanicolaou, 1998). That

is, only changes at small and large scales are captured with no effects from interme-

diate scales. However, a detailed study of well-log data shows that there is actually

a continuum of scale information present in the sound velocity measurements (Her-

rmann, 1997). Therefore, the assumptions of scale separation and periodicity mean

that this kind of asymptotic homogenization theory is not well-suited for seismic

23

modeling, which is the motivation for this thesis.

The basic methodology of solving individual cell problems was adopted and ex-

tended in the development of multi-scale finite elements (MSFEM) (Hou and Wu,

1997; Efendiev and Hou, 2000). Multiscale methods use basis functions that are the

solutions of a differential equation of the form

∇α (x)∇φj = 0 in K,

φj = gj on ∂K,

(2.8)

on each triangular element K where the index j = 1, 2, 3 corresponds to the nodes

of K. Most applications choose gj = x so the solutions satisfy the nodal property

φj (xi) = δij and maintain linearity on the boundary of the element. The result of this

choice is a set of basis functions that have interior variations guided by the material

property α and appear as standard finite element basis functions at the edges of each

element K in the mesh. An important consequence of this boundary condition is

the functions φj are restricted from fine scale movement at element edges. This is

improved by applying oscillatory boundary conditions.

Under all but the simplest cases of coefficient functions α, Eq. (2.8) must be solved

numerically. The resolution of the discrete problem associated with Eq. (2.8) is chosen

such that all small scale information of interest contained in K will be incorporated

into the basis functions φj. Therefore, there are two mesh sizes for each element: a

fine scale mesh where possibly rapid coefficient variations occur, and a coarse mesh

24

where the approximate solution is represented. Here the finite element mass and

stiffness matrices, which are discrete operators, are computed at the coarse grid scale

by accurately performing the integrations in Eq. (1.3) using these high resolution

basis functions instead of simple piecewise linear functions.

There are two issues that introduce error constructing the basis functions in this

manner. Since the local material variations affect the solution globally, using locally

constructed MSFEM basis functions can induce boundary layers which increase in

the error. This component of error is usually addressed by oversampling; that is,

extending the local domain beyond a single element to allow different boundary con-

ditions at element edges (Efendiev and Hou, 2000). The other component of error

is associated with the cell resonance phenomenon, which is encountered in numeri-

cal homogenization theory (Bensoussan et al., 1978). Cell resonance is observed in

problems with many scales when the coarse scale coincides with one of the fine scales.

A Petrov-Galerkin MSFEM strategy was successfully used by Hou et al. (2004) to

reduce cell resonance for low contrast media (2 : 1).

It was recognized by Kozlov (1980) that the researchers in periodic homoge-

nization had been implicitly applying a special type of coordinate transformation

to compute averaged operators. Following the terminology in General Relativity,

Kozlov (1980) coined the term harmonic coordinates to describe the transformation

25

F = (F1, F2, . . . , Fd) whose components satisfy

∇ · α (x) ∇F = 0 (2.9)

component-wise with appropriate boundary conditions. Allaire and Brizzi (2004)

follow this approach and use harmonic coordinates element-wise to construct MSFEM

basis functions by forming the composition of standard piecewise linear basis functions

with the transformation F that satisfies

∇α (x)∇Fj = 0 in K, (2.10)

Fj = xj on ∂K, (2.11)

for j = 1, 2. Solutions of Eq. (2.10) are computed numerically on a fine mesh in

each element K of the mesh. These locally constructed composite basis functions

ψj ◦ F, where ψj are piecewise linear on the coarse elements, produce a method that

is equivalent to MSFEM. Their method separates the fine scale computation from the

coarse basis functions. The benefit of this composition approach is that the method

is independent of the order of the coarse basis functions.

There is no assumption of periodicity inherently applied in the construction of

MSFEM basis functions and algorithms. However, almost all theoretical work is

confined material properties that vary periodically (Hou and Wu, 1997; Hou et al.,

1999). One exception is the recently developed MSFEM interface method (Chu et al.,

26

2010), which has the same optimal-order convergence as IFEM and is similarly limited

to single-element interface crossings.

2.4 Global Basis Modifications

Let the global harmonic map on the model problem domain Ω be the vector F =

(F1, F2) that satisfies

∇ · α (x) F = 0, in Ω,

F(x) = x, on ∂Ω,

(2.12)

component-wise. Alessandrini and Nesi (2001, Theorem 4) show that F is a homeo-

morphism (continuous, continuous inverse, bijective) in 2D even when α ∈ [L∞(Ω)]2×2.

This result provides the necessary justification for using F as a coordinate transfor-

mation. However, this result does not extend to higher dimensions without further

restrictions on the coefficient function α. An important counter-example by Briane

et al. (2004, Corollary 1) shows that the Jacobian of F can change sign when the

contrast in the coefficients is high enough. When the Jacobian of a map changes sign

this signals that orientation is not preserved and the map is not invertible. Although

this high-contrast example is pathological from the standpoint of seismology, it does

limit the extension of harmonic maps in 3D since we are no longer guaranteed a coor-

dinate transform by solving Eq. (2.12) with general coefficients. The setting for this

thesis is 2D, so the harmonic map F is guaranteed to be a homeomorphism.

Following the composition rule of Allaire and Brizzi (2004), Owhadi and Zhang

27

(2006) show that the solution with respect to global harmonic coordinates satisfies a

non-divergence form of the model problem. To see this, suppose F satisfies Eq. (2.12)

on the domain Ω. Using this coordinate transform, write u(x) = ũ ◦ F(x). Applying

the chain rule, the gradient of the composite function u is

∇xu = DFT (∇yũ) ◦ F,

where DF is the Jacobian matrix of the map F and ∇x denotes the gradient with

respect to coordinates x = (x1, x2) and ∇y denotes the gradient with respect to

coordinates y = (y1, y2) (F-coordinates). In general, α is a real, 2 × 2 matrix with

each component in L∞(Ω). With this matrix, the second order operator in Eq. (1.1)

is obtained by multiplying by the coefficient matrix α and applying the chain rule

once more to write

∇x · α (x)∇xu = (∇x · α∇xF) · (∇yũ) ◦ F

+
∑
m,n

(
DFα (x)DFT

)
m,n

∂2ũ

∂ym∂yn
◦ F,

where ∇x · α∇x is applied to each component of F. Observe that the coefficient is

represented by the matrix ∇Fα (x)∇FT , which is outside the differential operator.

Furthermore, ∇x · ∇xF = 0 leaving only the term involving the second order dif-

ferential operator. It has been shown that this non-divergence form of the elliptic

problem in 2D has unique solution ũ ∈ H2(Ω) provided α satisfies the condition

28

of uniform ellipticity (Maugeri et al., 2000, Proposition 1.5.1). Thus, harmonic co-

ordinates transform the problem in such a way that, even with L∞(Ω) coefficient

functions, the solution gains a degree of regularity.

An important consequence of this representation is that the standard error esti-

mates for piecewise linear finite elements can optimally approximate ũ. Notice that

the definition of u in terms of ũ and invertibility of F reveal that u ◦ F−1 ∈ H2(Ω).

Therefore one may write an approximation of u in terms of nodal linear functions as

uh ◦ F−1(x) =
∑
j∈N

Uj φj(x)

where φj are the nodal basis functions of P 1
h (Ω) and N are the nodes of T . A direct

result is

uh(x) =
∑
j∈N

Uj φj ◦ F(x)

implying that a suitable approximation space for u involves composite basis functions.

Owhadi and Zhang (2006) show that one can indeed replace the standard space of

linear functions P 1
h with

X1
h = {v ◦ F : for all K ∈ T , v|K ∈ P1(K)} .

29

Further, they prove that for uh ∈ X1
h the optimal order estimate

‖u− uh‖H1(Ω) = O(h),

holds provided the ratio of the largest and smallest eigenvalues of the new coefficient

matrix DFα (x)DFT is bounded.

The application of this method is calculating the solution to the model problem

on a coarse mesh T of Ω. However, the fine-scale basis functions in X1
h will require

an accurate representation of the harmonic map. Thus, the harmonic map auxiliary

problem is computed by the standard finite element method on a high-resolution mesh

E of the domain Ω. The choice of boundary condition in Eq. (2.12) means that F

does not change the domain boundary.

This composition rule, using a piecewise linear approximation of F, leads to basis

functions that are piecewise linear at the fine mesh level. Given a fine mesh element

W ∈ E , the approximate harmonic map F will produce a new triangle F(W) by

mapping the vertices. Essentially, the approximate harmonic map is an affine trans-

formation from Ω to Ω. However, these mapped elements provide the input for the

standard piecewise linear basis functions φ described in X1
h. Thus, the composite ba-

sis functions are actually defined on a mapped version of the fine mesh. This means

the composite basis functions are define on a triangular fine mesh that is not the same

as the mesh used to compute F. Furthermore, the coefficient functions are defined

on the same mesh as F.

30

To avoid this inconvenience Owhadi and Zhang (2006) propose an approximation

space where the basis functions are localized to each element K

Zh = {v : for all K ∈ T , φ ∈ P1(F(K)), v|K = φ ◦ F|K} ,

where F(K) are triangles formed by mapping only the vertices of coarse elements

K to harmonic coordinates and the functions φ are linear on the mapped element.

Note that the composite basis functions are restricted to the coarse elements K ∈ T .

This induces a non-conformity which adds an additional component of error to the

approximation.

These alternative basis functions are more attractive from the standpoint of ap-

proximating because the fine mesh E is common to all components of the scheme. The

method presented in the next chapter removes the non-conforming error by accurately

representing the basis support.

Chapter 3

Harmonic Coordinate Finite

Element Implementation

In this chapter, I describe the harmonic coordinate finite element method (HCFEM)

implementation for this thesis. The foundation of the HCFEM is the standard finite

element method. Thus, I begin by presenting the basic FEM discretization of the

model problem. An algorithm for the the standard FEM assembly completes that

discussion.

With the standard FEM algorithm defined, I then describe the construction of

the high resolution basis functions. At this point I introduce the harmonic map

subproblem that provides the fine scale information. This fine scale information is

then incorporated into the basis through composition. With this new basis described,

I present one of the principle contributions of this thesis, namely the matrix assembly

31

32

algorithms using mesh intersections to precisely represent this composite basis. The

final section of this chapter is devoted to computing the error between the numerical

and true solutions.

3.1 Weak Formulation of the Model Problem

The model problem for this thesis is

−∇ · (α (x) ∇u) + β (x)u = f (x) ,

u = g,

in Ω,

on ∂Ω,

(3.1)

where α and β are piecewise constant functions, the domain Ω is rectangular, and

f ∈ L2(Ω). In Chapter 2, I presented the weak formulation for problem Eq. (3.1):

Find u ∈ H1
E(Ω) such that

−
∫

Ω

∇ϕ · (α (x) ∇u) +

∫
Ω

β (x)uϕ =

∫
Ω

f ϕ (3.2)

is true for all ϕ ∈ H1
0(Ω). In this chapter, the discussion turns from one of approx-

imation properties, as in Chapter 2, to that of an explicit definition of the methods

used to compute numerical solutions of the model problem. This weak formulation is

the starting point for each of the finite element methods presented in this chapter. I

will first present an implementation of the standard finite element method, which is

used to provide a foundation for the HCFEM.

33

3.2 Standard Finite Element Discretization

While I described the approximation properties of piecewise linear finite elements in

Chapter 2, I did not explain how the method is implemented. Any finite element

implementation begins with a mesh or family of meshes. Let Th denote a shape

regular triangular mesh of the domain Ω. In this thesis, the mesh Th is simply a

triangulation of the domain Ω without regard to internal interfaces. I will described

a mesh such as the one shown in FIGREF as an unfitted mesh.

Assume this representative mesh Th is comprised of Nel triangular elements K

with mesh size h as defined as in Eq. (2.5). A mesh of Nel triangular elements is

fully described by a set of globally numbered vertices P and a connectivity matrix

C ∈ N3×Nel
0 . With a unique numbering for the vertices P , each triangle K ∈ Th

can be described by three non-negative integers a, b, c ∈ N0 where pKa , p
K
b , p

K
c ∈ P

are the vertices of K. As presented here, the column of the connectivity array C

associated with element K holds these three integers a, b, c providing a link between

the element and its vertices. I will take it as a foregone conclusion that the vertices

P and connectivity matrix C are provided by some mesh generator, as is generally

the case.

The space of piecewise linear functions

Vh = {v ∈ C0(Ω) : ∀K ∈ Th, v|K ∈ P1} (3.3)

34

was introduced in Chapter 2. In the definition, P1 is the class of linear functions.

Thus, each member of Vh is a linear function within each element K. This space Vh

is H1(Ω)-conformal, meaning that any v ∈ Vh is also a member of H1(Ω).

On any triangle K, a basis for P1 has the form

φj,K(x) = aj,K0 + aj,K1 x1 + aj,K2 x2, j = 1, 2, 3 (3.4)

where x = (x1, x2) are the cartesian components of the point x ∈ K. The coefficients

aj,Kk are computed by applying the nodal property φj,K (pk) = δjk at the vertices

{pKk }k=a,b,c and solving the resulting 3× 3 linear systems

1 pKa,x1 pKa,x2

1 pKb,x1 pKb,x2

1 pKc,x1 pKc,x2

aj,K0

aj,K1

aj,K2

 =

|

ej

|

 (3.5)

where ej is the unit vector with 1 in the jth position and zero in all others. Here

the non-negative integers a, b, c are the vertex indices from C for element K, and

x = (x1, x2) denotes the cartesian component of the vertex.

Each of the functions φj,K for j = 1, 2, 3 are only nonzero within the associated

element K. These three basis functions, determined by solving the linear systems

described above, are shown on a representative element K in Fig. 3.1.

In terms of the basis functions defined above, the approximation uh ∈ Vh∩H1
E(Ω)

35

to the true solution of the model problem is expressed as

uh (x) =
∑
K∈Th

3∑
j=1

UCj,K
φj,K (x) , (3.6)

where U is a vector of unknown coefficients at the vertices of the mesh Th, and C

is the connectivity array associated with Th. The object Vh ∩ H1
E(Ω) indicates the

class of piecewise linear functions satisfying the boundary conditions. Substituting

this expression for uh into the weak formulation Eq. (3.1) and replacing vh with the

basis functions from the test space Vh, we have the discrete weak formulation: Find

uh ∈ Vh ∩H1
E(Ω) such that

∑
K∈Th

3∑
j=1

UCj,K

(∫
K

∇φi,K · α (x) · ∇φj,K +

∫
K

β (x) φi,K φj,K

)
=
∑
K∈Th

∫
K

f φi,K ,

for all φi,K ∈ Vh ∩H1
0(Ω).

Each integral in the discretized weak formulation above can be identified as the

φ1,K

2 3

1

φ2,K

2 3

1

φ3,K

2 3

1

Figure 3.1: The P1 Lagrange basis functions.

36

usual finite element stiffness matrix S

SCi,K ,Cj,K

+
=

∫
K

∇φi,K · α (x) · ∇φj,K dx, (3.7)

and mass matrix M

MCi,K ,Cj,K

+
=

∫
K

β (x) φi,K φj,K dx, (3.8)

where the indices are written in terms of the connectivity array C. Entries in the

mass and stiffness matrix may be visited multiple times when the values at Ci,K and

Cj,K repeat. Therefore, I use the symbol
+
= to represent a cumulative, or running

summation. The components of the load vector F are

FCi,K
=

∫
K

f φi,K dx. (3.9)

Therefore, the weak formulation reduces to a linear system to find the coefficient

vector U in the expression

∑
K∈Th

3∑
j=1

UCj,K

(
SCi,K ,Cj,K

+MCi,K ,Cj,K

)
=
∑
K∈Th

FCi,K
,

or more compactly

(S +M)U = F .

37

Choosing Vh∩H1
0(Ω) restricts the basis functions φi,K = 0 on the domain boundary

and rows of S and M associated with boundary degrees of freedom U are all zeros.

Likewise, data in the right-hand side F associated with the same degrees of freedom

UCi,K
will have zero entries. Dirichlet boundary conditions are easily enforced under

this construction by replacing the diagonal entries in S +M with 1 and the zero

right-hand side data by the boundary function g evaluated at the boundary nodes

associated with the appropriate degrees of freedom in U . This one standard method

of enforcing Dirichlet boundary conditions in the finite element method.

Evaluating the Standard FEM Integrals

A standard approach for evaluating the inner products is to apply a Gauss quadrature

rule. Integrals are transformed to discrete summations where the integrand is evalu-

ated at specially selected points in the domain of integration. Points are computed

on a reference triangle K̂ defined by the vertices p̂ = {(0, 0), (1, 0), (0, 1)}. Denote

the lq quadrature points by {ξ̂l}lql=1 with the associated quadrature weights {ŵl}lql=1.

Since my implementation defines the basis functions on the physical element K ∈

Th, I must map the quadrature points to K in order to evaluate the integrals. Mapping

the reference quadrature data requires a transformation function that takes points in

the reference triangle K̂ to elements K. Piecewise linear basis functions are computed

on the reference element K̂ exactly as they are for any other triangle. These reference

38

basis functions associated with the vertices p̂ are

φ̂1(ξ̂1, ξ̂2) = 1− ξ1 − ξ2,

φ̂2(ξ̂1, ξ̂2) = ξ1,

φ̂3(ξ̂1, ξ̂2) = ξ2,

written in terms of reference coordinates ξ̂ = (ξ̂1, ξ̂2). Note that these basis functions

satisfy the nodal property φ̂j(p̂i) = δij.

A mapping TK that takes points in K̂ and maps them to an element K is easily

constructed in terms of these reference basis functions φ̂j by

TK(ξ̂) =
3∑
j=1

pjφ̂j(ξ̂)

where ξ̂ is a point in K̂. Notice that the mapping has the property that each vertex

p̂j of the reference element K̂ is mapped to a unique vertex of the physical element

K. Thus, TK(p̂j) = pj for all j = 1, 2, 3.

Given the quadrature points {ξ̂l}lql=1, the mapping TK produces a set of points

{ξl}lql=1 in the physical element K. The basis functions φj,K and their gradients are

evaluated at these transformed points.

Like the quadrature points, the weights ŵl must be transformed since they are

associated with the area of the reference triangle. This transformation is accomplished

39

Algorithm 3.1 Global Matrix Assembly for Standard FEM

Given Th, C ∈ N3×Nel
0

Let M = 0, S = 0, F = 0
for K ∈ Th do

for 1 ≤ ni ≤ 3 do; i = Cni,K
for 1 ≤ nj ≤ 3 do; j = Cnj,K

for 1 ≤ l ≤ lq do

Map Gauss quadrature points from K̂ to K
ξl = TK(ξ̂l)
Map Gauss quadrature weights
wl = ŵl detDTK
Evaluate stiffness and mass matrix integrals
Si,j = Si,j +∇φni,K(ξl) · α (ξl) · ∇φnj,K(ξl) wl
Mi,j =Mi,j + β(ξl)φni,K(ξl) φnj,K(ξl)wl

end for
Evaluate right-hand side
Fi = Fi + f(ξl)φi,K(ξl)wl

end for
end for

end for

by applying the determinant of the Jacobian matrix DTK

(DTK)i,j =
∂Ti
∂xj

which is a constant 2 × 2 matrix for each triangular element. The weights are indi-

vidually transformed by ŵl detDTK = wl.

Using these transformed quadrature points ξl and weights wl, the stiffness matrix

40

inner products are evaluated as

SCi,K ,Cj,K

+
=

∫
K

∇φi,K · α (x) · ∇φj,K dx,

+
≈

lq∑
l=1

∇φi,K(ξl) · α(ξl) · ∇φj,K(ξl) wl,

where
+
≈ indicates that the quadrature introduces some approximation error. The

mass matrix integral is transformed in exactly the same manner. This finite element

assembly procedure is shown in Algorithm 3.1.

Alternative Implementations

Although it is often convenient to construct the finite element basis on a reference

element, I have chosen above to compute the piecewise linear basis on each element

directly. The reason for this divergence is the composition rule is most easily imple-

mented in the absence of the reference map and I wish to maintain the same notation

for the basis functions throughout the rest of this thesis. One can look to Ern and

Guermond (2004) for a detailed presentation of the finite element algorithm in more

traditional form.

3.3 Harmonic Coordinate FEM

In this section, I present two harmonic coordinate finite element methods (HCFEM).

The fundamental aspect of the HCFEM approach is the harmonic coordinate trans-

41

form. To described the methods, I begin by introducing a piecewise linear approx-

imation to the harmonic map. Using this approximation I then describe two meth-

ods of constructing composite basis functions. The first approach is the localized

Galerkin method that inspired this work (Owhadi and Zhang, 2006). From these

non-conforming basis functions, I then explain how to construct a conforming ba-

sis. The remainder of the section is devoted to the development of matrix assembly

algorithms using both the non-conforming and conforming HCFEM bases.

3.3.1 Approximate Harmonic Coordinates

I begin this section by briefly summarizing the salient details from the discussion of

harmonic maps in Chapter 2. The harmonic coordinates subproblem associated with

the model problem Eq. (3.1) is

∇ · (α (x) ∇Fi) = 0 in Ω (3.10)

Fi = xi on ∂Ω, (3.11)

where α is the same as in Eq. (3.1) and Fi : Ω → R for each i = 1, 2. These

problems, which yield the components of the harmonic map, are well-posed when the

model problem Eq. (3.1) is well-posed. Therefore, the solutions F1, F2 exist and are

unique.

I will denote the harmonic map as a vector-valued function F(x1, x2) = (F1, F2)

42

where it is understood that F1 and F2 take the same arguments as F. When it is

clear from the context, I will use the more compact notation x = (x1, x2) as I have in

previous sections.

An important property, discussed in Chapter 2, is the map F composed of these

components F1 and F2 defines a coordinate transformation. The Dirichlet boundary

conditions for the harmonic map have special significance in that the components do

not change the location of points on the boundary ∂Ω in their respective directions.

More explicitly, when given a point p ∈ ∂Ω, the harmonic map components act on the

components of (p1, p2) such that F1(p1, p2) = p1 and F2(p1, p2) = p2. That is, F(p) = p

on the boundary. Thus, the harmonic coordinate transformation only modifies the

interior of the problem domain.

Since finding an exact solution in closed form is unlikely, the solutions F1, F2

are approximated using piecewise linear finite elements. The details can easily be

summarized using the notation from the previous section as follows.

The approximation of the harmonic coordinate transform takes place on a trian-

gular mesh Eh′ of Ω that will generally satisfy two properties in this thesis. First, the

mesh Eh′ usually has a size h′ � h where h is the size of the unfitted mesh Th. This

ensures the harmonic map will sufficiently resolve fine-scale structures in the domain.

Secondly, elements in Eh′ must align with internal interfaces where the coefficient

functions exhibit discontinuities.

Of course, neither of these conditions is absolute. The condition on resolution

43

might be satisfied with a grid size h′ very close to h for some problems. Likewise,

the second requirement could be relaxed in the case of material properties that vary

randomly at scales which are too small to approximate practically. Under those

circumstances, one might use a harmonic average within affected elements to obtain

an effective constant material property at the finer scale. This will not be an issue in

this thesis, where coefficient functions are strictly piecewise constant. Regardless, the

triangulation Eh′ cannot truly be described as a fine mesh. Instead, I refer to the fitted

finite element mesh Eh′ associated with the harmonic map F on Ω as the auxiliary

mesh. A complementary description for the unfitted mesh Th associated with the

model problem is primary mesh (rather than coarse mesh). These definitions help

prevent a confusing situation in cases where the auxiliary mesh has roughly the same

element size as the primary mesh. Throughout the rest of the thesis I will drop the

subscript h and h′ on these meshes in favor of writing T as any primary mesh of Ω

and E as any auxiliary mesh of the same domain.

Suppose the mesh E has an associated connectivity array Q ∈ N3×Nel
0 . Then the

piecewise linear approximation to each component of the harmonic map is written as

F1 (x) =
∑
W∈E

3∑
j=1

F̂ 1
Qj,W

φj,W (x) ,

F2 (x) =
∑
W∈E

3∑
j=1

F̂ 2
Qj,W

φj,W (x) ,

where the arrays F̂ i for i = 1, 2 are the solution vectors from solving problems

44

Eq. (3.10) by the finite element method. These piecewise linear representations have

exactly the same form as the approximation to the model problem in Eq. (3.6). Com-

bining the solution vectors so that

F̂ =

 F̂ 1
1 F̂ 1

2 F̂ 1
3 · · ·

F̂ 2
1 F̂ 2

2 F̂ 2
3 · · ·

 (3.12)

the piecewise linear approximation of the harmonic map is

F(x) =
∑
W∈E

3∑
j=1

F̂Qj,W
φj,W (x) , (3.13)

where the subscript Qj,W is an index accessing a column of the solution matrix F

whose rows are the solutions F̂ 1 and F̂ 2. The basis functions φj,W have the same

form as Eq. (3.4) and are computed on each element W ∈ E by solving a similar

linear system to Eq. (3.5).

Given that F is a coordinate transform, using it as such in any calculus expressions

(chain rule, integral change of variable) brings about the need for the Jacobian matrix

associated with F. By definition, the Jacobian matrix of F on element W ∈ E is

DFW =

∂F1|W
∂x1

∂F1|W
∂x2

∂F2|W
∂x1

∂F2|W
∂x2

 ,

where F1, F2 are the scalar-valued components of F, and |W denotes the restriction

to element W ∈ E .

45

Let the piecewise linear basis functions on element W ∈ E be

φj,W (x) = aj,W0 + aj,W1 x1 + aj,W2 x2.

Then, the Jacobian matrix associated with F on element W is

(DFW)i,j =
2∑

n=1

F̂ i,W
n aj,Wn

where i, j = 1, 2 and the matrix is referenced as DFW . Notice that the terms in

the matrix depend only on the constants aj,Wn and F̂ i,W
n for i, j = 1, 2 and n = 1, 2.

That the Jacobian matrix is constant on each element W ∈ E is a consequence of the

piecewise linear representation of F. With this fact, the determinant of the Jacobian

matrix, sometimes called the Jacobian,

JF,W = detDFW

is also constant on each element W ∈ E .

Properties of the approximate harmonic map described here are extremely impor-

tant and deserve to be summarized more succinctly. The harmonic map F

• is component-wise, piecewise linear,

• does not change domain boundary,

• has element-wise constant Jacobian matrices, and

46

• its mesh E conforms to internal boundaries.

3.3.2 HCFEM Basis Functions

I will discuss two methods of constructing basis functions using the fine scale in-

formation contained in the harmonic map F. I first describe the localized Galerkin

basis as presented by Owhadi and Zhang (2006), which is the non-conforming ba-

sis discussed in Chapter 2. I then present a modification to their construction that

yields a conforming finite element basis. The application of each basis centers around

the element-wise stiffness integrals. Let it be understood that all references to the

harmonic map refer to its piecewise linear approximation.

Localized Galerkin Method

Before defining the basis functions, some preliminary constructs are needed. Suppose

a triangular element K ∈ T has vertices p1, p2, p3. The gradient of any scalar-valued

function v : R2 → R can be approximated on a triangular element K by the so-called

coarse gradient defined as

∇Kv =

 (p2 − p1)T

(p3 − p1)T

−1 v(p2)− v(p1)

v(p3)− v(p1)

 , (3.14)

where the notation (p2 − p1)T represents a row vector. Though this representation

is not commonly seen in the literature, it is nonetheless equivalent to the gradient

of a piecewise linear approximation of v on a triangular element K. One can con-

47

sult Botsch et al. (2010, pg. 44) for an alternative form of the coarse gradient.

Since a coordinate transform does not change the function values of v, Owhadi

and Zhang (2006) exploit Eq. (3.14) along with this fact to write the coarse gradient

of v in terms of harmonic coordinates, or F-coordinates,

∇K
F v =

 (F(p2)− F(p1))T

(F(p3)− F(p1))T

−1 v(p2)− v(p1)

v(p3)− v(p1)

 . (3.15)

Here, each vertex p1, p2, p3 of the triangle K is represented in F-coordinates as F(p1),

F(p2), F(p3) forming a new triangle F(K).

Using the above coarse gradient definitions, I will show how one can arrive at the

basis functions defined by Owhadi and Zhang (2006). Define the nodal basis functions

on element K by the conditions

 ξj,K(pi) = δij, i, j = 1, 2, 3,

∇Fξ
K
j = constant, on K for all j = 1, 2, 3.

The operator ∇F is the usual gradient with respect to the F-coordinates and should

not be confused with the coarse gradient operator ∇K
F . Consider the basis function

ξ1,K associated with vertex p1. The gradient condition implies

ξ1,K(x) = A+ F(x)T g1,

where A is a real constant and g1 is the coarse gradient of ξ1,K with respect to F-

48

coordinates. An application of the nodal property with definition Eq. (3.15) gives

g1 =

 (F(p2)− F(p1))T

(F(p3)− F(x1))T

−1 ξ1,K(p2)− ξ1,K(p1)

ξ1,K(p3)− ξ1,K(p1)

=

 (F(p2)− F(p1))T

(F(p3)− F(p1))T

−1 −1

−1

since ξ1,K(p1) = 1 and ξ1,K(p2) = ξ1,K(p3) = 0. A second application of the nodal

property gives A+ F(p1)T g1 = 1 so that

ξ1,K(p1) = 1 + (F(x)− F(p1))T g1.

Repeating this procedure for j = 2, 3 reveals that the coarse gradients gj are equiv-

alent to the coarse gradients ∇K
Fφj,K , where φj,K are the usual piecewise linear basis

functions on K defined in Eq. (3.4). Therefore, the localized Galerkin basis functions

on each element K are

ξj,K(x) =

 1 + (F(x)− F(pj))
T ∇K

Fφj,K , if pj ∼ K, x ∈ K,

0, otherwise,

where the notation pj ∼ K means that pj is a vertex of K. These are the non-

conforming basis functions described by Owhadi and Zhang (2006).

Implementing this basis in the discrete weak form is accomplished by replacing

the usual finite element basis functions φj,K in Eq. (3.7) with the localized Galerkin

49

basis as

∫
K

∇φi,K α (x) ∇φj,K →
∫
K

∇ξi,K α (x) ∇ξj,K(x)

Since both sets of basis functions are nodal, the degrees of freedom on the mesh T

do not change. That is, the elements of the solution vector U for the discrete model

problem remain associated with the same nodes of T .

Notice that the basis functions ξj,K are composite functions. Applying the chain

rule, the gradient of the localized Galerkin basis is

∇ξj,K = DFT ∇K
Fφj,K

where DF is the Jacobian matrix of F. Then

∫
K

∇ξi,K α (x) ∇ξj,K(x) =

∫
K

DFT ∇K
Fφi,K(x)α (x) DFT ∇K

Fφj,K(x)

Since F is piecewise linear on E , recall that DF is constant on each element W ∈ E .

Furthermore, the object ∇K
Fφj,K is also constant, but on each element K ∈ T . By

construction, the coefficient function α is constant on elements of the auxiliary mesh

E . These observations imply that all quantities in the integrand are constant when

evaluated in an element W ∈ E .

Since the primary and auxiliary meshes represent the same domain, a covering for

50

K in terms of the elements W ∈ E can be obtained through a mesh-element intersec-

tion. The strength of this method is derived from the fact that E is a fitted mesh of

the domain. This means interfaces within the element K are resolved. However, there

is no reason to expect the edges or vertices of triangles in T to align with those in E .

Thus, the intersection object K ∩ E is made up of polygonal pieces corresponding to

triangles in E but not necessarily triangles themselves.

Computing the mesh-element intersection K∩E , the element K can be represented

by a collection of polygonal cells. The intersection of K with E is the set of cells

described by

K ∩ E = {π : π = K ∩W, ∀W ∈ E , with area (π) > 0} .

Here area (π) denotes the area of polygonal cell π, which is zero if π is not closed (for

instance, a point or line). This collection can be comprised of triangles, quadrilat-

erals, pentagons, and hexagons depending upon how individual triangular elements

intersect. Call the element W the parent element of the polygon π. Nothing about

the parent element changes, and the related polygonal cell π inherits all the properties

of the parent (basis functions, Jacobian matrix).

Using the mesh-element intersection and constant quantities above, the stiffness

51

integral is now written in terms of the collection of polygonal cells as

∫
K

DFT ∇K
Fφi,K(x)α (x) DFT ∇K

Fφj,K(x)

=
∑

π∈K∩E

area (π)DFT
W ∇K

Fφi,K α (π) DFT
W ∇K

Fφj,K ,

where α (π) is the value of the coefficient function on the polygonal cell π which is part

of element an W ∈ E . Observe that this summation is not an approximation. This

method removes the possibility of error due to computing the integrals by quadrature.

Thus, the accuracy is primarily affected by how well the piecewise linear approxima-

tion to the harmonic map is resolved and the level of non-conformity exhibited by

localized Galerkin basis. This implementation by mesh-element intersections is not

found in the literature, so I believe it is novel.

Conforming Harmonic Coordinate FEM

The localized Galerkin basis functions can be expressed as a composition rule

ξj,K(x) = ψj,K(x)|x∈K = θj,F(K) ◦ F(x)|x∈K

where θj,F(K) is a piecewise linear basis computed on the mapped element F(K) and

|x∈K denotes the restriction to element K ∈ T . I will discuss first why this restriction

to K creates a non-conforming basis. This will lead to a method of construction for

the conforming harmonic coordinate basis.

52

Recall that F(K) is the triangle formed by mapping the vertices of K to F-

coordinates (harmonic coordinates). Let y = (y1, y2) denote a point in these new

coordinates. The piecewise linear basis functions θj,F(K) on F(K) have the form

θj,F(K) = a0,K
j + a1,K

j y1 + a2,K
j y2 (3.16)

where the coefficients an,Kj for n = 0, 1, 2 and j = 1, 2, 3 are determined by applying

the nodal property and solving a system of equations as in Eq. (3.5).

The support of θj,F(K) is the triangle F(K). The question is: Where did the values

y ∈ F(K) originate? That is, where are the values x = F−1(y) for all y ∈ F(K)?

When F is the identity map F(x) = x for all x ∈ Ω, the answer is y = x and the

elements are unchanged. However, there is little hope that any interesting problem

will have such a simple associated harmonic map. Therefore, the pre-image of points

y ∈ F(K) could be significantly distorted away from K. Therefore, the answer for

general harmonic maps is the points y ∈ F(K) may originate from a non-triangular

element in the domain Ω.

We can examine this effect in two ways. Suppose the harmonic map applied to K

produces the distorted object as in Fig. 3.2. Here, the triangle F(K) is superimposed

on the distorted element. In harmonic coordinates, the straight-sided element K is no

longer a triangle. Pictorially, the figure shows the composition rule with restriction

to K. Evaluate F at some point x ∈ K to obtain a point y in harmonic coordinates.

However, this y is not necessarily inside F(K), as can be seen in the figure. Thus, the

53

Physical Element K

p1 p2

p3

F(p3)

F(p1)

F(p2)

Harmonic Element F(K)

x

y

F

Figure 3.2: Illustration of mapping an element K to harmonic coordinates. The
shaded triangular region in K is mapped to the distorted region with vertices F(pj)
for j = 1, 2, 3. A point x ∈ K is mapped to a point y = F(x) outside the triangular
region F(K).

new point may be outside the true support of θj,F(K). In order to enforce the restriction

to K, one must evaluate the functions θj,F(K) at points outside the support. This is

the source of the non-conformity in the localized Galerkin basis.

Alternatively, the inverse harmonic map applied to the triangular element F(K)

produces a distorted shape instead of the original elementK. This is shown in Fig. 3.3,

where the shaded region of F(K) is mapped under F−1 to produce the distorted region

superimposed on K. A point y ∈ F(K) may be mapped to a point x ∈ Ω outside

K. This also shows that some points x ∈ K may not have an image in the triangular

element F(K) where the functions θj,F(K) are defined. Yet this distorted, shaded

region shown in Fig. 3.3 represents the true support of the composite basis functions,

and the issue now is how this support should be computed.

54

Physical Element K

p1 p2

p3

F(p3)

F(p1)

F(p2)

Harmonic Element F(K)

x

y

F−1

Figure 3.3: Illustration of mapping an element F(K) to physical coordinates. The
shaded triangular region in F(K) is mapped to the distorted region with vertices pj
for j = 1, 2, 3. A point y ∈ F(K) is mapped to a point x = F−1(y) which is outside
the triangular region K.

Instead of restricting the composition to K and introducing a non-conformity, the

actual support of the composite basis can be computed using the same intersection

technique I applied in the previous section. The price to pay is the support of ψj,K is

no longer localized and triangular. However, this will not be a problem since θj,F(K) is

supported on the triangular element F(K). Instead of computing the mesh-element

intersections in the physical domain, I compute the intersections in the harmonic

domain.

Let K̃ denote the distorted support for ψj,K . A representation of K̃ is obtained

indirectly by the following procedure. Map the mesh E to harmonic coordinates to

create the mesh F(E). The vertices of this mapped mesh are nothing more than

the values F̂ described in Eq. (3.12). In harmonic coordinates, the mesh-element

55

intersection F(K) ∩ F(E) is the set of polygonal cells

F(K) ∩ F(E) = {π : π = F(K) ∩ F(W), ∀W ∈ E , area (π) > 0} .

Notice this collection of polygons has the same form as in the previous section. The

distorted support is now simply the inverse harmonic map applied to the mesh-element

intersection

K̃ = F−1(F(K) ∩ F(E)).

These basis functions are implemented in the stiffness integrals by the replacement

∫
K

∇φi,Kα (x)∇φj,K →
∫
K̃

∇ψi,Kα (x)∇ψj,K

where integration now takes place over the distorted support K̃. Since the basis

functions ψj,K still satisfy the nodal property on the vertices of the element K, the

degrees of freedom are associated with the same nodes of K.

Applying the chain rule, the gradient of the composite basis functions ψj,K for

j = 1, 2, 3 is

∇ψj,K = ∇(θj,F(K) ◦ F(x))

= DFT ∇Fθj,F(K) ◦ F(x)

56

Substituting this expression into the integral yields

∫
K̃

∇ψi,Kα (x)∇ψj,K =

∫
K̃

DFT ∇Fθi,F(K) ◦ F(x)α (x) DFT ∇Fθj,F(K) ◦ F(x)

With the definition of K̃ in terms of the intersection object, a change of variable to

harmonic coordinates gives the stiffness integral

∫
F−1(F(K)∩F(E)

DFT ∇Fθi,F(K) ◦ F(x)α (x) DFT ∇Fθj,F(K) ◦ F(x) =

∫
F(K)∩F(E)

DFT ∇Fθi,F(K)(y)α ◦ F−1(y)DFT ∇Fθj,F(K)(y) detDF−1

The integral above is computed by exploiting the constant terms over the polygon

representation F(K) ∩ F(E).

First, note that ∇Fθj,F(K) is constant on F(K). This implies that ∇Fθj,F(K) is

constant over all polygons in F(K) ∩ F(E). Next, the coefficient α is constant on

elements W ∈ E , so the coefficient function is also constant on elements F(W). By

construction, the Jacobian matrices of F are constant on elements W ∈ E , which

means they too are constant on the mapped elements F(W). Therefore, all terms

in the integrand are constant when evaluated on a polygonal cell π ∈ F(K) ∩ F(E).

This means the integral now has the form

∫
F(K)∩F(E)

integrand =
∑

π∈F(K)∩F(E)

∫
π

constant terms.

57

Thus, the stiffness integral is transformed into the summation

∫
F(K)∩F(E)

DFT ∇Fθi,F(K)(y)α ◦ F−1(y)DFT ∇Fθj,F(K)(y) detDF−1 =

∑
π∈F(K)∩F(E)

area (π)DFT
W ∇θi,F(K) α(π)DFT

W ∇θj,F(K) J
−1
F,W .

3.3.3 Global Stiffness Matrix Assembly

Both the localized Galerkin and conforming HCFEM bases were implemented in

previous section using the context of the stiffness matrix. Using those results, the

stiffness matrices are computed as

SCi,K ,Cj,K
=
∑

π∈K∩E

area (π)DFT
W ∇K

Fφi,K α (π) DFW ∇K
Fφj,K

for the localized Galerkin method of Owhadi and Zhang (2006) and

SCi,K ,Cj,K
=

∑
π∈F(K)∩F(E)

area (π)DFT
W ∇θi,F(K) α(π)DFT

W ∇θj,F(K) J
−1
F,W

for the new HCFEM. Thus, the stiffness matrix is assembled by visiting each ele-

ment and computing the summations associated with that element. Here the process

is fundamentally the same as Algorithm 3.1 for the standard FEM. However, the

application of Gauss quadrature is replaced with a summation over polygonal cells

from the intersection object. These stiffness assembly algorithms are summarized in

58

Algorithm 3.2 and Algorithm 3.3.

At the polygon cell level, all of the quantities are constant. Certainly the mesh

intersections should be computed beforehand. Additionally, the Jacobian matrices of

the harmonic map on the auxiliary mesh can be computed in advance. Precomputing

these items means the assembly algorithms are very inexpensive. In fact, the primary

cost of these implementations is almost entirely related to computing the intersections.

Algorithm 3.2 Localized Galerkin Global Stiffness Assembly

1: Given T , C, E, and harmonic map F
2: Compute DFW and JF,W on each W ∈ E
3: Compute gradients ∇φi,K on each K ∈ T
4: Compute coarse gradients ∇K

Fφi,K
5: S = 0
6: for K ∈ T do
7: Compute intersection I = K ∩ E
8: for 1 ≤ ni ≤ nsh do; i = Cni,K
9: for 1 ≤ nj ≤ nsh do; j = Cnj,K

10: s = 0
11: for π ∈ I do
12: Get DFW from parent element W ∈ E of π

13: s
+
= area (π) DFT

W∇K
Fφi,K · α(π)DFT

W∇K
Fφj,K

14: end for
15: S (i, j) = S (i, j) + s
16: end for
17: end for
18: end for

3.3.4 Global Mass Matrix Assembly

As seen in the previous section, computing the inner products that make up the

stiffness matrix entries is straight-forward since the integrals over the primary mesh

59

Algorithm 3.3 Conforming HCFEM Global Stiffness Assembly

1: Given T , C, E, and harmonic map F
2: Construct mapped meshes F(T) and F(E)
3: Compute DFW and JF,W on each W ∈ E
4: Compute ∇θi,F(K) on each F(K) ∈ F(T)
5: S = 0
6: for F(K) ∈ F(T) do
7: Compute intersection I = F(K) ∩ F(E)
8: for 1 ≤ ni ≤ nsh do; i = Cni,K
9: for 1 ≤ nj ≤ nsh do; j = Cnj,K

10: s = 0
11: for π ∈ I do
12: Get JF,W , DFW from parent element W ∈ E of π

13: s
+
= area (π) J−1

F,W DFT
W∇θi,F(K) · α(π)DFT

W∇θj,F(K)

14: end for
15: S (i, j) = S (i, j) + s
16: end for
17: end for
18: end for

elements reduce to sums of constant terms. However, computing the contributions to

the mass matrix requires integration of the basis functions on each piece of polygonal

area arising from the intersections. One could further subdivide individual cells more

complicated than a triangle and apply a simple quadrature on the newly refined

polygon. This subdivision would produce triangles and allow a direct application of

an appropriate quadrature algorithm. Since no quadrature nodes are used to compute

the HCFEM stiffness integrals, I choose compute the mass matrix integrals directly

on these polygonal areas without subdivision by applying Green’s theorem. As with

the HCFEM stiffness integrals, any inaccuracy will be due to the precision of the

harmonic map. I will consider the elemental mass matrix integrals for each basis and

show that their evaluation ultimately amounts to computing line integrals that are

60

identical in form.

Implementing the localized Galerkin basis for mass integrals involves the simple

replacement of the standard FEM basis in Eq. (3.8)

∫
K

β (x) φi,K φj,K →
∫
K

β (x) ξi,K ξj,K .

This integral can be written in terms of the mesh intersection object K ∩ E as

∫
K

β (x) ξi,K ξj,K =
∑

π∈K∩E

β(π)

∫
π

ξi,K ξj,K ,

where I have used the fact that the coefficient function β is constant on elements of

the auxiliary mesh. Recall that these basis functions are defined by a composition rule

involving the harmonic map F. Since the harmonic map is a piecewise linear function

on E , the composition with the linear functions θj,F(K) results in a piecewise linear

function ξj,K on K. On the polygonal cells π, the localized Galerkin basis is a linear

function. Hence, the integrand is the product of two linear functions. Therefore, mass

matrix entries involving the localized Galerkin basis amount to integrating products

of linear functions over polygons.

For clarity, I will explicitly write the localized Galerkin basis function associated

with a polygon π. Let W be the parent element of a polygon π from the mesh-element

intersection K ∩ E . The localized Galerkin basis functions on the parent element W

can be written in terms of the coarse gradient and the components of the harmonic

61

map as

ξj,K(x) = 1 + (F(x)− F(pj))
T ∇K

Fφj,K

= s0 + s1 F1(x) + s2 F2(x),

where s0, s1, and s2 are constants. Here

s0 = 1−
[
∇K

Fφj,K
]

1
F1(pj)−

[
∇K

Fφj,K
]

2
F2(pj)

s1 =
[
∇K

Fφj,K
]

1
,

s2 =
[
∇K

Fφj,K
]

2
,

where
[
∇K

Fφj,K
]
i

is the ith component of the coarse gradient, which is constant on K.

Using the piecewise linear representation of the harmonic map, the localized Galerkin

basis functions on the polygon π are

ξj,K(x) = s0 +
3∑
i=1

(s1F̂
1
Qi,W

+ s2F̂
2
Qi,W

)φi,W (x), (3.17)

where the coefficient arrays F̂ 1 and F̂ 2 are the solution vectors for the components

of the harmonic map defined in Section 3.3.1, Q is the connectivity array for E , and

j = 1, 2, 3. Since the functions φi,W are linear on the parent element W , the localized

Galerkin basis function are linear on the polygon π. Thus, the integrands are simply

products of linear functions on polygons.

62

Using the conforming HCFEM basis in the mass matrix integrals involves the

replacement

∫
K

β (x) φi,K φj,K →
∫
K̃

β (x) ψi,K ψj,K ,

where integration now takes place over the distorted support K̃. Recall that basis

functions ψj,K arise from the composition rule

ψj,K(x) = θj,F(K) ◦ F(x).

The distorted support associated with K for this basis is defined in terms of the

mesh-element intersection F(K) ∩ F(E) as

K̃ = F−1(F(K) ∩ F(E)).

Using this fact and a change of variable to harmonic coordinates, the mass matrix

integral becomes

∫
K̃

β (x) ψi,K ψj,K =
∑

π∈F(K)∩F(E)

β(π) J−1
F,W

∫
π

θi,F(K) θj,F(K)

On the element F(K), the basis functions θj,F(K) are linear functions. Therefore,

computing the mass matrix integrals for the conforming HCFEM basis also reduces

to integrating the product of linear functions over polygons.

63

Since these integrals are essentially identical, I will focus on integrating the prod-

uct θi,F(K) θj,F(K) over some polygon π without loss of generality. Substituting the

definition of θj,F(K) from Eq. (3.16) into the integrand, the inner product becomes

∫
π

θi,F(K) θj,F(K) =

∫
π

(
ai,K0 + ai,K1 y1 + ai,K2 y2

)(
aj,K0 + aj,K1 y1 + aj,K2 y2

)
dy1dy2

Collecting like terms and applying the linearity of the integral operator, this integral

expands to

∫
π

θi,F(K) θj,F(K) =

∫
π

(
ai,K0 + ai,K1 y1 + ai,K2 y2

)(
aj,K0 + aj,K1 y1 + aj,K2 y2

)
dy1dy2

= ai,K0 aj,K0 area (π) +
(
ai,K0 aj,K1 + ai,K1 aj,K0

)∫
π

y1 dy1dy2

+
(
ai,K0 aj,K2 + ai,K2 aj,K0

)∫
π

y2 dy1dy2

+
(
ai,K1 aj,K2 + ai,K2 aj,K1

)∫
π

y1y2 dy1dy2

+ ai,K1 aj,K1

∫
π

y2
1 dy1dy2

+ ai,K2 aj,K2

∫
π

y2
2 dy1dy2

(3.18)

The polygons π are always simple, closed polygons with at most six sides (hexagons).

Thus, a method is needed to compute integrals of the form

∫
π

yµ1 y
ν
2 dy1 dy2 (3.19)

where µ, ν ∈ {0, 1, 2} and π is a simple, closed polygon.

64

Recall that Green’s theorem in 2D (Anton, 1988, pg. 1145) provides the conditions

for converting an integral over an area to an integral over the boundary of that

area. Applying Green’s theorem, the integral Eq. (3.19) of the monomial yµ1 y
ν
2 over a

polygon π arising from the intersection can be written as

∫
π

yµ1 y
ν
2 dy1dy2 =

∫
∂π

yµ+1
1

µ+ 1
yν2 dy2.

Let the vertices of π be the set of points (ri, si) for i = 1, . . . , N , with (rN+1, sN+1) =

(r1, s1). With the vertices defined this way, Cattani and Paoluzzi (1990) show that

this boundary integral has the closed form

∫
∂π

yµ+1
1

µ+ 1
yν2 dy2 =

1

µ+ 1

N∑
i=1

µ+1∑
n=0

ν∑
m=0

rµ+1−n
i Rn

i s
ν−m
i Sm+1

i

(
µ+ 1

n

)(
ν

m

)
1

m+ n+ 1

where
(
n
k

)
= n!

k!(n−k)!
is the binomial coefficient, and the quantities Ri = ri+1 − ri and

Si = si+1−si are the lengths of the projections of each edge onto the coordinate axes.

This result means that the mass matrix integrations using mesh-element intersections

is exact for the given basis functions and piecewise constant coefficient functions.

Global matrix assembly routines are shown in Algorithm 3.4 (localized Galerkin) and

Algorithm 3.5 (conforming HCFEM).

65

Algorithm 3.4 Localized Galerkin Global Mass Matrix Assembly

1: Given T , C, E, Q, and harmonic map F
2: Compute gradients ∇φi,K on each K ∈ T
3: Compute coarse gradients ∇K

Fφi,K
4: M = 0
5: for K ∈ T do
6: Compute intersection I = K ∩ E
7: for 1 ≤ ni ≤ 3 do; i = Cni,K
8: for 1 ≤ nj ≤ 3 do; j = Cnj,K
9: m = 0

10: for π ∈ I do
11: Compute integral using closed form
12: Use basis defined by Eq. (3.17)

13: m
+
= β(π)

∫
π
ξni,K ξnj,K

14: end for
15: M (i, j) =M (i, j) +m
16: end for
17: end for
18: end for

Algorithm 3.5 Conforming HCFEM Mass Matrix Assembly

1: Given T , C, E, Q, and harmonic map F
2: Construct the mapped meshes F(T) and F(E)
3: Compute JF,W on each W ∈ E
4: Compute θj,F(K) on each F(K) ∈ F(T)
5: M = 0
6: for F(K) ∈ F(T) do
7: Compute intersection I = F(K) ∩ F(E)
8: for 1 ≤ ni ≤ 3 do; i = Cni,K
9: for 1 ≤ nj ≤ 3 do; j = Cnj,K

10: m = 0
11: for π ∈ I do
12: Compute integral using closed form
13: Get JF,W from parent element W ∈ E of π

14: m
+
= β(π) J−1

F,W

∫
π
θni,F(K) θnj,F(K)

15: end for
16: M (i, j) =M (i, j) +m
17: end for
18: end for
19: end for

66

3.3.5 Load Vector Assembly

Implementations of the standard FEM often use the mass matrix to compute the load

vector. Briefly, suppose f is approximated in the basis on the mesh T by

f (x) ≈
∑
K∈T

3∑
j=1

f̂Cj,K
φj,K(x),

where f̂Cj,K
= f(PCj,K

) and P is the set of vertices of T . Substituting this expression

for f into the inner product Eq. (3.9) for the components of the load vector gives

FCi,K

+
=

∫
K

f (x)φi,K

=
3∑
j=1

f̂Cj,K

∫
K

φi,K φj,K .

Notice that the integral is simply the definition of the mass matrix with β = 1. The

observation is that this expression is equivalent to evaluating the load function f at

the vertices of T and multiplying that vector by the mass matrix computed with

β = 1. However, the high-resolution HCFEM basis functions (non-conforming or

conforming) do not necessarily provide a good approximation to f by this method.

Given that the HCFEM basis functions are actually piecewise linear on E , a more

suitable approximation for the load function would be the piecewise linear approxi-

mation on the fitted auxiliary mesh E . With the auxiliary mesh E and connectivity

67

array Q, the piecewise linear approximation of f is given by

f (x) ≈
∑
W∈E

3∑
j=1

f̂Qj,W
φj,W (x), (3.20)

where f̂Qj,W
= f(PQj,W

) and P is the set of vertices of E .

This approximation for f is used to construct the load vector with the localized

Galerkin basis as follows. Consider an element K ∈ T and its intersection with the

auxiliary mesh K ∩ E . The contribution to the load vector from this element is

∫
K

f (x) ξi,K =

∫
K∩E

f (x) ξi,K

=
∑

π∈K∩E

∫
π

f (x) ξi,K

Substituting this approximation of f on the parent element W of polygon π gives

∫
π

f (x) ξi,K =
3∑
j=1

f̂Qj,W

∫
π

φj,W ξi,K .

Now the integration method used for the HCFEM mass matrices is applicable since

the functions φj,W and ξi,K are piecewise linear on the parent element W ∈ E of π.

This load vector assembly process is summarized in Algorithm 3.6.

The same approach can be applied to load vector integrals involving the conform-

ing HCFEM basis. Here the integral domain for the in the load vector calculation

68

Algorithm 3.6 Localized Galerkin Global Load Vector Assembly

1: Given T , C, E, Q, and harmonic map F
2: Compute basis functions φi,W on each W ∈ E
3: Interpolate f at vertices of E, call it f̂
4: F = 0
5: for K ∈ T do
6: Compute intersection I = K ∩ E
7: for 1 ≤ ni ≤ 3 do; i = Cni,K
8: x = 0
9: for π ∈ I do

10: for 1 ≤ nj ≤ 3 do; j = Qnj,W

11: Compute integral using closed form
12: Use basis defined by Eq. (3.17)

13: x
+
= f̂Qnj,W

∫
π
φnj,W ξni,K

14: end for
15: end for
16: F (i) = F (i) + x
17: end for
18: end for

Eq. (3.9) is replaced with integration over the distorted support K̃ as

∫
K

f (x)φi,K →
∫
K̃

f (x)ψi,K .

Writing the distorted support in terms of the mesh-element intersection in harmonic

coordinates gives

∫
K̃

f (x)ψi,K =

∫
F−1(F(K)∩F(E))

f (x) ψi,K

Applying the definition of the composite basis functions ψi,K = θi,F(K) ◦F and trans-

69

forming the integral to harmonic coordinates yields

∫
K̃

f (x)ψi,K =

∫
F(K)∩F(E)

f ◦ F−1 θi,F(K) detDF−1

for the integrals associated with element K. With this representation, I can write the

integral in terms of individual polygons π ∈ F(K) ∩ F(E).

Since the Jacobian of the harmonic map F is constant on each polygonal area

π, a property which is inherited from the parent element W ∈ E , the above integral

becomes

∫
F(K)∩F(E)

f ◦ F−1 θi,F(K) detDF−1 =
∑

π∈F(K)∩F(E)

J−1
F,W

∫
π

f ◦ F−1 θi,F(K)

The basis functions θi,F(K) are linear on all polygons π which leaves only the term

f ◦ F−1 to consider.

The piecewise linear nature of F on E has special consequences that can be ex-

ploited to write an approximation to f ◦ F−1 by starting with Eq. (3.20). Forming

the composition of Eq. (3.20) with F−1 gives

f ◦ F−1(y) ≈
∑
W∈E

3∑
j=1

f̂Qj,W
φj,W ◦ F−1(y).

Because F is piecewise linear on W , one can construct basis functions on the mapped

element F(W) and relate them directly to the functions φj,W simply using F as an

70

affine map. Let θj,F(W) be the linear basis functions formed directly on F(W) ∈ F(E).

Since these functions satisfy the nodal property on F(W), and F is an invertible affine

map (coordinate transform), θj,F(W) are related to the basis functions on W ∈ E by

φj,W (x) = θj,F(W) ◦ F(x).

Therefore, the approximation to f ◦ F−1 is

f ◦ F−1(y) ≈
∑
W∈E

3∑
j=1

f̂Qj,W
θj,F(W)(y). (3.21)

Obviously, the transformation is not necessary since the basis functions θj,F(W) can be

computed directly on the mapped elements F(W) for each W ∈ E . Substituting the

approximation Eq. (3.21) into the integral over a polygon π gives the approximate

contribution to the load vector

∫
π

f ◦ F−1 θi,F(K) ≈ J−1
F,W

3∑
j=1

f̂Qj,W

∫
π

θj,F(W) θi,F(K)

The method of exact integration over polygons can now be used to compute the

integrals exactly because both θj,F(W) and θi,F(K) are linear on π. This assembly

process is summarized in Algorithm 3.7.

71

Algorithm 3.7 Conforming HCFEM Load Vector Assembly

1: Given T , C, E, Q, and harmonic map F
2: Construct mapped meshes F(T) and F(E)
3: Compute basis functions θi,F(K) on each F(K) ∈ F(T)
4: Compute basis functions θi,F(W) on each F(W) ∈ F(E)

5: Interpolate f at vertices of E, call it f̂
6: F = 0
7: for K ∈ T do
8: Compute intersection I = F(K) ∩ F(E)
9: for 1 ≤ ni ≤ 3 do; i = Cni,K

10: x = 0
11: for π ∈ I do
12: for 1 ≤ nj ≤ 3 do; j = Qnj,W

13: Compute integral using closed form, JF,W from parent element of π

14: x
+
= f̂Qnj,W

J−1
F,W

∫
π
θnj,F(W) θni,F(K)

15: end for
16: end for
17: F (i) = F (i) + x
18: end for
19: end for

3.4 Error Calculations

I have chosen to examine the relative error between the numerical and reference

solutions in the `∞(Ω), `2(Ω), and L2(Ω) norms. The size of the solution in the same

norm can be reported as a relative error

RE =
‖u− uh‖
‖u‖

,

which relates a percentage difference between the expected and computed solutions.

Let it be understood that the reference solution u is either an analytical solution or a

highly resolved numerical solution computed by the finite element using a fitted mesh

72

of the domain Ω. Likewise, the numerical solution uh is given by the solution vector

U which holds the nodal approximations of u on the vertices of T .

Suppose T has Np nodes P . Then the `∞(Ω) error is simply

‖u− uh‖`∞ (Ω) = max
1≤n≤Np

pn∈P

|u(pn)− uh(pn)|,

where uh(pn) is the entry in the solution vector U corresponding to node pn. I use

the discrete infinity norm, also called the maximum norm, because this indicates the

largest possible difference between the numerical approximation and the accepted or

true solution at the vertices. Measuring the error this way reveals how well a method

interpolates the solution at these vertices in the worst possible way. This provides a

view of the nodal accuracy as if the mass and stiffness matrices are merely discrete

operators constructed without knowledge of internal variations.

The `2(Ω) error is computed by evaluating

‖u− uh‖2
`2 (Ω) =

∑
1≤n≤Np

pn∈P

|u(pn)− uh(pn)|2

where the values uh(pn) are as described above. This norm is included because it is

often used to measure the accuracy of finite difference methods.

Although the basis functions used to compute the solution U contain possibly fine

scale information, it is interesting to look at the L2(Ω) as if the numerical solution

corresponds to the usual finite element basis on T . Essentially, this measure of the

73

error indicates how the use of these composite basis functions to construct mass and

stiffness matrices improves the accuracy of an unfitted FEM. The numerical solution

viewed as an unfitted FEM is

uh(x) =
∑
K∈T

3∑
j=1

UCj,K
φj,K(x), (3.22)

where U is the solution vector obtained using the HCFEM basis functions. Thus,

I am using the HCFEM solution with a standard FEM approximation. The L2(Ω)

error is

‖u− uh‖L2 (Ω) =
∑
K∈T

∫
K

(u− uh)(u− uh),

where uh is the solution defined by Eq. (3.22). To compute the L2(Ω) error, I use

Gauss quadrature sufficient to integrate the standard piecewise linear basis functions

on each element K ∈ T .

Chapter 4

Software Implementation

A major component of this thesis project is the software implementation. I begin

this chapter by discussing two existing software packages I used that were developed

by third parties. The computational framework I established uses several Trilinos

packages for the standard finite element assembly, basic matrix operations and linear

solvers (Heroux and Willenbring, 2003). Unstructured mesh generation is provided

by Gmsh, which is a powerful mesh generator with a versatile and user-friendly inter-

face (Geuzaine and Remacle, 2009).

Beyond third-party software, I developed several classes that hide the complex-

ity of the assembly algorithms described in the previous chapter. These classes are

divided into four main groups: mesh, problem definition, assembly, and harmonic

map. I begin by describing in detail my tbTriMesh C++ class whose primary unique

feature is a concrete intersection algorithm for computing all the objects of the form

74

75

K ∩ E mentioned in the previous chapter. To conclude the discussion of mesh ob-

jects, I introduce a wrapper class tbMeshGen for generating tbTriMesh objects using

a geometry description. A complete definition of the model problem also needs the

coefficient, boundary, and load functions. These functions are provided by the user

based on the abstract class tbMyProblem. Since the assembly algorithms are provided

in Chapter 3, the next focus is the design of a class for assembling the matrices and

load vectors. Finally, I present a simple class for constructing a harmonic map and

discuss its components.

With all these relatively independent classes, I show a simple example.

4.1 Third-Party Software

4.1.1 Trilinos

My software relies on the a number of packages from the Trilinos software project

(Heroux et al., 2003a,b,c; Heroux and Willenbring, 2003; Sala et al., 2004). This is

an extensive collection of software packages distributed under the Lesser Gnu Public

License (LGPL) that provides a unified, object-oriented framework for the solution

of large-scale physical problems. A chief goal of the Trilinos project is the integra-

tion of the many existing numerical solvers into a single, user-friendly development

environment.

The most fundamental component of Trilinos is the linear algebra package

76

Epetra. Epetra is a set of linear algebra objects, such as distributed sparse ma-

trices and vectors, that are accepted as input by all other Trilinos packages. Access

to external dense and sparse linear solvers is provided by the interface classes in

Amesos. This package unifies the many different interfaces used by solvers like Umf-

pack, Lapack and Scalapack under a single, object-oriented interface. I decided to

use the sparse, serial solver Amesos KLU that is provided with Amesos since my linear

systems never exceeded the memory available on any of the computers available to

me. All linear systems in this thesis are solved using Amesos KLU.

For the standard finite element implementation described in Ch 3, I use the

Intrepid package (Bochev et al., 2009). The Intrepid package is a set of tools

specifically designed for computing the individual components of finite element ma-

trices. I based my harmonic map solver implementation directly on an example from

the Intrepid source code.

4.1.2 Gmsh

Structured triangular meshes of rectangular domains, such as those considered in

this thesis, are trivial to construct. Although some generators are available for this

purpose, the simplicity of such triangular meshes in this context allowed me to develop

a robust and fast mesh generator. However, unstructured meshes, particularly those

fitted to complex geometries, are much more difficult to generate. For such meshes,

I use the software Gmsh (Geuzaine and Remacle, 2009).

77

Gmsh is an open-source 2D and 3D mesh generator. One particularly impressive

and user-friendly aspect of Gmsh is its cross-platform, computer-aided drafting (CAD)

interface, which works equally well on Linux, Mac OSX and Windows. Through this

CAD interface, a user can specify a domain geometry and uniquely identify individual

regions. A well-documented part of Gmsh is the syntax for model design. Models are

defined through the GUI by primitive vector graphics components, such as points,

lines, circular arcs, elliptical arcs, and Bezier curves. The internal, CAD software-

dependent language of these models is hidden from the user to allow for extensibility to

other CAD engines without the need for changing the model description. As a result,

each component that can be drawn on the screen has a corresponding command that

is written to a text file. It is this geometry specification file that I use to define model

domains.

A lesser-known feature of Gmsh is the application programming interface (API)

accessible by compiling the source code as a library.

4.2 A Simple Mesh Data Structure

A mesh is a collection triangular elements defined by a set of unique vertices. Each

vertex is assigned a unique global identification number in the set of non-negative

integers N0. These global indices are used to define the elements of the mesh through

an element-vertex correspondence matrix C ∈ N3×Nel
0 that defines how vertices are

connected to form triangles. The array of vertices V and correspondence matrix C

78

v1 v2 v3

v4 v5
v6

v7 v8 v9

1

2

3

4

5

6

7

8 C =

[
1 2 2 3 4 5 5 6
2 5 3 6 5 8 6 9
4 4 5 5 7 7 8 8

]

Element 1 : [1 2 4]

Element 2 : [2 5 4]

Element 3 : [2 3 5]

. . . and so on. . .

Figure 4.1: An example of a simple mesh. The columns of the correspondence matrix
C define the triangles in terms of the vertex global identification numbers, which
are indicated by the subscript on vj. Several examples of element connectivity are
written explicitly. Circled numbers are the element global identification indices. Note
the matrix C is not unique.

are the output from a mesh generator.

As a very simple example, consider the mesh in Fig. 4.1. Each of the eight elements

is identified globally by the circled numbers. These global element identifiers also

correspond to the columns of the correspondence matrix C in the figure. This example

suggests a Mesh generators produce a correspondence matrix and vertex list This a

very traditional and efficient method of storing mesh information.

These data are enough to suggest another possible data structure for a triangular

mesh; in this case, the most primitive datum is a vertex and an element is made of

vertices. Vertices are defined by their two real components and a global identifier

together with a collection of operations as shown in the following C++ class.

class tbVertex {
public:

tbVertex(double x, double y, long globalID, bool IsOnBndry);
tbVertex operator+(const tbVertex&);

79

tbVertex operator-(const tbVertex&);
tbVertex operator=(const tbVertex&);
double operator*(const tbVertex&); // dot product
double distanceTo(const tbVertex&);
bool IsOnBoundary();
double x() const;
double y() const;
long globalID();

private:
double _x;
double _y;
long _globalID;
bool _IsOnBoundary;

}

Vertices are not allowed to change once they are defined. For this reason, the private

data members for the coordinates, global identifier and boundary flag are accessible

only through read-only methods.

Objects of this type are used in place of more primitive types, so the typical

arithmetic operations are overloaded to allow direct addition, subtraction, scalar

multiplication, and assignment. In addition to these basic operations, the method

distanceTo() is provided to compute the Euclidean distance between two vertices.

With this approach, each triangular element is defined by its three vertices and a

global identifier for the element. I prefer to keep the data encapsulated as much as

possible, therefore basis function coefficients and important geometric quantities, such

as area, are precomputed and stored within each triangle object. Importantly, the

constructor for tbTriangle automatically computes these quantities. An important

benefit of this this design is that unit testing can easily be performed on triangle

objects in the absence of a mesh or even valid global identifiers.

class tbTriangle {

80

public:
tbTriangle(const tbTriangle&);
tbTriangle(const tbVertex&, const tbVertex&, const tbVertex&,

long globalID, long regionTag);
tbPWLBasis getBasis(int localVertexID);
// ...
// Various set/get methods for properties
// ...
std::vector<tbCell> Cell;
tbMaterialProperty material;

private:
std::vector<tbVertex> _vertex;
long _globalID;

}

The element global identifier would normally indicate the column of the correspon-

dence matrix C where the element vertices are found if that matrix were explicitly

constructed. Although storing the matrix C and vertex data is more efficient, I have

chosen to store data in this less efficient manner to

• facilitate a simplified intersection algorithm, and

• maintain a greater degree of data encapsulation at the element level.

Vertex data will be duplicated under this construct, but these duplicate data will

only affect the amount of computer memory used.

With these basic vertex and element data structures, a mesh object is defined as

class tbTriMesh {
public:

// ... Constructors ...
std::vector<tbTriangle> Element;
// ... Methods ...

}

A mesh object is then, by design, simply a collection of elements and some set of

81

functions (methods) that allow the user to modify mesh properties and perform op-

erations on mesh data. The usage of std::vector containers simplifies memory

allocation and clean-up as the objects are used and discarded.

4.3 Mesh Generator Class

One key design paradigm of this software is the internal data structure should be

independent of the method used to generate the data. The case of mesh generation

is no exception. Regardless of the method used to construct a mesh, the result is

always a usable tbTriMesh object with all elements fully defined. Thus, the mesh

generator class needs to know the means by which a mesh should be generated along

with a definition of the domain that the underlying mesh generator will understand.

The mesh generator class is defined as

class tbMeshGen {
public:

tbMeshGen(std::string generatorType, std::string modelDescription);
tbTriMesh GenerateTriMesh();
void setNumRefinements(int refinements);
...

private:
// ...private data...

}

where

generatorType = "Gmsh"

to use Gmsh or

82

generatorType = "Structured"

to use the simple structured mesh generator.

The user requests a mesh generator object by instantiating the class tbMeshGen

whose constructor takes a string argument identifying which underlying mesh gener-

ator software to use. For instance,

tbMeshGen smg("Structured","structured.stm")

creates a structured mesh generator object using the structured mesh file input file

structured.stm. Since the structured mesh generator is not aware of regions and

materials, the input file is simple. The file must have extension *.stm with the

following format:

number-of-elements
xmin
xmax
ymin
ymax
boundary-condition-1
boundary-condition-2
boundary-condition-3
boundary-condition-4

The structured mesh generator attempts to build a mesh with the requested number

of elements by equally dividing the edges. Since this is not always possible, the

generator uses values N and M such that 2NM is closest to the desired number of

elements and N and M are themselves close in value. Additional input values are

ignored past the final boundary condition.

Instances of unstructured meshes are generated similarly using

83

tbMeshGen umg("Gmsh","geometry.geo");

which will use Gmsh to create a mesh of the domain described in the file myModel.geo,

which has a particular format that Gmshunderstands. The format of this file is de-

scribed in the Gmsh documentation (Geuzaine and Remacle, 2009).

Any mesh generator can be used by adding a subroutine to call that mesh gener-

ator and populate a tbTriMesh object.

4.4 Problem Defintion

The problem definition is given by the user in two components. The first component,

described above, is the model definition file. In the model, each region is assigned a

unique index. These indices allow the user to reference the mesh regions and prescribe

material properties. The other component of the model definition is provided by the

user as a concrete instance of the abstract class tbMyProblem.

class tbMyProblem {
public:

std::vector<tbMaterialProperty> mat_array;
double materialfunc(cont tbVertex&) = 0;
double thebcfunc(cont tbVertex&) = 0;
double therhsfunc(const tbVertex&) = 0;
double my_exact(const tbVertex&) = 0;
tbVertex my_exact_grad(const tbVertex&) = 0;

}

Using a pure virtual base class means that any problem definition can be referenced

as a type tbMyProblem without regard to the specific implementation. Since the

methods are pure abstract functions, the user must define an implementation for

84

each. In particular, my assembly algorithms use therhsfunc() and thebcfunc() in

constructing the finite element matrices and load vector. The functions for the exact

solution and its gradient are used by the error class tbError.

In this class, a public property mat array is a std::vector holds the material

properties defined by region index. The user is required to provide the proper num-

ber of regions corresponding to the mesh described by the model definition file. This

assignment is easily accomplished in a user-defined constructor for the concrete in-

stance of tbMyProblem. Alternatively, a function specifically for material property

assignment can be added to the derived class.

4.5 Mesh Intersection Algorithm

Intersecting meshes of triangular elements ultimately reduces to intersecting individ-

ual triangles. At a high level, intersection is an operation on meshes and the mesh

object tbTriMesh contains a method

tbTriMesh::Intersect(const tbTriMesh& othermesh)

The process by which intersections are computed should remain unknown to the

mesh object. This design means changes to the intersection algorithms at the ele-

ment level will not change the interface at the mesh level. The implementation of

tbTriMesh::Intersect() simply requests that each triangle of the current mesh at-

tempt to intersect itself with elements of the input mesh. Thus, the mesh intersection

85

algorithm reduces to computing intersections between individual triangles.

Intersecting two triangles can be broken into three major parts. At first, the

question is whether or not the triangles are even close enough to warrant further

computation. To this end, I enclose each triangle in a minimum bounding circle and

test the intersection of these simplified objects since fewer floating point operations

and memory accesses are required. If the bounding circles overlap, then the triangles

are tested for intersection by applying the Separating Axis Theorem. The case of

complete inclusion is also covered by this powerful theorem using a few simple interval

tests, which further reduces the need for expensive point-in-triangle tests. Point-in-

triangle evaluations are the final step before adding new vertices to the data structure.

New vertices are added by using edge-edge intersections.

4.5.1 Minimum Bounding Circle

A common problem in computer graphics is the need to determine when two com-

plex objects are interacting, such as characters in a video game. Complex objects

under these circumstances are enclosed by simple shape that requires very few float-

ing point operations to determine intersection. For triangles, a reasonable choice of

simple shape is the minimum bounding circle. Circles provide an efficient method for

checking proximity since the test requires only the distance between centers and the

sum of the radii.

A simple test for the intersection of triangles is the bounding circle test. The algo-

86

rithm for computing a minimum bounding circle, the smallest circle that contains all

the triangle vertices, is well-known and documented in geometry REFS and computer

graphics literature REF. One can observe that the center of a bounding circle will lie

either at the barycenter of the triangle or at the midpoint of the longest edge REF.

The radius is then determined by the distance between this center and the triangle

vertex furthest from the center.

Each tbTriangle object contains the center and radius of its own bounding circle

in this design. The Intersect method uses the bounding circles of each triangle

as a first inexpensive test for intersection. This test is accomplished by computing

the distance between the bounding circle centers and comparing that distance to the

sum of the radii. If for j = 1, 2 the center and radius of triangle Tj are cj and Rj

respectively, then

dist (c1, c2) ≤ R1 +R2

when the circles are touching. Unfortunately, the bounding circle test can return a

false-positive which means that the circles overlap but the triangles do not. However,

the bounding circle test is computationally inexpensive and further reduces the cost

of the intersection algorithm by ignoring triangles that cannot be intersecting. To

simplify the storage, I introduce a data type

class tbCircle
{

tbVertex center;

87

(a) Intersecting triangles. (b) Disjoint triangles.

Figure 4.2: Triangle intersection is tested first with bounding circles. Shown here are
two cases where bounding circles overlap. The triangles overlap in the first case, but
the second case needs further testing.

double radius;
}

and add on object of that type to as a data member in tbTriangle class

tbCircle tbTriangle::boundingCircle

This encapsulation within the class tbTriangle means we can test bounding circle

intersection using a method

bool tbTriangle::touchesBallsWith(const tbTriangle& t)

which returns true if the bounding circles intersect and false otherwise. The compu-

tational cost of the bounding circle test implemented here is linear in the number of

triangles. On a computer with a 2.7 GHz Intel i7 processor, computing the bounding

circles for 106 triangles had a wall time of 0.061 sec.

88

A

n1

n2

n3

Bn1

n2

n3

(a) Projecting onto normals of triangle A.

B

n1

n2

n3

A

n1

n2

n3

(b) Projecting onto normals of triangle B.

Figure 4.3: The separating axis test involves projecting the two triangles A and B
onto each of the 6 normal directions. When all intervals overlap, the triangles A and
B are deemed intersecting since they have no separating axis.

4.5.2 Separating Axis Theorem

Provided the bounding circle test is successful, the next step to test intersection is

the application of the Separating Axis Theorem (SAT). The SAT states roughly that

two convex polytopes do not intersect which provides a criterion for two convex polyg

This theorem is widely known in convex analysis, but the most likely application

currently seen is collision detection in video game software REF. Before stating the

theorem I wish to introduce the following notation: interior of set T is
◦
T , and 〈a, b〉

is the inner product of vectors a, b ∈ R2. A statement of the theorem adapted to this

application from Golshtein and Tretyakov (1996) follows.

Theorem 4.5.1 (Separating Axis Theorem (Triangles)). Let T1 and T2 be triangles

in R2 such that
◦
T1 ∩

◦
T2= ∅. Then there exists a nonzero vector n ∈ R2 and a scalar

89

γ such that

a) 〈x,n〉 ≤ γ for x ∈ T1 and 〈x,n〉 ≥ γ for x ∈ T2,

b) 〈x∗,n〉 6= γ for some x∗ ∈ T1 ∪ T2.

This means that there exists a vector n such that the projections of T1 and T2 onto

n are separated on that axis, which is a line in R2, at the value γ. In other words,

the vector n and scalar γ define a hyperplane (line) in R2 such that T1 and T2 are

separated.

Although the SAT does not provide an algorithm for determining a separating

axis, applying the SAT is straight-forward for triangles in R2. Since SAT is an ex-

istence theorem, finding any direction n means the two triangles cannot intersect.

By computing the normal direction to the edges of each triangle, a total of at most

six test directions can be established. A separating axis n may be found before all

six tests are performed, which provides an early exit from the algorithm. If each of

the six normal vectors are tested and pass the comparison test, then the triangle T2

could be completely inside T1. With six additional interval tests, total inclusion of T2

in T1 can be determined without using more point-in-polygon tests. Thus, the SAT

test provides three possible states in one algorithm: exclusion, intersection, and total

inclusion. Pseudocode for my implementation appears in Algorithm 4.1.

4.5.3 Point Masking

If the Separating Axis Theorem test reveals that a two triangles intersect but one

is not completely inside the other, then further tests are necessary to determine

90

Algorithm 4.1 Separating Axis Test for Triangles

1: Given triangles T1, T2 in R2

2: Compute edge normal vectors {n1
j}3
j=1 for T1

3: Compute edge normal vectors {n2
j}3
j=1 for T2

4: Let each vertex be a vector with respect to the origin of R2

5: p1 and p2 are the projected intervals
6: Initialize inclusion counter ic = 0
7: for j = 1 . . . 3 do
8: Project the vertices of T1 and T2 onto T1 edge normals
9: p1 = T1proj n1

j

10: p2 = T2proj n1
j

11: If p1 ∩ p2 = ∅ then Exit with intersection status False
12: If p2 ∈ p1, then ic = ic+ 1
13: end for
14: for j = 1 . . . 3 do
15: Project the vertices of T1 and T2 onto T2 edge normals
16: p1 = T1proj n2

j

17: p2 = T2proj n2
j

18: If p1 ∩ p2 = ∅ then Exit with status False
19: If p2 ∈ p1, then ic = ic+ 1
20: end for
21: Intersection status True
22: If ic = 6, then T2 inside T1

the polygon π = T1 ∩ T2. In order to reduce the number of vertices visited by

the remaining algorithms, I have implemented a simple masking routine that marks

vertices that match within some specified tolerance. The tbTriangle object has a

method

tbMask tbTriangle::maskMatchingVertices(tbTriangle& t)}

where the returned object is a simple container defined as

class tbMask {
tbMask();
bool ignore[3];

}

91

A local instance of a mask object for each of the two triangles is created in method

Intersect and used to remove existing vertices from consideration in the intersection

code. When the class tbMask is initialized for either tbTriangle object, the matching

vertices are marked using their local vertex numbering in the boolean array ignore.

As the code moves through the remaining test cases, vertices that are found on

edges are also marked further reducing the number of vertices visited. The primary

purpose of this masking process is to improve robustness by eliminating vertices that

may satisfy multiple criteria.

4.5.4 Point-In-Triangle

This point-in-triangle test uses the barycentric coordinates of the test point with

respect to the triangle as a rejection criterion. Any point p ∈ R2 can be written as

an affine combination of the vertices of trianlge T

p = λ1v1 + λ2v2 + λ3v3

where {vj}3
j=1 are the vertices of T and the triplet (λ1, λ2, λ3) is called the barycentric

coordinates of p. The triplet (λ1, λ2, λ3) is subject to the constraint that
∑

j λj = 1

for all p ∈ R2, which also means λ3 = 1− λ1− λ2. For any p inside T , 0 ≤ λj ≤ 1 for

j = 1, 2, 3. Given the constraint on λ3, the expression for p can be written in terms

92

of only λ1 and λ2 as

p− v3 = λ1(v1 − v3) + λ2(v2 − v3).

The benefit of this representation is that two independent linear equations in λ1, λ2

are readily obtained by computing (p− v3) · v1 and (p− v3) · v2. Forming and solving

the resulting linear system yields the barycentric coordinates for p in terms of T

λ1 =
‖r1‖〈r2, r0〉 − 〈r1, r0〉〈r2, r1〉
‖r0‖‖r1‖ − 〈r0, r1〉〈r1, r0〉

λ2 =
‖r0‖〈r2, r1〉 − 〈r0, r1〉〈r2, r0〉
‖r0‖‖r1‖ − 〈r0, r1〉〈r1, r0〉

where r0 = v1− v3, r1 = v2− v3, and r2 = p− v3. Finally, the point p is inside (or on

the boundary) of triangle T if λ1, λ2 ≥ 0 and λ1 +λ2 ≤ 1. If the condition is satisfied,

then the tbMask::ignore array index corresponding to p is set to true. A test for

inclusion without the boundary is obtained by replacing the conditions on λ1, λ2 with

strict inequalities.

There is a possibility of slight numerical errors falsely excluding p from the triangle

T in the case of p on some edge of T . The next method checks explicitly for points

very near edges.

93

4.5.5 Point-On-Edge

Test point p from T2 on an edge e of triangle T1. Edge e of T1 has vertices v, w ∈

R2. Unless p, v, w are colinear, a point-on-edge test could result in a false-positive.

Therefore, first check that the points are colinear enough to proceed using the cross

product (essentially area test)

| (w − v)× (p− v) | > tol

where tol is chosen very small. Provided the colinearity test is successful, examine

the parametric equation for the edge. Any point u along the edge e is

u = v + t(w − v)

where t ∈ (0, 1), which excludes exact matches with the end-points of e. Since we

wish to know if p is on edge e, write

p− v = t(w − v).

Must be true componentwise. Componentwise,

t =
p1 − v1

w1 − v1

94

and

t =
p2 − v2

w2 − v2

Division by zero condition is possible when w1− v1 or w2− v2 are nearly zero. Patho-

logical division-by-zero cases are excluded by the cross product test for colinearity.

This condition is not possible for both, so a division-by-zero test on one denominator

easily identifies the appropriate logical path for computing t. Provided 0 < t < 1, the

point p is on edge e between the vertices. Possible that some vertices of T1 could be

on edges of T2. Test is performed again with the roles of T2 and T1 reversed.

4.5.6 Edge Intersection

All the tests above determine whether existing points should be included or excluded

from the intersection π = T1 ∩ T2. If all the vertices of T2 are not accounted for in

the tbMask object associated with that triangle, then each edge of T2 is tested against

each edge of T1 to find intersection points. Let s, t ∈ (0, 1) be parameters. Let e1 be

an edge of T1 with vertices v, w. Let e2 be an edge of T2 with vertices q, r. Then form

the linear system

A =
(
q − r v − w

)

95

If | detA| < tol, then matrix is too close to singular. This means the lines are nearly

parallel and there is not likely to be an intersection point within either segment.

Right-hand side comes from the parametric equations q − v. Check that 0 < s < 1

and 0 < t < 1. If successful, then an intersection point exists. Compute it and return.

Otherwise, no new point to compute.

4.6 Harmonic Map Class

This C++ class provides the functions needed to construct and evaluate the harmonic

map as introduced in Section 3.3.1. The class has the structure

class tbHarmonicMap {
public:

tbHarmonicMap(tbTriMesh&);
void build();
tbVertex eval(tbVertex);
tbTriMesh transform(tbTriMesh&);
double getJacobianMatrix(long globalElementID, long row, long col);
double getJacobian(long globalElementID);

private:
tbTriMesh* _mesh;
std::vector<Jacobian> _Jac;
std::vector<tbVertex> _hMapSol;

}

where the type Jacobian is a simple container class

class Jacobian{
public:

double[2][2] matrix;
double det;

}

96

that holds a Jacobian matrix and its determinant. Since a harmonic map is a piecewise

linear finite element solution, the construction of a harmonic map requires a fully

defined tbTriMesh object as input.

Constructing the harmonic map object could take a long time depending on the

mesh resolution. Therefore, I initialize the object data using the constructor and use

the method build() to compute the map. Given a mesh object M, harmonic map

instantiation and construction are performed explicitly as

tbHarmonicMap HMap(M);
HMap.build();

Internally, the harmonic map command build() uses Trilinos packages Intrepid,

Shards, Amesos, Epetra, Epetra Ext, and Teuchos to compute the finite element

solution based on the Intrepid example REF. During the call to build() the Jaco-

bian matrices and determinants are precomputed and each is added to the private

member Jac. The nodal values of the harmonic map, which are themselves vectors,

are stored in the private data member hMapSol. Access to point-wise harmonic map

values are obtained using the command eval.

Recall that the harmonic map is used to map meshes to harmonic coordinates.

The method transform() evaluates the harmonic map at all verticies of the input

tbTriMesh object. It is often the case that the original mesh and its data are still

needed for other operations. For this reason, transform() creates and returns an

entirely new mesh object with all derived data (basis functions, Jacobian matrices,

and so on) computed in terms of the mapped vertices. Given a mesh object M, the

97

harmonic map is applied using the tbTriMesh copy constructor as

tbTriMesh hM(HMap(M));

where hM is the mesh mapped to harmonic coordinates.

The remaining functions getJacobianMatrix() and getJacobian() are provided

to access the private data stored in Jac.

4.7 Usage Demonstration

With the detailed descriptions given for some of these classes the usage in the setting

of a particular problem can be difficult to see. I wish to show how most of the

details given above are hidden from the user. Suppose a model is given by the Gmsh

geometry file model.geo. Further suppose that the user has constructed a derived

class cModel with a default constructor (a constructor that can be called with no

parameters). Finally, let a structured mesh of the domain described in model.geo be

given by model.stm. Then the stiffness matrix and load vector corresponding to the

structured mesh nodes are given by the following example.

// Construct problem definition
cModel model();
// Generate meshes
tbMeshGen gm("Gmsh", "model.geo");
tbTriMesh primary(gm.GenerateTriMesh());
tbMeshGen sm("Structured", "model.stm");
tbTriMesh auxiliary(sm.GenerateTriMesh());
// Set auxiliary mesh material properties
auxiliary.SetMaterialProperties(model);
// Map meshes
tbHarmonicMap HMap(auxiliary);
tbTriMesh hauxiliary(HMap.transform(auxiliary));

98

tbTriMesh hprimary(HMap.transform(primary));
// Perform intersection
primary.Intersect(auxiliary);
// Construct matrix and load vector
tbFEMatAssemble Assemble(model);
Epetra_FECrsMatrix S(Assemble.CellStiffness(hprimary,hauxiliary);
Epetra_FEVector F(Assemble.CellRHS_FineRep(hprimary, HMap,

hauxiliary, S.RowMap()));

At the end of this example, the user is free to choose any of a number of solvers

provided by Trilinos or export the matrix and load vector for use by any other

software package. Some conversion may be necessary in the latter case, but such

conversion is generally inexpensive.

Chapter 5

Results

In this chapter, I present two problems chosen to test the approximation capability

of the new algorithm. The problem of a single circular inclusion, which has β (x) = 0,

is solved on a square domain. This problem demonstrates that the new assembly

method improves the accuracy of the solution. A final example shows that the new

method performs well on multi-interface problems.

5.1 Circular Inclusion

Let Ω = [−1, 1] × [−1, 1]. Suppose the boundary Γ is a circle of radius r0 = 1/
√

2π

centered at (0, 0).

99

100

x2

x1α1

α2

r0 =
1√
2π

(1, 1)

(−1,−1)

Figure 5.1: Circular inclusion. A circle of radius r0 = 1/
√

2π inside a biunit square
domain. The coefficient values are α1 inside the circle, and α2 outside the circle.

Consider the equation

∇ · (α (x)∇u) = f in Ω,

u (x, y) = g (x, y) on ∂Ω.

When the coefficient function α (x) is piecewise constant, the exact solution has the

form

u (x, y) =

rp

α1

for r ≤ r0,

rp

α2

+

(
1

α1

− 1

α2

)
rp0 for r ≤ r0.

where r =
√
x2 + y2. Let p = 3. Then the right hand side and Dirichlet boundary

101

condition are

f (x, y) = 9r,

g (x, y) =
r3

α2

+

(
1

α1

− 1

α2

)
r3

0.

I examine the error for two cases of relatively large contrast.

Circular Inclusion Contrast α1 = 20, α2 = 1

A first step in examining the accuracy of the solution is measuring the error as the

auxiliary mesh is refined. This convergence is shown for a representative subset of the

coarse meshes using the localized Galerkin basis Fig. 5.2a and the conforming HCFEM

basis Fig. 5.2b. Auxiliary meshes with 220 to 220000 triangles are used to compute

the harmonic map. Note that as the auxiliary mesh is refined, the nodal values of the

solution are reduced and appear to converge as the resolution of the harmonic map is

improved. This demonstrates that even on a relatively simple domain a large number

of auxiliary mesh elements are required. Clearly, the conforming method reaches a

lower error level in `∞(Ω).

Using the highest auxiliary mesh refinement of 220000 elements, the solution is

computed by each method on a family of coarse, structured meshes with 32 to 12800

triangular elements. The error measured in the `∞(Ω)-norm is shown in Fig. 5.3.

A circular inclusion poses a difficult scenario for an unfitted finite element method

because the interface is never aligned with the mesh. Furthermore, the position of the

102

interface within elements changes as the coarse mesh is refined. Since no fine-scale

information is include in the unfitted FEM, the error level is poor and the rate of

convergence is O(h). For this same set of coarse meshes, both the non-conforming

and conforming HCFEM methods significantly improve the error level. However the

least-squares convergence rate for the non-conforming method is O(h1.55) while the

conforming HCFEM is has an optimal rate of O(h1.9).

Examining these errors in the `∞(Ω)-norm reveals the worst-case nodal error. An

alternative point of view is the relative discrete `2(Ω)-norm. These errors are shown

in Fig. 5.4. Notice that the error level is higher for the non-conforming method. The

rates of convergence estimated in `2(Ω) for both the non-conforming and conforming

method are comparable.

One may choose to use the coarse-scale solution as if it corresponds to a standard

piecewise linear finite element method. Estimates for standard FEM are usually

measured in the L2(Ω)-norm. This is shown in Fig. 5.5. Observe that the L2(Ω)-norm

gives roughly the same rate of convergence and error level for the non-conforming and

conforming methods. The L2(Ω)-norm tends to smooth the error, which is why these

two methods appear comperable. However, the nodal values tell a completely different

story in `∞(Ω).

103

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

L
∞
 R

el
at

iv
e

E
rr

or

Number of Aux Mesh Elements

128
512
2048
8192

(a) Non-conforming method using Galerkin localized elements.

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

L
∞
 R

el
at

iv
e

E
rr

or

Number of Aux Mesh Elements

128
512
2048
8192

(b) New HCFEM method using polygon intersection algorithm.

Figure 5.2: Error improvement in L∞(Ω) error as the auxiliary mesh is refined from 220
elements to 220, 000 elements. The error is shown for a selection of coarse meshes with
α1 = 20, α2 = 1.

104

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

L
∞
 R

el
at

iv
e

E
rr

or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.3: Plot showing `∞(Ω) convergence for non-conforming HCFEM, conforming
HCFEM, and an unfitted finite element method. The coefficient function has values α1 = 20,
α2 = 1. All methods solutions were computed on the same family of coarse meshes. The
HCFEM methods are shown using the highest refinement for a uniform auxiliary mesh (220k
elements). A least-squares estimate for the convergence rate is O(h1.9) for the conforming
method and O(h1.55) for the non-conforming method. Unfitted is O(h).

105

10
−1

10
0

10
0

l 2 R
el

at
iv

e
E

rr
or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.4: Plot showing `2(Ω) convergence for non-conforming HCFEM, conforming
HCFEM, and an unfitted finite element method. The coefficient function has values α1 = 20,
α2 = 1. All methods solutions were computed on the same family of coarse meshes. The
HCFEM methods are shown using the highest refinement for a uniform auxiliary mesh (220k
elements). A least-squares estimate for the convergence rate is O(h1.73) for the conforming
method and O(h1.72) for the non-conforming method. Unfitted is O(h).

106

10
−1

10
0

10
0

L
2 R

el
at

iv
e

E
rr

or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.5: Plot showing L2(Ω) convergence for non-conforming HCFEM, conforming
HCFEM, and an unfitted finite element method. The coefficient function has values α1 = 20,
α2 = 1. All methods solutions were computed on the same family of coarse meshes. The
HCFEM methods are shown using the highest refinement for a uniform auxiliary mesh (220k
elements). A least-squares estimate for the convergence rate is O(h1.98) for the conforming
method and O(h1.96) for the non-conforming method. Unfitted is O(h1.5).

107

Circular Inclusion Contrast α1 = 1, α2 = 20

Reversing the contrast, convergence for the same auxiliary meshes is shown for a

representative subset of the coarse meshes using the localized Galerkin basis Fig. 5.6a

and the conforming HCFEM basis Fig. 5.6b. Similarly, the coarse mesh solutions

converge as the auxiliary mesh is refined.

Using the highest auxiliary mesh refinement of 220000 elements, the solution is

computed by each method on a family of coarse, structured meshes with 32 to 12800

triangular elements. The error measured in the `∞(Ω)-norm is shown in Fig. 5.7.

The unfitted method has the same degree of difficulty resolving the solution exhibiting

O(h0.8) convergence. Interestingly, both the non-conforming and conforming methods

show an approximate rate of convergence O(h1.84) after the first few meshes. For this

particular contrast, it appears that the non-conforming and conforming methods are

comparable.

These errors are shown in `2(Ω)-norm in Fig. 5.8. While the error levels are

different, both the non-conforming and conforming methods have the same O(h1.7)

convergence.

Finally, the L2(Ω)-norm errors are shown in Fig. 5.9. As with the first example,

the rate of convergence is optimal for both methods. This demonstrates that a single

measure of the error for interface problems is usually inadequate to truly determine

how well the method will perform. In some cases, the behavior of the error in the

L2(Ω)-norm is a good indicator of the overall solution error.

108

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

L
∞
 R

el
at

iv
e

E
rr

or

Number of Aux Mesh Elements

128
512
2048
8192

(a) Non-conforming method using Galerkin localized elements.

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

L
∞
 R

el
at

iv
e

E
rr

or

Number of Aux Mesh Elements

128
512
2048
8192

(b) New HCFEM method using polygon intersection algorithm.

Figure 5.6: Error improvement in L∞(Ω) error as the auxiliary mesh is refined from 220
elements to 220, 000 elements. The error is shown for a selection of coarse meshes with
α1 = 1, α2 = 20. There is little difference between the error levels of the methods.

109

10
−1

10
0

10
−3

10
−2

10
−1

10
0

L
∞
 R

el
at

iv
e

E
rr

or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.7: Plot showing `∞(Ω) convergence for non-conforming HCFEM, conforming
HCFEM, and an unfitted finite element method. The coefficient function has values α1 = 1,
α2 = 20. All methods solutions were computed on the same family of coarse meshes. The
HCFEM methods are shown using the highest refinement for a uniform auxiliary mesh
(220k elements). The methods appear to be pre-convergent for the first several meshes. A
least-squares estimate for the convergence rate after that section is O(h1.84) for both the
conforming and non-conforming methods. Unfitted is O(h0.8).

110

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

l 2 R
el

at
iv

e
E

rr
or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.8: Plot showing `2(Ω) convergence for non-conforming HCFEM, conforming
HCFEM, and an unfitted finite element method. The coefficient function has values α1 = 1,
α2 = 20. All methods solutions were computed on the same family of coarse meshes. The
HCFEM methods are shown using the highest refinement for a uniform auxiliary mesh (220k
elements). A least-squares estimate for the convergence rate is O(h1.73) for the conforming
method and O(h1.72) for the non-conforming method. Unfitted is O(h).

111

10
−1

10
0

10
−3

10
−2

10
−1

10
0

L
2 R

el
at

iv
e

E
rr

or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.9: Plot showing L2(Ω) convergence for non-conforming HCFEM, conforming
HCFEM, and an unfitted finite element method. The coefficient function has values α1 = 20,
α2 = 1. All methods solutions were computed on the same family of coarse meshes. The
HCFEM methods are shown using the highest refinement for a uniform auxiliary mesh (220k
elements). A least-squares estimate for the convergence rate is O(h1.98) for the conforming
method and O(h1.96) for the non-conforming method. Unfitted is O(h1.5).

112

Region 9

Region 8

Region 7

Region 2

Region 1

Region3

Region 4

Region 5

Figure 5.10: Marmousi-like. Regions 1,5,7 and 9 have α = 1. Regions 2 and 3 have
α = 2. Region 6 has α = 10 and region 8 has α = 20.

5.2 Multi-layerd Medium

As a final test problem, I have chosen a multilayered medium inspired by the very

complex Marmousi model.

For comparison, the problem is solved by finite elements on a fitted fine mesh

with 2 280 000 elements for comparison. This fine mesh solution is used as an exact

solution in the error calcluations as described in the previous chapter.

I seek the solution to the problem

∇ · (α (x)∇u) = 1 in Ω,

u (x, y) = 0 on ∂Ω.

113

with the coefficient function α (x) defined as constant within each region. The coeffi-

cient is defined as follows: α = 1 in regions 1, 5, 7, 9, α = 2 in regions 2, 3, α = 10 in

region 6, and α = 20 in region 8. The domain is shown in Fig. 5.10.

As with the circular inclusion case, there is a dramatic improvement in the error

level between the two methods as the auxiliary mesh is refined in Fig. 5.11. Successive

refinements of the harmonic map problem shown in Fig. 5.11b that the accuracy of

the solution is improved for the new method. However, there appears to be some

degree of stagnation for the finest mesh. Notice that the error for the non-conforming

method does not decrease monotonically in Fig. 5.11a as it does for the conforming

method. In some cases, the error actually increases as the auxiliary mesh is refined.

This behavior is also apparent when looking at the convergence rate as the coarse

mesh is refined. The estimated rate of convergence for the new method is O(h1.5) for

the data shown in Fig. 5.12. However, the rate of convergence for the first three meshes

is O(h1.75). The full rate may be pessimistic based on the apparent stagnation for

auxiliary mesh convergence on the finest coarse mesh. This slow-down in convergence

is likely due to floating point limitations when computing the fine mesh solution for

comparison.

In `2(Ω), the relative error for the new method is solidly second-order for this

complex problem. The non-conforming method has an estimated rate of convergence

that is O(h1.5). Either method out-performs the unfitted method which has a rate of

O(h1.3).

114

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

L
∞
 R

el
at

iv
e

E
rr

or

Number of Aux Mesh Elements

128
512
2048
8192

(a) Non-conforming method using Galerkin localized elements.

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

L
∞
 R

el
at

iv
e

E
rr

or

Number of Aux Mesh Elements

128
512
2048
8192

(b) New HCFEM method using polygon intersection algorithm.

Figure 5.11: Error improvement in L∞(Ω) error as the auxiliary mesh is refined from 800
elements to 220, 000 elements. The error is shown for three coarse meshes.

115

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

L
∞
 R

el
at

iv
e

E
rr

or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.12: Plot showing `∞(Ω) convergence for non-conforming HCFEM, conforming
HCFEM, and an unfitted finite element method on the multi-layerd model. All methods
solutions were computed on the same family of coarse meshes. The HCFEM methods are
shown using a highly refined auxiliary mesh (220k elements). A least-squares estimate
for the convergence rate is O(h) for the unfitted and non-conforming methods. The new
method is O(h1.75) for the first three meshes and O(h1.5) for the whole section.

116

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

l 2 R
el

at
iv

e
E

rr
or

Coarse Mesh Size

Conforming
Non−conforming
Unfitted FEM

Figure 5.13: Plot showing relative `2-norm convergence for non-conforming HCFEM,
conforming HCFEM, and an unfitted finite element method on the multi-layerd model. All
methods solutions were computed on the same family of coarse meshes. The HCFEM meth-
ods are shown using a uniform auxiliary mesh (220k elements). A least-squares estimate
for the convergence rate is O(h) for the unfitted FEM and O(h1.5) for the non-conforming
method. The new method is O(h1.98).

Chapter 6

Conclusions

In this thesis, I developed a new method for constructing conforming high-resolution

basis functions suitable for solving problems with piecewise constant coefficients on

regular grids. The key to the assembly algorithm is the intersection algorithm used

to determine which auxiliary mesh elements make up the support for the composite

basis functions. Using these mesh-element intersections, I demonstrated that the

finite element mass and stiffness matrices can be constructed without a quadrature

scheme.

The computational results show that the new method is capable of solving the

elliptic model problem more accurately than the non-conforming localized Galerkin

method on which it is based. I demonstrated that a single error norm may not provide

enough information to evaluate the performance of a given method for elliptic interface

problems. Further, I show that even simple interface problems, such as the circular

117

118

inclusion, require a highly resolved solution to the harmonic coordinate problem.

While I show only single examples of elliptic problems, I should note that the

power of this method is in the assembly process. The discrete operators, the mass and

stiffness matrices, need to be computed only once per simulation. In the case of elliptic

problems, a large number of source functions may be used without reassembling the

finite element matrices. Additionally, the solution is well-resolved at the coarse mesh

level. This means that the overall computational cost of modeling complex media

can be reduced dramatically. As shown in the examples, the conforming HCFEM

method produces nodal values of the solution on a coarse structured mesh are far

more accurate than the associated unfitted finite element solution. Thus, one obtains

a better solution with the only additional cost being the solution of a simple elliptic

problem and mesh-element intersections.

6.1 Future Work

My data encapsulation model for the intersection algorithm leads to duplicate calcu-

lations because the primitive objects are triangles. A superior method data model

may be applying the intersections to a set of edge objects. Since each edge in a mesh

is unique, once an edge intersection is computed for a particular triangle the work

is done for its neighbor. This model requires more planning and design than simple

triangle intersections. Importantly, an extension to higher dimensions may be simpli-

fied greatly since the intersections would follow a hierarchy of tetrahedra, triangular

119

faces, and edges. Exploring this issue is worth consideration since the problem is not

trivial. Furthermore, the high degree of optimization and parallelization in current

solvers for elliptic problems means the harmonic map calculation is quite inexpensive.

The intersection algorithm is the primary cost for my implementation.

References

Alessandrini, G. and Nesi, V. (2001). Univalent σ-Harmonic mappings. Arch. Rational
Mech. Anal., 158:155–171.

Alessandrini, G. and Nesi, V. (2003). Univalent σ-Harmonic mappings: Connections
with quasiconformal mappings. Journal D’Analyse Mathematique, 90:197–215.

Allaire, G. and Brizzi, R. (2004). A multiscale finite element method for numerical
homogenization. Technical Report R.I. No. 545, Centre De and Mathématiques
Appliqués.

Anton, H. (1988). Calculus. John Wiley & Sons, New York, 3rd edition.

Bensoussan, A., Lions, J.-L., and Papanicolaou, G. (1978). Asymptotic Analysis for
Periodic Structures. Number 5 in Studies in Mathemtics and its Applications.
North-Holland Publishing Company, Amsterdam, New York, Oxford.

Bochev, P., Ridzal, D., and Peterson, K. (November 2009). Intrepid - Home. http:
//trilinos.sandia.gov/packages/intrepid.

Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Levy, B. (2010). Polygon Mesh
Processing. A K Peters Ltd., Massachusetts.

Brenner, S. C. and Scott, L. R. (2002). The Mathematical Theory of Finite Element
Methods. Springer Verlag, Berlin, Heidelberg, New York, second edition.

Briane, M., Milton, G., and Nesi, V. (2004). Change of Sign of the Corrector’s
Determinant for Homogenization in Three-Dimensional Conductivity. Archive for
Rational Mechanics and Analysis, 173(1):133–150.

Brown, D. L. (1984). A Note on the Numerical Solution of the Wave Equation with
Piecewise Smooth Coefficients. Mathematics of Computation, 45(166):369–391.

Cattani, C. and Paoluzzi, A. (1990). Boundary Integration Over Linear Polyhedra.
Computer Aided Design, 22(2):130–135.

120

http://trilinos.sandia.gov/packages/intrepid
http://trilinos.sandia.gov/packages/intrepid

121

Chu, C.-C., Hou, T., and Graham, I. (2010). A New Multiscale Finite Element
Method for High-Contrast Elliptic Interface Problems. Mathematics of Computa-
tion, 79(272):1915–1955.

Ciarlet, P. G. (2002). The finite element method for elliptic problems, volume 40 of
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA. Reprint of the 1978 original [North-Holland, Amster-
dam; MR0520174 (58 #25001)].

Cohen, G. C. (2002). Higher Order Numerical Methods for Transient Wave Equations.
Scientific Computing. Springer, Berlin.

Efendiev, Y. and Hou, T. Y. (2000). Multiscale Finite Element Methods, volume 4 of
Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York.

Ern, A. and Guermond, J.-L. (2004). Theory and Practice of Finite Elements, volume
159 of Applied Mathematical Sciences. Springer-Verlag, New York.

Evans, L. C. (1998). Partial Differential Equations, volume 19 of Graduate Texts in
Mathematics. American Mathematical Society, Providence, Rhode Island.

Geuzaine, C. and Remacle, J.-F. (2009). Gmsh: A Three-dimensional Finite Element
Mesh Generator with Built-in Pre- and Post-processing Facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309–1331.

Golshtein, E. G. and Tretyakov, N. V. (1996). Modified Lagrangians and Monotone
Maps in Optimization. Wiley-Interscience, New York.

Haroske, D. and Triebel, H. (2008). Distributions, Sobolev Spaces, and Elliptic Equa-
tions. Textbooks in Mathematics. European Mathematical Society, Z urich.

Heroux, M., Bartlett, R., Hoekstra, V. H. R., Hu, J., Kolda, T., Lehoucq, R., Long,
K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Wil-
lenbring, J., and Williams, A. (2003a). An Overview of Trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories.

Heroux, M. A. and Willenbring, J. M. (2003). Trilinos Users Guide. Technical Report
SAND2003-2952, Sandia National Laboratories.

Heroux, M. A., Willenbring, J. M., and Heaphy, R. (2003b). Trilinos Developers
Guide. Technical Report SAND2003-1898, Sandia National Laboratories.

Heroux, M. A., Willenbring, J. M., and Heaphy, R. (2003c). Trilinos Developers
Guide Part II: ASCI Software Quality Engineering Practices Version 1.0. Technical
Report SAND2003-1899, Sandia National Laboratories.

122

Herrmann, F. J. (1997). A Scaling Medium Representation: A Discussion on Well-
logs, Fractals and Waves. PhD thesis, Delft University, The Netherlands.

Hou, T., Wu, X., and Cai, Z. (1999). Convergence of a Multiscale Finite Element
Method for Elliptic Problems with Rapidly Oscillating Coefficients. Mathematics
of Computation, 68(227):913–943.

Hou, T. and Wu, X. H. (1997). A Multiscale Finite Element Method for Elliptic
Problems in Composite Materials and Porous Media. J. Comput. Phys., 134(1):169–
189.

Hou, T. Y., Wu, X.-H., and Zhang, Y. (2004). Removing the Cell Resonance Error in
the Multiscale Finite Element Method Via a Petrov-Galerkin Formulation. Comm.
Math. Sci, 2(2):185–205.

Kafafy, R., Lin, T., Lin, Y., and Wang, J. (2005). Three-dimensional immersed
interface finite element methods for electric field simulation in composite materials.
International Journal for Numerical Methods in Engineering, 64:940–972.

Kozlov, S. M. (1980). Averaging of Random Operators. Mathematics of the USSR-
Sbornik, 37(2):167–180.

Leveque, R. J. and Li, Z. (1994). The immersed interface method for elliptic equations
with discontinuous coefficients and singular sources. SIAM Journal on Numerical
Analysis, 31:1019–1044.

Li, Z. (1998). The Immersed Interface Method Using a Finite Element Formulation.
Applied Numerical Mathematics, 27:253–267.

Li, Z. and Ito, K. (2006). The immersed interface method: numerical solutions of
PDEs involving interfaces and irregular domains, volume FR33 of Frontiers in
Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA.

Maugeri, A., Palagachev, D. K., and Softova, L. G. (2000). Elliptic and Parabolic
Equations with Discontinuous Coefficients, volume 109 of Mathematical Research.
Wiley-VCH, Berlin, New York.

Owhadi, H. and Zhang, L. (2006). Metric-Based Upscaling. Communications on Pure
and Applied Mathematics, 60(5):675–723.

Papanicolaou, G. (1998). Mathematical Problems in Geophysical Wave Propagation.
In Proceedings of the International Congress of Mathematicians, volume I, pages
403–427. Documenta Mathematica.

Peskin, C. S. (1972). Flow Patterns Around Heart Valves: A Numerical Method.
Journal of Computational Physics, 64:252–271.

123

Sala, M., Heroux, M. A., and Day, D. M. (2004). Trilinos Tutorial. Technical Report
SAND2004-2189, Sandia National Laboratories.

Strang, G. and Fix, G. (1973). An Analysis of the Finite Element Method. Prentice-
Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs, New Jer-
sey.

Symes, W. W. and Vdovina, T. (2009). Interface Error Analysis for Numerical Wave
Propagation. Computational Geosciences, 13:363–370.

Wang, X. (2009). Discontinuous Galerkin Time Domain Methods for Acoustics and
Comparison with Finite Difference Time Domain Methods. Master’s thesis, Rice
University, Houston, Texas.

	List of Figures
	List of Tables
	Introduction
	Motivation and Context
	Problem Statement

	Background and Literature Review
	Solvability of the Model Problem
	Finite Element Method
	Local Basis Modifications
	Global Basis Modifications

	Harmonic Coordinate Finite Element Implementation
	Weak Formulation of the Model Problem
	Standard Finite Element Discretization
	Harmonic Coordinate FEM
	Approximate Harmonic Coordinates
	HCFEM Basis Functions
	Global Stiffness Matrix Assembly
	Global Mass Matrix Assembly
	Load Vector Assembly

	Error Calculations

	Software Implementation
	Third-Party Software
	Trilinos
	Gmsh

	A Simple Mesh Data Structure
	Mesh Generator Class
	Problem Defintion
	Mesh Intersection Algorithm
	Minimum Bounding Circle
	Separating Axis Theorem
	Point Masking
	Point-In-Triangle
	Point-On-Edge
	Edge Intersection

	Harmonic Map Class
	Usage Demonstration

	Results
	Circular Inclusion
	Multi-layerd Medium

	Conclusions
	Future Work

	Bibliography

